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Abstract. Let R be a commutative ring with identity. A proper
ideal Q of R is called quasi primary (weakly quasi primary) if when-
ever ab ∈ Q (0 ̸= ab ∈ Q) for some a, b ∈ R, then a ∈

√
Q or

b ∈
√
Q. In this paper, we study quasi primary (weakly quasi pri-

mary) ideals which are generalization of prime ideals. Our study
provides an analogous to the prime avoidance theorem. We deter-
mined the Noetherian rings that each ideal of them is quasi primary
and the rings that each ideal of them is weakly quasi primary. Be-
sides giving various examples and characterizations of quasi primary
and weakly quasi primary and we investigate the relations between
them.

Keywords: prime ideal, quasi primary ideal, weakly quasi pri-
mary ideal.
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1. Introduction

Prime ideals play a central role in commutative ring theory and so this
notion has been generalized and studied in several directions. The im-
portance of some of these generalizations is same as the prime ideals, say
primary ideals. In a sense they determine how far an ideal is from being
prime. For instance, Hedstrom and Houston [11] defined the strongly
prime ideal, that is a proper ideal P of R such that for a, b ∈ F with
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ab ∈ P , either a ∈ P or b ∈ P where F is the quotient field of R. Ander-
son and Smith [1] introduced the notion of a weakly prime ideal, i.e., a
proper ideal P of ring R with the property that for a, b ∈ R, 0 ̸= ab ∈ P
implies a ∈ P or b ∈ P . So a prime ideal is weakly prime. Bhatwadekar
and Sharma [8] introduced the notion of almost prime ideal which is also
a generalization of prime ideal. A proper ideal I of an integral domain
D is said to be almost prime if for a, b ∈ D with ab ∈ I \ I2, then ei-
ther a ∈ I or b ∈ I, and it is clear that every weakly prime ideal is an
almost prime ideal. The notion of 2-absorbing ideals were introduced
and investigated by Badawi [3]. A nonzero proper ideal I of R is called
a 2-absorbing ideal if whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I or
ac ∈ I or bc ∈ I. For more about generalizations of prime ideals see
[4]-[7] and [12]-[14]. This paper is in this theme and it is devoted to
study a generalization of (weakly) prime ideals so called (weakly) quasi
primary ideals.
A proper ideal Q of R is said to be (weakly) quasi primary if whenever
a, b ∈ R and ab ∈ Q (0 ̸= ab ∈ Q), then either an or bn lies in Q, for
some n ∈ N. The concept of quasi primary ideals, was frst introduced
and studied by Fuchs in [10]. In Section 2 , we study more about quasi
primary ideals and show many their properties. For example we show
that such prime and maximal ideals, Q

I is a quasi primary ideal of R
I if

and only if, Q is a quasi primary ideal of R and completely determine
quasi primary of ring R1 × R2 and also Noetherian rings that every its
ideals are quasi primary. In Theorem 2.20 we prove the quasi primary
avoidance theorem for ideals. Also we introduce and study weakly quasi
primary ideal as a genaralization of quasi primary ideal and prove that
weakly quasi primary Q is a quasi primary ideal or Q2 = 0, also we
show that If every proper ideal of R is a weakly quasi primary ideal of
R, then R has at most two maximal ideals. We note that, every prime
(quasi primary ideal) ideal is a quasi primary (weakly quasi primary)
ideal. However, the converse is not true. For example, 9Z is a quasi
primary ideal of R, but it is not prime. For nontrivial quasi primary
ideals (weakly quasi primary) see Examples 2.6, 2.7, 2.8 and 3.5.
Throughout this paper rings are commutative with non-zero identity
and if S is a subring of R, then 1S = 1R.

2. Quasi Primary Ideals

Definition 2.1. Let Q be a proper ideal of a ring R. We say that Q is
quasi primary if for all a, b ∈ R such that ab ∈ Q, then either a ∈

√
Q

or b ∈
√
Q.

Example 2.2. Every primary ideal is quasi primary.
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Lemma 2.3. An ideal Q of a ring R is a quasi primary ideal of R if
and only if

√
Q is a prime ideal of R.

Proof. Let Q be a quasi primary ideal and ab ∈
√
Q, then anbn ∈ Q

for some positive integer n. Since Q is quasi primary, anmbnm ∈ Q for
some positive integer m. That means a ∈

√
Q or b ∈

√
Q. Hence

√
Q is

a prime ideal. Conversely; Let
√
Q be a prime ideal of R and ab ∈ Q,

so ab ∈
√
Q. But

√
Q is a prime ideal, thus a ∈

√
Q or b ∈

√
Q and

this implies an ∈ Q or bn ∈ Q, for some n ∈ N. Therefore Q is quasi
primary. □
Note 2.4. If Q is a quasi primary and P =

√
Q, then we say that Q is

P−quasi primary.

Corollary 2.5. If P is a prime ideal of a ring R, then Pn is a P−
quasi primary ideal of A for all n ≥ 1.

The following examples show that quasi primary ideals are not nec-
essarily prime, primary or power of a prime ideal.

Example 2.6. Let F be a field, and consider the residue class ring R
of the ring F [X1, X2, X3] of polynomials over F in indeterminates X1,
X2, X3 given by R = F [X1,X2,X3]

(X1X3−X2
2 )

and xi = Xi + (X1X3 − X2
2 ). Then

Q = (x21, x
2
2, x1x2) is a non-primary quasi primary ideal of R.

Example 2.7. Let F be a field, and R = F [X1,X2,X3,X4]
(X1X2−X2

3 )
and xi =

Xi + (X1X2 −X2
3 ). Then (x3, x

2
4) is a non-primary quasi primary of R

which is not also as a power of a prime ideal.

Example 2.8. Let F be a field and R = F [X,Y ] where X and Y are
two indeterminates. Consider the ideal Q = (X2, XY ) of R. Then Q
is not a weakly quasi primary ideal since 0 ̸= XY ∈ Q but X /∈ P and
Y /∈ Q. But

√
Q = (X) is a prime ideal of R, so Q is a weakly quasi

primary ideal of R.

Proposition 2.9. Let R be a ring and S be a multiplicatively closed
subset of R. If Q is a quasi primary ideal of R, then S−1Q is a quasi
primary ideal of S−1R.

Proof. Let a, b ∈ R and s1, s2 ∈ S such that a
s1

b
s2

∈ S−1Q. Then there
exist x ∈ Q and r ∈ S such that a

s1
b
s2

= x
r . Hence t(abr− xs1s2) = 0 for

some t ∈ S. This shows that (ta)(rb) ∈ Q, so (ta)n ∈ Q or (rb)n ∈ Q, for
some n ∈ N. If (ta)n ∈ Q, then ( a

s1
)n = tna

n

(ts1)n
∈ S−1Q and if (rb)n ∈ Q,

then ( b
s2
)n = rnbn

(rs2)n
∈ S−1Q. Therefore S−1Q is a quasi primary ideal

of S−1R. □
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Proposition 2.10. If φ : S −→ R is a ring homomorphism and Q is a
quasi primary ideal of R, then φ−1(Q) is a quasi primary ideal of S.
Proof. If ab ∈ φ−1(Q), then φ(a)φ(b) = φ(ab) ∈ Q. Thus either
φn(a) = φ(an) ∈ Q or φn(b) = φ(bn) ∈ Q, for some n ∈ N, so ei-
ther anφ−1(Q) or bnφ−1(Q). Hence φ−1(Q) is a quasi primary ideal of
S. □
Corollary 2.11. Let S be a subring of R and Q be a quasi primary
ideal of R with S ⊈ Q. Then Q ∩ S is a quasi primary ideal of S.

Proposition 2.12. Let I be an ideal of ring R. Then Q
I is a quasi

primary ideal of R
I if and only if, Q is a quasi primary ideal of R.

Proof. Let Q is a quasi primary ideal of R and (a + I)(b + I) ∈ Q
I , so

ab ∈ Q, thus an or bn ∈ Q for some n ∈ N and hence (a + I)n ∈ Q
I or

(b + I)n ∈ Q
I . Therefore Q

I is a quasi primary ideal of R
I . Converselly;

If Q
I is a quasi primary ideal of R

I and ab ∈ Q, then (a+ I)(b+ I) ∈ Q
I

and hence (a+ I)n ∈ Q
I or (b+ I)n ∈ Q

I , for some n ∈ N. Thus an ∈ Q
or bn ∈ Q. This yields that Q is a quasi primary ideal of R. □
Proposition 2.13. Let R be a principal ideal domain and Q be an ideal
of R. Then Q is primary ideal if and only if Q is quasi primary.
Proof. Assume that Q be quasi primary, so

√
Q is a prime ideal of R.

As R is a principal ideal domain,
√
Q is a maximal ideal of R. Hence Q

is a primary ideal. Conversely; It is evident. □
Proposition 2.14. Let φ : R −→ S be an epimorphism of rings. If Q
is a quasi primary ideal of R containing ker(φ), then φ(Q) is a quasi
primary ideal of S.
Proof. Let a, b ∈ R and ab ∈ φ(Q). Since φ is onto, there are x, y ∈ S
such that a = φ(x) and b = φ(y). Thus ab = φ(xy) ∈ φ(Q). This means
that there is q ∈ Q such that φ(xy) = φ(q). Thus xy− q ∈ ker(φ) ⊆ Q.
Therefore xy = (xy − q) + q ∈ Q. But Q is a quasi primary ideal,
so either xn ∈ Q or yn ∈ Q, for some n ∈ N and consequently either
an = φ(xn) ∈ φ(Q) or bn = φ(yn) ∈ φ(Q). Henceφ(Q) is a quasi
primary ideal of S. □
Proposition 2.15. Let R1 and R2 be rings, and let R = R1×R2. Then
Q1 (resp. Q2) is a quasi primary ideal of R1 (resp. R2) if and only if
Q1 ×R2 (resp. R1 ×Q2) is a quasi primary ideal of R.
Proof. Suppose that Q1 is a quasi primary ideal of R1. Let (a, b)(x, y) ∈
Q1×R2 . Then ax ∈ Q1. Since Q1 is quasi prime, either an ∈ Q1 or xn ∈
Q1, for some n ∈ N. Hence either (a, b)n ∈ Q1×R2 or (x, y)n ∈ Q1×R2.
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Thus Q1×R2 is a quasi primary ideal of R. Conversely; Let Q1×R2 be
a quasi primary ideal of R, and let ab ∈ Q1. Then (a, 1)(b, 1) ∈ Q1×R2.
Hence (a, 1)n ∈ Q1×R2 or (b, 1)n ∈ Q1×R2, for some n ∈ N. Therefore
an ∈ Q1 or bn ∈ Q1. Thus Q1 is a quasi primary ideal of R1. □
Proposition 2.16. If Q is a P−quasi primary ideal of ring R and
a /∈ P , then (Q : an) is P−quasi primary ideal, for all n ≥ 1.
Proof. Let n ≥ 1 and x ∈ (Q : an). Then xan ∈ Q and a /∈ P . Since Q is
a P−quasi primary ideal, we get x ∈

√
Q = P . Thus Q ⊆ (Q : an) ⊆ P

and so P =
√
Q ⊆

√
(Q : an) ⊆

√
P = P . Hence (Q : an) is a P−quasi

primary ideal. □
Proposition 2.17. If Q is irreducible and for every a /∈ Q there exists
n > 1, such that (Q : an) = (Q : an+1), then Q is quasi primary.
Proof. Let Q be irreducible and let ab ∈ Q be such that a /∈

√
Q and

(Q : an) = (Q : an+1) for some n ∈ N. If b ∈ Q, then there is nothing
to prove. Assume that b /∈ Q. We show that b ∈

√
Q. Suppose to the

contrary, b /∈
√
Q. Let x ∈ (Q+Ran)∩ (Q+Rbn). Then there are c, d,∈

Q and s, t ∈ R such that x = c+san = d+tbn. Hence xa = ca+san+1 =
da + tbna ∈ Q. Thus san+1 ∈ Q, and since (Q : an) = (Q : an+1), we
conclude that san ∈ Q. Therefore, x = c + san ∈ Q. This shows that
(Q+Ran) ∩ (Q+Rbn) ⊆ Q, and hence (Q+Ran) ∩ (Q+Rbn) = Q, a
contradiction. Thus Q is a quasi primary ideal of R. □

It is well-known that in Noetherian rings irreducible ideals are pri-
mary, so are quasi primary too and each ideal has primary decomposi-
tion, so it is intersection of finitely many quasi primary ideals. Propo-
sition 2.17 shows that in Noetherian rings, irreducible ideals are quasi
primary and also every proper ideal can be expressed as an intersection
of finitely many quasi primary ideals in another way.
Proposition 2.18. Let Q1, Q2, . . . , Qn, I be ideals of R, such that I ⊆∪n

i=1Qi and I is not contained in the union of any n − 1 of the ideals
Q1, Q2, . . . , Qn and let I ∩

√
Qi ⊈ I ∩

√
Qj, for every i ̸= j. Then Qi’s

can not be quasi primary.
Proof. Suppose to the contrary, Qk is a quasi primary ideal of R, for
some 1 ≤ k ≤ n. It is easy to show that I =

∪n
i=1(I ∩Qi) and I is not

contained in the union of any n−1 of the ideals I∩Q1, I∩Q2, . . . , I∩Qn.
Thus there exists an element ak ∈ I \

√
Qk, for all 1 ≤ k ≤ n. Now

we claim that I ∩ (
∩

i ̸=k Qi) ⊆ (I ∩ Qk), because if x ∈
∩

i ̸=k Qi and
y ∈ I \

∪
i ̸=k Qi, then x + y ∈ I \

∪
i ̸=k Qi. Hence x + y ∈ Qk and as

y ∈ Qk we have x = (x + y) − y ∈ Qk. Therefore
∪

i ̸=k Qi ⊆ Qk and
this implies I ∩ (

∩
i≠k Qi) ⊆ (I ∩ Qk). Since I ∩

√
Qi ⊈ I ∩

√
Qj , for
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every i ̸= j, we have
√
Qi ⊈

√
Qj , for every i ̸= j. Thus there exists

bi ∈
√
Qi \

√
Qj , for every i ̸= j. Let b =

∏
i ̸=k bi. Then b ∈

√
Qi,

for all i ̸= k and b /∈
√
Qk. Therefore, there exist {mi}i ̸=k ⊂ N, such

that bmi ∈ Qi. Put m =
∑

imi. Then bm ∈ Qi, for all i ̸= k and
bm /∈

√
Qk. Hence bmak ∈ (I ∩Qi) for all i ̸= k, but bmak /∈ (I ∩

√
Qk),

otherwise, assume that bmak ∈ (I ∩
√
Qk). Since Qk is quasi primary,

we have either bmt ∈ Qk or at ∈ Qj , for some t ∈ N, which is impossible
as neither b /∈

√
Qk nor ak /∈ Qk. Therefore bmak /∈ (I ∩

√
Qk) Ij and

this contradicts the fact that I ∩ (
∩

i ̸=k Qi) ⊆ (I ∩Qk). □
Proposition 2.19. Let Q be a quasi primary ideal of ring R and let P
be ideal of R containing Q. Then for each m,n ∈ N, QnPm, is a quasi
primary ideal of R.
Proof. Let ab ∈ QnPm. Then ab ∈ Q and this implies at ∈ Q or bt ∈ Q,
for some t ∈ N. Since Q ⊆ P , we get atm+tn ∈ QnPm or btm+tn ∈ QnPm.
Thus QnPm is quasi primary ideal. □
Theorem 2.20. (Quasi primary avoidance theorem). Let I ⊆

∪n
i=1Qi

and I is not contained in the union of any n−1 of the ideals Q1, Q2, . . . , Qn,
where for each 1 ≤ i ≤ n, Qi is quasi primary. If I ∩

√
Qi ⊈ I ∩

√
Qj,

then I ⊆ Qk, for some 1 ≤ k ≤ n.
Proof. The claim is evident for n ≤ 2. Assume that the claim is true
for all k ≤ n. Now, we will prove that the claim is true fork = n + 1.
Suppose that I ⊆

∪n+1
i=1 Qi, where Qj is Pj−quasi primary ideal for each

1 ≤ j ≤ n+1 and I ∩
√
Qi ⊈ I ∩

√
Qj for each i ̸= j. Now, consider the

set T = {I ∩ P1, I ∩ P2, . . . , I ∩ Pn+1}. Then T has a minimal element,
say I ∩ Pm. Then for each t ∈ {1, 2, . . . , n + 1} \ {m} there exists
at ∈ (I ∩Pt)\ (I ∩Pm). Then we have astt ∈ I ∩Qt \Pm, for some st ∈ N.
This implies as11 . . . a

sm−1

m−1 a
sm+1

m+1 . . . a
sn+1

n+1 ∈ I ∩ (
∩

i ̸=mQi). Now, we will
show that I ⊆

∪
i ̸=mQi. Suppose to the contrary. Then it can be easily

seen that I ∩ (
∩

i ̸=mQi) ⊆ Qm. Since as11 . . . a
sm−1

m−1 a
sm+1

m+1 . . . a
sn+1

n+1 ∈ Qm

and Qm is quasi primary ideal of R, we conclude either aus11 ∈ Qm or . . .
a
usm−1

m−1 ∈ Qm or a
usm+1

m+1 ∈ Qm or . . . or a
usn+1

n+1 ∈ Qm. Then we deduce
that either a1 ∈ Qm or . . . am−1 ∈ Qm or am+1 ∈ Qm or . . . or an+1 ∈
Qm. which are contradictions. Thus I ⊆

∪
i ̸=mQi so by induction

hypothesis, we get I ⊆ Qk for some k ∈ {1, 2, . . . , n+ 1} \ {m}. □
Proposition 2.21. Let R be a ring such that P ∩Q is quasi primary,
where P and Q are prime ideals. Then prime ideals of R are comparable.
In particular, R is local and nil(R) is a prime ideal of R.
Proof. Let P and Q be two prime ideals of R. Since P ∩ Q is quasi
primary, we get that

√
P ∩Q = P ∩ Q is prime, and so P ⊆ Q or

Q ⊆ P . Thus, prime ideals of R are comparable. □
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Corollary 2.22. Let R be a ring such that every proper ideal of R is
weakly quasi primary. Then prime ideals of R are comparable and R is
local and nil(R) is a prime ideal of R.
Corollary 2.23. Let R be a reduced ring such that every proper ideal
of R is quasi primary. Then, R is a domain.

Recall from [9], that a ring R is said to be an UN−ring if every
nonunit element a of R is a product a unit and a nilpotent elements.
Proposition 2.24. Let R be a Noetherian ring. Then, every proper
ideal of R is quasi primary if and only if R is either UN-ring, or (R,M)
is a local ring such that Spec(R) = {nil(R),M} and xn = 0 for each
x ∈ nil(R), for some n ∈ N.
Proof. By Corollary 2.22, R is local (with maximal ideal M) and nil(R)
is prime. Suppose that R is not a UN− ring and let P be a non maximal
prime ideal of R. Let n ≥ 1 be an integer. We have Mn ⊈ P , otherwise
M = P , a contradiction. Hence, consider bn ∈ Mn \ P . For each
a ∈ P , we have abn ∈ Mn ∩ P and bn /∈

√
Mn ∩ P = P . Hence, since

Mn ∩ P quasi primary, we obtain that amn ∩ P ⊆ Mn. Consequently,
am ∈

∩
n≥1M

n. By Krull’s intersection theorem, we have∩
n≥1M

n = {0}

Thus, am = 0. Hence, P = nil(R). Accordingly, nil(R) is the unique
non-maximal prime ideal of R and am = 0 for all a ∈ nil(R). Conversely;
If R is a UN−ring then every proper ideal of R is primary, and so quasi
primary. Now, suppose that R is not a UN−ring and let Q be a proper
ideal of R. Consider a, b ∈ R such that ab ∈ Q. If ab ∈ nil(R) then
either a ∈ nil(R) or b ∈ nil(R). Hence, an = 0 or bn = 0, for some
n ∈ N. Now, if ab /∈ nil(R) then

√
(ab) =

√
Q = M and so Q is primary,

and so quasi primary. □
Proposition 2.25. Let Q1, Q2, . . . , Qn be quasi primary ideals with√
Qi = P for each 1 ≤ i ≤ n. Then Q =

∩n
i=1Qi is a P−quasi

primary ideal of R.
Proof. Let Q1, Q2, . . . , Qn be P−quasi primary ideals. Then

√
Q =

√∩n
i=1Qi =

∩n
i=1

√
Qi = P

Thus Q is a P−quasi primary ideal of R. □

3. Weakly Quasi Primary Ideals

Definition 3.1. A proper ideal Q of ring R is said to be a weakly quasi
primary ideal if whenever 0 ̸= ab ∈ Q for some a, b ∈ R, then either
a ∈

√
Q or b ∈

√
Q.
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Definition 3.2. The ideal P of ring R is weakly prime ideal, if for all
a, b ∈ R such that 0 ̸= ab ∈ P , then either a ∈ P or b ∈ P .
Example 3.3. Every weakly prime ideal is weakly quasi primary.
Example 3.4. Every quasi primary ideal is weakly quasi primary.
Example 3.5. Zero ideal is a weakly quasi primary ideal of Z10, but is
not a quasi primary ideal.
Proposition 3.6. Let Q be a weakly quasi primary ideal of ring R.
Then Q is a quasi primary ideal or Q2 = 0.
Proof. Suppose that Q is a weakly quasi primary ideal of R that is
not quasi primary. Then there exist a, b ∈ R such that 0 = ab ∈ Q
but a, b /∈

√
Q. Now, we will show that aQ = 0 = bQ. Assume that

aQ ̸= 0. Then we have aq ̸= 0 for some q ∈ Q. Since Q is a weakly
quasi primary ideal and 0 ̸= aq = a(b + q) ∈ Q, we have an ∈ Q or
(b+ q)n = bn + rq ∈ Q, for some n ∈ N and r ∈ R, implying an ∈ Q or
bn ∈ Q, which is a contradiction. Thus aQ = 0 and similarly, bQ = 0.
Now, choose x, y ∈ Q. If xy = 0, then we are done. Assume that
xy ̸= 0. Then we have 0 ̸= xy = (x+ a)(y+ b) ∈ Q. Since Q is a weakly
quasi primary ideal, we get (x + a)n = xn + as + an = xn + an ∈ Q or
(y + b)n = yn + bt + bn = yn + bn ∈ Q, for some n ∈ N and s, t ∈ Q
(we note that aQ = 0 = bQ). As x, y ∈ Q, we conclude that an ∈ Q or
bn ∈ Q, again a contradiction. Hence, Q2 = 0. □
Corollary 3.7. If Q is a weakly quasi primary ideal of R that is not
quasi primary, then

√
Q =

√
0.

Corollary 3.8. Let R be reduced ring and Q ̸= 0 be a weakly quasi
primary ideal of R. Then Q is quasi primary ideal.
Proposition 3.9. Let Q be a weakly quasi primary ideal of ring R and
let P be ideal of R containing Q. Then for each m,n ∈ N, QnPm, is a
quasi primary ideal of R.
Proof. Similar to the proof of Proposition 2.19. □
Corollary 3.10. Let Q be a weakly quasi primary ideal of R. Then for
each n ∈ N, Qn is a weakly quasi primary ideal.
Proposition 3.11. If Q is a weakly quasi primary ideal of ring R, then√
Q is weakly prime ideal if and only if,

√
Q weakly quasi primary ideal.

Proof. Suppose that
√
Q is a weakly quasi primary ideal of R. Let

0 ̸= ab ∈
√
Q for some a, b ∈ R. Since

√
Q is a weakly quasi primary

ideal, we have an ∈
√
Q or bn ∈

√
Q, for some n ∈ N. which implies that

a ∈
√
Q or b ∈

√
Q. Therefore,

√
Q is a weakly prime ideal of R. The

converse is clear. □
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Corollary 3.12. Let Q be a weakly quasi primary ideal and let Q be
semiprime ideal of ring R. Then Q is weakly prime ideal.
Corollary 3.13. If R is a von Neumann regular ring. Then a proper
ideal Q of R is a weakly quasi primary ideal if and only if it is a weakly
prime ideal.
Proposition 3.14. Let φ : R −→ S be a ring epimorphism and Q be
a weakly quasi primary ideal of R containing ker(φ). Then φ(Q) is a
weakly quasi primary ideal of S.
Proof. Let 0 ̸= ab ∈ φ(Q) for some a, b ∈ R. Since φ is epimorphism,
we can write a = φ(x) and b = φ(y) for some x, y ∈ R. Then we have
ab = φ(x)φ(y) = φ(xy) ∈ φ(Q). As ker(φ) ⊆ Q we have 0 ̸= xy ∈ Q.
Since Q is weakly quasi primary ideal, we get either xn ∈ Q or yn ∈ Q,
for some n ∈ N and this yields an = φn(x) = φ(xn) ∈ φ(Q) or bn =
φn(y) = φ(yn) ∈ φ(Q). Henceφ(Q) is a weakly quasi primary ideal of
S. □
Corollary 3.15. Let Q be a weakly quasi primary ideal and ideal of ring
R containing an ideal I of R. Then Q

I is a weakly quasi primary ideal
of R

I .
Proposition 3.16. Let φ : R −→ S be a ring monomorphism and and
Q be a weakly quasi primary ideal of S. Then φ−1(Q) is a weakly quasi
primary ideal of R.
Proof. Let 0 ̸= ab ∈ φ−1(Q) for some a, b ∈ R. As φ is monic, 0 ̸=
φ(ab) = φ(a)φ(b) ∈ Q. Since Q is a weakly quasi primary ideal, we get
either varphi(an) = φn(a) ∈ Q or varphi(bn) = φn(b) ∈ Q, for some
n ∈ N and thus an ∈ φ−1(Q) or bn ∈ φ−1(Q) Hence, φ−1(Q) is a weakly
quasi primary ideal of S. □
Corollary 3.17. Let S be a subring of R and Q be a weakly quasi
primary ideal of R with S ⊈ Q. Then Q ∩ S is a weakly quasi primary
ideal of S.

Proposition 3.18. Let I ⊆ Q be two ideals of R. If Q
I is a weakly quasi

primary ideal of R
I and I is a weakly quasi primary ideal of R, then Q

is a quasi primary ideal of R.
Proof. Let ab ∈ Q for some a, b ∈ R. If ab ∈ I, then we have an ∈ I ⊆ Q
or bn ∈ I ⊆ Q since I is a quasi primary ideal of R. Now, assume
that ab /∈ I. This implies that 0 ̸= (a + I)(b + I) ∈ Q

I . As Q
I is a

weakly quasi primary ideal of R
I , we get either an + I = (a + I)n ∈ Q

I

or bn + I = (b+ I)n ∈ Q
I , for some n ∈ N, which implies that an ∈ Q or

bn ∈ Q. Therefore, Q is a quasi primary ideal of R. □
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Proposition 3.19. Let R be a ring and S be a multiplicatively closed
subset of R such that Q∩S = ∅. If Q is a weakly quasi primary ideal of
R, then S−1Q is a weakly quasi primary ideal of S−1R.
Proof. Let 0 ̸= a

s
b
t = ab

st ∈ S−1Q. Then there exists u ∈ S such that
0 ̸= u(ab) = (ua)b ∈ Q. So (ua)n ∈ Q or bn ∈ Q, for some n ∈ N
and this implies (as )

n = (uaus )
n ∈ S−1Q or bn

tn ∈ S−1Q. Thus S−1Q is a
weakly quasi primary ideal of S−1R. □
Proposition 3.20. Assume that Q1 and Q2 be ide of rings R1 and R2

respectively. Let R = R1 × R2 and Q = Q1 × Q2. Then the following
are equivalent:

(1) Q is quasi primary ideal of R.
(2) Q is weakly quasi primary ideal of R.
(3) Q1 is quasi primary ideal of R1 and Q2 = R2 or Q2 is quasi

primary ideal of R2 and Q1 = R1.
Proof. (1) =⇒ (2): It is evident.
(2) =⇒ (3): Let Q be a weakly quasi primary ideal of R. Since Q ̸= 0,
either Q1 ̸= 0 or Q2 ̸= 0. Without loss of generality, we may assume
that Q1 ̸= 0. Then there exists 0 ∈ Q1. Take any b ∈ Q2. Then
0 ̸= (a, 1)(1, b) ∈ Q. Since Q is a weakly quasi primary of R, we conclude
that (an, 1) = (a, 1)n ∈ Q or(bn, 1) = (b, 1)n ∈ Q, for some n ∈ N, which
implies Q1 = R1 or Q2 = R2 First assume that Q1 = R1. Now, we
will show that Q2 is a quasi primary ideal of R2. Choose xy ∈ Q2

for some x, y ∈ R2. Then we have (0, 0) ̸= (1, x)(1, y) ∈ Q. As Q is
a weakly quasi primary ideal of R, we have (1, xm) = (1, x)m ∈ Q or
(1, ym) = (1, y)m ∈ Q, for some m ∈ N and hence xm ∈ Q2 or ym ∈ Q2.
If Q2 = R2, then similarly one can prove that Q1 is quasi primary ideal
of R1.
(2) =⇒ (3): By Proposition 2.16, Q is a quasi primary ideal of R. □
Proposition 3.21. If every proper ideal of R is a weakly quasi primary
ideal of R, then R has at most two incomparable prime ideals.
Proof. Suppose that R has three incomparable prime ideals, say P1, P2

and P3. Let I = P1 ∩ P2. Then by assumption, I is a weakly quasi
primary ideal of R. Also, note that

√
I =

√
P1 ∩ P2 = P1 ∩ P2 = I is a

semiprime ideal of R. Then by Corollary 3.12, I is a weakly prime ideal
of R. Since I is not a prime ideal of R, by [1, Theorem 1], I2 = 0 which
implies that P 2

1P
2
2 = 0 ⊆ P3. Then we have either P1 ⊆ P3 or P2 ⊆ P3

which completes the proof. □
Proposition 3.22. If every proper ideal of R is a weakly quasi primary
ideal of R, then R has at most two maximal ideals. In particular, either
R,M is a local ring or R = F1 × F2, where F1, F2 are fields.
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Proof. By Proposition 3.22, we have |Max(R)| ≤ 2. Now, assume that
R is not local. Then M1, M2 are the only maximal ideals of R. By
assumption, M1M2 is a weakly quasi primary ideal of R that is not
quasi primary. By Proposition 3.6, M2

1M
2
2 = 0. By Chinese Remainder

Theorem, we have R ≃ R
M2

1
× R

M2
2

. Without loss of generality, we may
assume that R = R

M2
1
× R

M2
2

. Now, we will show that R
M2

1
is a field. Take a

prime ideal P of R
M2

2
. Choose a nonzero ideal I of R

M2
1

. Then Q = I×P is
a weakly quasi primary ideal of R. By Proposition 3.20, I = R

M2
1

which
implies that R

M2
1

is a field. Similarly, one can show that R
M2

2
is a field. □

Proposition 3.23. Suppose that R is not a local ring. Then every proper
ideal of R is a weakly quasi primary ideal if and only if R = F1 × F2,
where F1, F2 are fields.

Proof. If every proper ideal of R is a weakly quasi primary ideal of R,
then by Proposition 3.22, R = F1 × F2, where F1, F2 are fields.. The
converse is clear. □
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