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1. Introduction

Let (R,+) be the additive group of real numbers endowed with the
Euclidean topology, and let P(R) be the collection of all subsets of R. It
is well-known that there exist subsets of R which are not measurable in
the Lebesgue sense [2], [8]; for instance, Vitali selectors of R, Bernstein
sets of R, as well as non-Lebesgue measurable subsets of R associated
with Hamel basis. Accordingly, the family P(R) can be decomposed
into two disjoint non-empty families; namely, the family L(R) of all
Lebesgue measurable subsets of R, and the family Lc(R) = P(R) \L(R)
of all non-Lebesgue measurable subsets of R.

The algebraic structure; from the set-theoretic point of view, of the
family L(R) is well-known. Indeed, the family L(R) is a σ-algebra of sets
on R, and hence it is closed under all basic set-operations. It contains
the collection BO(R) of all Borel subsets of R, as well as, the collection
N0 of all subsets of R having the Lebesgue measure zero. In addition,
the family L(R) is invariant under the action of the group Φ(R) of all
translations of R onto itself; it means that if A ⊆ R is such that A ∈ L(R)
and h ∈ Φ(R) then h(A) ∈ L(R).

On the other hand, the family Lc(R) does not have a well-defined
structure from the set-theoretic point of view. In fact, the union (resp.
intersection, difference, and symmetric difference) of two elements in the
family Lc(R) can be inside or outside of Lc(R). However, like L(R), the
family Lc(R) is invariant under the action of the group Φ(R).

Given a countable dense subgroup Q of (R,+), let V(Q) be the col-
lection of all Vitali selectors related to Q. The construction of Vitali
selectors is discussed in Subsection 2.3 and more facts about them can
be found in [2]. The following question constitutes the motivating key
of this paper.

Question 1.1 ([14]). Could we find in Lc(R) subfamilies of P(R) con-
taining V(Q) and have some algebraic structures from the set-theoretic
point of view?

In [11], it was shown that each element of the family V1(Q) = {
∪n

i=1 Vi :
Vi ∈ V(Q), n ∈ N} of all finite unions of Vitali selectors related to Q,
is a semigroup of sets with respect to the operation of union of sets,
and that, it is invariant under the action of the group Φ(R) such that
V(Q) ⊊ V1(Q) ⊊ Lc(R). In addition, the family V2(Q) = V1(Q) ∗ N0 :=
{(U \ M) ∪ N : U ∈ V1(Q),M,N ∈ N0} was shown to be a semi-
group of sets, invariant under the action of the group Φ(R) and that
V1(Q) ⊊ V2(Q) ⊊ Lc(R). Using the family V1(Q) and different ideals
of subsets of R, different semigroups of sets for which elements are not
measurable in the Lebesgue sense, were constructed in [12] and [13].
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Let V be the family of all Vitali selectors of R, and let S(V) be the
collection of all finite unions of elements of V; that is, S(V) = {

∪n
i=1 Vi :

Vi ∈ V, n ∈ N}. In [16], it is shown that the family S(V) ∗ N0 :=
{(U \M) ∪N : U ∈ S(V),M,N ∈ N0} is an abelian semigroup of sets,
for which elements are not measurable in the Lebesgue sense, and that
V2(Q) ⊊ S(V) ∗ N0 for every countable dense subgroup Q of (R,+).
We note that the non-Lebesgue measurability of elements of the family
S(V) ∗ N0 was also proved in [15] together with other interesting facts
about the semigroups generated by Vitali selectors of R. Besides that, it
is proved in [16] that the abelian semigroup S(V) ∗ N0 has an algebraic
structure of being invariant under the action of the group Π(R) of all
affine transformations of R onto itself.

The semigroups of sets that exist in the literature (for which elements
are not measurable in the Lebesgue sense), are mostly constructed by
using Vitali selectors of R. In this paper, we consider a more general
setting, by looking away for extending Question 1.1. Accordingly, we
consider a Bernstein set B which has an algebraic structure of being
a subgroup of (R,+). Such a set exists as it is shown in [2] and [18].
Furthermore, we consider the collection R/B of all cosets (translates)
of B in (R,+), that we denote by B for simplicity. Since the family of
Bernstein sets is preserved by homeomorphisms of R onto itself [2], it
follows that each element of B is also a Bernstein set.

Question 1.2. Could we find in Lc(R) subfamilies of P(R) containing B
and have some algebraic structures from the set-theoretic point of view?

Through the paper, different families of sets answering Question 1.2
are constructed. In particular, the family S(B) = {

∪n
i=1Bi : Bi ∈ B, n ∈

N} of all finite unions of elements of B, and its extension S(B) ∗ N0 by
the σ-ideal N0, constitute an answer to Question 1.2.

For an extension, one can consider the family V ∨ B := {V ∪ B :
V ∈ V and B ∈ B} made by all possible pairwise unions of a Vitali
selector and a Bernstein set. The main aim of this paper, is to construct
families of sets that constitute answers to the following question; which
generalizes in some sense Question 1.1 and Question 1.2.

Question 1.3. Could we find in Lc(R) subfamilies of P(R) containing
the family V∨B and have some algebraic structures from the set-theoretic
point of view?

In this paper, different families of sets having the algebraic structure
of being semigroups with respect to the operation of the union of sets, are
constructed through the use of V and B. The constructed semigroups
extend the existing ones, and in particular, some contain the family



Algebraic structures in the family of non-Lebesgue measurable sets 121

V ∨ B. The constructed families also consist of sets that are not mea-
surable in the Lebesgue sense, and they are invariant under the action
of the group Φ(R). It is proved that, for any Bernstein sets B1 and B2

having the algebraic structures of being subgroups of (R,+), the family
[S(B1)∨S(B2)∨S(V)]∗N0 := {[(U1∪U2∪U3)\N ]∪M : U1 ∈ S(B1), U2 ∈
S(B2), U3 ∈ S(V), N,M ∈ N0} is an abelian semigroup of sets, for which
elements are not measurable in the Lebesgue sense, and that it is invari-
ant under the action of the group Φ(R). We further show that the equal-
ity [S(B1)∨S(B2)∨S(V)]∗N0 = (S(B1)∗N0)∨(S(B2)∗N0)∨(S(V)∗N0)
always holds.

This paper uses the standard notation and facts from Set Theory
and Real Analysis, and it is organized as follows: After an introductory
section, where motivating ideas and the problem under investigation are
developed, the second section deals with the theory of semigroups, the
theory of Vitali selectors, and different facts about Bernstein sets. The
third section is about the semigroups of non-Lebesgue measurable sets
constructed by using Bernstein sets. The fourth section complements
the part about Vitali selectors, developed in the preliminary section,
and it is about semigroups of non-Lebesgue measurable sets generated
by Vitali selectors. The fifth section, is devoted to the semigroups of non-
Lebesgue measurable sets, that are constructed by using Vitali selectors
and Bernstein sets, simultaneously.

2. Preliminary facts

2.1. Theory of semigroups and ideals of sets. Let S be a non-
empty set. The set S is called a semigroup of sets, if there is a binary
operation ∗ : S × S −→ S, for which the associativity law is satisfied;
i.e., (x ∗ y) ∗ z = x ∗ (y ∗ z) for all x, y, z ∈ S. The semigroup S is said
to be abelian, if x ∗ y = y ∗ x for all x, y ∈ S.

For a non-empty set X, let P(X) be the collection of all subsets of
X. Consider a non-empty family of sets S ⊆ P(X), such that for each
pair of elements A,B ∈ S, we have A ∪ B ∈ S. Since the union of sets
is both commutative and associative, such a family of sets, is an abelian
semigroup, with respect to the operation of union of sets.

Definition 2.1. A non-empty collection of sets S ⊆ P(X), is called a
semigroup of sets on X, if it is closed under finite unions. If S is closed
under countable unions, then it is said to be a σ-semigroup of sets on
X.

It is evident that if S is a semigroup of sets on X, with respect to the
operation of union of sets, then the collection {X \ S : S ∈ S} = {Sc :
S ∈ S} of all complements of elements of S in X, is closed under finite
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intersection of sets, and thus, it is a semigroup of sets with respect to
the set-theoretic operation of intersection of sets on X.

A non-empty family of sets R is called a ring of sets on X, if it is
a semigroup of sets and closed under relative complement; that is if
A,B ∈ R then A ∪B ∈ R and if A,B ∈ R then A \B ∈ R.

Recall [7] that a non-empty collection I ⊆ P(X) of sets is called an
ideal of sets on X, if it satisfies the following conditions:

(i) If A ∈ I and B ∈ I, then A ∪B ∈ I.
(ii) If A ∈ I and B ⊆ A, then B ∈ I.

If the ideal of sets I is closed under countable unions of sets, then it is
called a σ-ideal of sets on X. Clearly, each ideal of sets is a semigroup
of sets which is closed under taking subsets.
Example 2.2 ([12]). If A ⊆ P(X) is a non-empty family of sets, con-
sider the collection S(A) = {

∪n
i=1Ai : Ai ∈ A, n ∈ N} of all finite unions

of elements of A, and consider the collection I(A) = {B ∈ P(X) :
there is A ∈ S(A) such that B ⊆ A}. It is clear that the family S(A) is
a semigroup of sets, while the collection I(A) is an ideal of sets on X.
The family S(A) is called the semigroup of sets generated by A, while
I(A) is called the ideal of sets generated by A. Evidently the inclusions
S(A) ⊆ I(A) and A ⊆ S(A) always hold. If A is a semigroup of sets on
X, then we have the equality S(A) = A.
Example 2.3. On the set R of real numbers, consider the following
families of sets: The family If of all finite subsets of R, the family Ic of
all countable subsets of R, and the family Bb(R) of all bounded subsets
of R. All these families are semigroups of sets on R. They are ideals of
sets on R and both are rings of sets on R.

For any families A and B of subsets of X, define a new family of sets
on X by setting A ∗ B = {(A \ B1) ∪ B2 : A ∈ A, B1 ∈ B, B2 ∈ B}.
One can observe that, if A,B, C and D are families of sets on X such
that A ⊆ B, C ⊆ D, then A ∗ C ⊆ B ∗ D. For any family of sets A on
X, the inclusion A ⊆ A∗A always holds, but the reverse inclusion does
not need to hold. If S1 and S2 are semigroups of sets, then the family
S1 ∗S2 does not need to be a semigroup of sets, unless one of them is an
ideal of sets. This fact is illustrated by the following statement, which
presents a way of extending a given semigroup by using an ideal of sets.
Proposition 2.4 ([12]). Let S be a semigroup of sets on X and let I be
an ideal of sets on X. Then, the families I ∗S and S ∗I are semigroups
of sets on X, such that S ⊆ I ∗S ⊆ S ∗I. Moreover, I ∗ (I ∗S) = I ∗S
and (S ∗ I) ∗ I = S ∗ I.

For any families A and B of subsets of X, consider the collection
A ∨ B = {A ∪ B : A ∈ A, B ∈ B}. It is clear that if A,B, C and D are
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families of sets on X, such that A ⊆ B, C ⊆ D, then A∨C ⊆ B ∨D. For
any family of sets A on X, the inclusion A ⊆ A∨A always hold but the
reverse inclusion doesn’t need to hold. If A is a semigroup of sets on X,
then A∨A = A. The inclusions A ⊆ A∨B and B ⊆ A∨B do not need to
hold for any families A and B with or without the assumption of being
semigroups. If S1 and S2 are semigroups of sets, then the usual union
S1 ∪ S2 does not need to be a semigroup of sets, however the following
lemma holds.

Lemma 2.5. If S1 and S2 are semigroups of sets on X, then the family
S1 ∨ S2 is also a semigroup of sets on X.

Proof. Assume that U1 ∈ S1 ∨S2 and U2 ∈ S1 ∨S2. Then U1 = A1 ∪A2

and U2 = B1 ∪ B2 for some A1, B1 ∈ S1 and A2, B2 ∈ S2. Note that
A1 ∪B1 ∈ S1 and A2 ∪B2 ∈ S2 as S1 and S2 are semigroups of sets. It
follows that U1 ∪U2 = (A1 ∪A2)∪ (B1 ∪B2) = (A1 ∪B1)∪ (A2 ∪B2) is
an element of S1 ∨ S2. □

We observe that for any sets A and B, we have A∪B = (A\B)∪B =
(B \A)∪A, which implies that A∨B ⊆ A∗B and A∨B ⊆ B∗A, for any
families of sets A and B on X. In addition, the equality S(A)∪S(B) =
S(A ∪ B) does not need to hold.

Example 2.6. On the set X = {a, b, c, d}, let A = {a, b}, B = {b, c} and
D = {c, d}, and consider the families A = {A} and B = {B,D}. Note
that A∪B = {A,B,D}, S(A) = A and S(B) = {B,D,B∪D}. It is clear
that S(A) ∪ S(B) = {A,B,D,B ∪D} while S(A ∪ B) = {A,B,D,A ∪
B,A ∪ D,B ∪ D,A ∪ B ∪ D} = {A,B,D,A ∪ B,B ∪ D,X}. Hence
S(A)∪S(B) ⊊ S(A∪B). Since A∨B = {A∪B,A∪D} = {A∪B,X},
we further remark that S(A) ∨ S(B) = {A ∪ B,A ∪ D,A ∪ B ∪ D} =
{A ∪B,X} = S(A ∨ B).

Lemma 2.7. If A and B are non-empty families of sets on X, then the
equality S(A ∨ B) = S(A) ∨ S(B) always holds.

Proof. Assume that Y ∈ S(A ∨ B). Then Y =
∪n

i=1 Yi, where Yi ∈
A ∨ B, i.e. Yi = Ai ∪ Bi with Ai ∈ A, Bi ∈ B and n ∈ N. Hence
Y =

∪n
i=1 (Ai ∪Bi) = (

∪n
i=1Ai) ∪ (

∪n
i=1Bi). Put A =

∪n
i=1Ai and

B =
∪n

i=1Bi. It is clear that A ∈ S(A) and B ∈ S(B), and hence
Y ∈ S(A) ∨ S(B) implying that S(A ∨ B) ⊆ S(A) ∨ S(B).

Assume that Y ∈ S(A) ∨ S(B). Then Y = A ∪ B, where A ∈ S(A)
and B ∈ S(B), which means that A =

∪n
i=1Ai and B =

∪m
i=1Bi, where

Ai ∈ A and Bi ∈ B for some n and m in N. We will have two cases to
consider:
• If n = m, then Y =

∪n
i=1 (Ai ∪Bi) and hence Y ∈ S(A ∨ B).
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• If n ̸= m, without loosing generality, assume that n < m. We can
write Y = [

∪n
i=1 (Ai ∪Bi)]∪

(∪m
i=n+1Bi

)
. For i = n+1, n+2, · · · ,m,

put Ai = Ak, where k is some fixed integer in the set {1, 2, · · · , n}. It
follows that Y = [

∪n
i=1 (Ai ∪Bi)]∪

[∪m
i=n+1(Ai ∪Bi)

]
=
∪m

i=1 (Ai ∪Bi).
Since Ai∪Bi ∈ A∨B for i = 1, 2, · · · ,m, it follows that Y ∈ S(A∨B),
and thus S(A) ∨ S(B) ⊆ S(A ∨ B).

□

The following proposition is a generalization of Lemma 2.7 for any
finite collection of families of sets.

Proposition 2.8. Let Ai be a non-empty family of sets on X, where
i = 1, 2, · · · , n, for some n ∈ N. Then, the equality S (

∨n
i=1Ai) =∨n

i=1 S(Ai) always holds.

It follows from Proposition 2.4, that if S1 and S2 are semigroups of
sets, then the families (S1 ∨ S2) ∗ I and I ∗ (S1 ∨ S2) are semigroups
of sets for any ideal of sets I on X. However, no one of the inclusions
S1 ∗ I ⊆ (S1 ∨ S2) ∗ I, S2 ∗ I ⊆ (S1 ∨ S2) ∗ I, I ∗ S1 ⊆ I ∗ (S1 ∨ S2) and
I ∗ S2 ⊆ I ∗ (S1 ∨ S2) needs to hold.

Example 2.9. Let X be a non-empty set having atleast three elements,
i.e. Card(X) ≥ 3, and let A be a non-empty proper subset of X. Let
B = X \ A. Consider the semigroups S1 = {A,X}, S2 = {B,X} and
the ideals of sets I = P(A) and K = P(B) on X. It is clear that
S1 ∨ S2 = {X}, and ∅ and A cannot be elements of (S1 ∨ S2) ∗ I, but ∅
and A are elements of S1 ∗ I. Similarly, the collection S2 ∗ K contains
the elements ∅ and B, but the family (S1∨S2) ∗K cannot contain ∅ and
B. Hence S1 ∗ I ⊈ (S1 ∨ S2) ∗ I, and S2 ∗ K ⊈ (S1 ∨ S2) ∗ K. Further,
observe that I ∗ (S1 ∨S2) = {X} = K ∗ (S1 ∨S2). The semigroup I ∗ S2

contains the set B and the semigroup K ∗ S1 contains the set A. Hence
I ∗ S2 ⊈ I ∗ (S1 ∨ S2) and K ∗ S1 ⊈ K ∗ (S1 ∨ S2).

Proposition 2.10. Let S1 and S2 be semigroups of sets on X. If I is
an ideal of sets on X, then the following equalities always hold:

(i) (S1 ∨ S2) ∗ I = (S1 ∗ I) ∨ (S2 ∗ I).
(ii) I ∗ (S1 ∨ S2) = (I ∗ S1) ∨ (I ∗ S2).

Proof. (i). Assume that A ∈ (S1∨S2)∗I. Then A = [(S1∪S2)\I]∪K
where S1 ∈ S1, S2 ∈ S2 and I,K ∈ I. It is clear that A =
(S1\I)∪(S2\I)∪K = [(S1\I)∪K]∪[(S2\I)∪K] ∈ (S1∗I)∨(S2∗I).

Assume that A ∈ (S1∗I)∨(S2∗I). Then A = [(S1\N)∪L]∪[(S2\
P )∪R], where S1 ∈ S1, S2 ∈ S2 and N,L, P,R ∈ I. Note that A =
(S1 \N)∪ (S2 \P )∪ (L∪R). Putting I = L∪R ∈ I it follows that
A = [(S1 ∩N c) ∪ (S2 ∩ P c)]cc ∪ I = [(S1 ∩N c)c ∩ (S2 ∩ P c)c]c ∪
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I = [(Sc
1 ∪N) ∩ (Sc

2 ∪ P )]c ∪ I. Furthermore, A = [(Sc
1 ∩ Sc

2) ∪
((Sc

1 ∩ P ) ∪ (Sc
2 ∩N) ∪ (N ∩ P ))]c ∪ I. Put J = (Sc

1 ∩ P ) ∪ (Sc
2 ∩

N) ∪ (N ∩ P ) ∈ I and note that A = [(Sc
1 ∩ Sc

2) ∪ J ]c ∪ I =
[(Sc

1 ∩ Sc
2)

c ∩ Jc] ∪ I = [(S1 ∪ S2) \ J ] ∪ I. Since S1 ∈ S1, S2 ∈ S2

and J, I ∈ I then we have A ∈ (S1 ∨ S2) ∗ I.
(ii). Assume that A ∈ (I ∗ S1) ∨ (I ∗ S2). Then A = [(I1 \ U1) ∪W1] ∪

[(I2 \ U2) ∪W2] where I1, I2 ∈ I, U1,W1 ∈ S1 and U2,W2 ∈ S2. It
is clear that A = (I1 \U1)∪ (I2 \U2)∪ (W1∪W2) = I ∪ (W1∪W2),
where I = (I1 \U1) ∪ (I2 \U2). Since I ∈ I then the set A can be
written as A = [I \ (W1 ∪W2)] ∪ (W1 ∪W2) ∈ I ∗ (S1 ∨ S2).

Assume that A ∈ I ∗ (S1 ∨ S2). Then A = [I \ (U1 ∪ U2)] ∪
(W1 ∪ W2) where I ∈ I, U1,W1 ∈ S1 and U2,W2 ∈ S2. Since
I \ (U1 ∪ U2) = ((I \ U2) \ U1)) ∪ ((I \ U1) \ U2), then we get A =
[(I \ U2) \ U1]∪[(I \ U1) \ U2]∪(W1∪W2) = [((I \ U2) \ U1) ∪W1]∪
[((I \ U1) \ U2) ∪W2]. Since the sets I \U1 and I \U2 are elements
of I then we have A ∈ (I ∗ S1) ∨ (I ∗ S2).

□

Corollary 2.11. Let S1,S2, · · · ,Sn be a finite collection of semigroups
of sets on X. If I is an ideal of sets on X, then the following equalities
hold:

(i). (
∨n

i=1 Si) ∗ I =
∨n

i=1 (Si ∗ I).
(ii). I ∗ (

∨n
i=1 Si) =

∨n
i=1 (I ∗ Si).

It follows from Proposition 2.10 that if A and B are semigroups of
sets on X, and I is an ideal of sets on X, then S[(A ∨ B) ∗ I] =
S [(A ∗ I) ∨ (B ∗ I)] and S[I ∗ (A ∨ B)] = S [(I ∗ A) ∨ (I ∗ B)].

Question 2.12. Let A and B be families of sets, and let I be an ideal
of sets. What is the relationship (in the sense of inclusion) between the
semigroups of sets S(A ∨ B) ∗ I and S[(A ∨ B) ∗ I]?

We observe that if A and B are semigroups of sets then by Example
2.2, we get S(A∨B)∗I = (A∨B)∗I = (A ∗ I)∨(B ∗ I) = S[(A∨B)∗I].

The following statement can be used in the extension of semigroup
of sets. Its proof is based on the properties of ideals of sets goes in the
same line as Proposition 2.10.

Proposition 2.13. Let I1 and I2 be ideals of sets on X and let S be a
semigroup of sets on X. Then, the following hold:

(i) S∗Ii ⊆ S∗(I1∨I2) for i = 1, 2 and (S∗I1)∨(S∗I2) ⊆ S∗(I1∨I2).
(ii) Ii ∗ S ⊆ (I1 ∨ I2) ∗ S = (I1 ∗ S) ∨ (I2 ∗ S) for i = 1, 2.

Proof. (i). Since I1 ⊆ I1∨I2 and I2 ⊆ I1∨I2, then inclusions S∗I1 ⊆
S ∗ (I1 ∨ I2) and S ∗ I2 ⊆ S ∗ (I1 ∨ I2) follow directly.
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Assume that A ∈ (S ∗ I1)∨ (S ∗ I2). Then A = [(S1 \ I1)∪ I2]∪
[(S2\I3)∪I4], where S1, S2 ∈ S, I1, I2 ∈ I1 and I3, I4 ∈ I2. We can
write that A = (S1\I1)∪(S2\I3)∪(I2∪I4). It is clear that (S1\I1)∪
(S2 \ I3) = [(S1 \ I1) ∪ (S2 \ I3)]cc = [[(S1 \ I1) ∪ (S2 \ I3)]c]c =
[(S1 ∩ Ic1)

c ∩ (S2 ∩ Ic3)
c]c, which is the set [(Sc

1 ∪ I1) ∩ (Sc
2 ∪ I3)]

c =
[(Sc

1 ∩ Sc
2) ∪ (Sc

1 ∩ I3) ∪ (Sc
2 ∩ I1) ∪ (I1 ∩ I3)]

c. Since Sc
2 ∩ I1 ⊆ I1,

Sc
1 ∩ I3 ⊆ I3, I1 ∩ I3 ⊆ I1 and I1 ∩ I3 ⊆ I3, it follows that I =

(Sc
1 ∩ I3) ∪ (Sc

2 ∩ I1) ∪ (I1 ∩ I3) ∈ I1 ∨ I2. It follows that A =
[(Sc

1 ∩ Sc
2)∪ I]c ∪ (I2 ∪ I4) = (S1 ∪ S2) \ I)∪ (I2 ∪ I4). Since S is a

semigroup of sets then S1 ∪ S2 ∈ S, and thus A ∈ S ∗ (I1 ∨ I2).
(ii). Since I1 ⊆ I1 ∨ I2 and I2 ⊆ I1 ∨ I2 the inclusions I1 ∗ S ⊆

(I1 ∨ I2) ∗ S and I2 ∗ S ⊆ (I1 ∨ I2) ∗ S follow directly.
Assume that A ∈ (I1 ∨ I2) ∗ S. Then A = [(I1 ∪ I2) \ S1] ∪ S2

for some S1, S2 ∈ S, I1 ∈ I1 and I2 ∈ I2. We can write A =
[(I1 ∪ I2) ∩ Sc

1] ∪ S2 = (I1 ∩ Sc
1) ∪ (I2 ∩ Sc

1) ∪ S2 = (I1 \ S1) ∪
(I2 \ S1) ∪ S2. Observe that I1 \ S1 ∈ I1 and I2 \ S2 ∈ I2. Put
K = I1 \S1 and L = I2 \S2. This implies that A = (K∪L)∪S2 =
(K ∪ S2) ∪ (L ∪ S2) = [(K \ S2) ∪ S2] ∪ [(L \ S2) ∪ S2] and hence
A ∈ (I1 ∗ S) ∨ (I2 ∗ S).

Assume that A ∈ (I1 ∗S)∨ (I2 ∗S). Then A = [(I1 \ S1) ∪ S2]∪
[(I2 \ S3) ∪ S4], where I1 ∈ I1, S1, S2, S3, S4 ∈ S and I2 ∈ I2. Note
that A = [(I1 \ S1) ∪ (I2 \ S3)] ∪ (S2 ∪ S4). Since I1 \ S1 ∈ I1 and
I2 \ S3 ∈ I2, it follows that the set I = (I1 \ S1) ∪ (I2 \ S3) is
an element of I1 ∨ I2. Since S is a semigroup of sets then the set
S = S2∪S4 is an element of S. It follows that A = I∪S = (I\S)∪S
and hence A ∈ (I1 ∨ I2) ∗ S.

□
Corollary 2.14. Let I1, I2, · · · , In be a finite collection of ideals of sets
on X. If S is a semigroup of sets on X, then the following inclusion
and equality always hold:

(i).
∨n

i=1(S ∗ Ii) ⊆ S ∗ (
∨n

i=1 Ii).
(ii). (

∨n
i=1 Ii) ∗ S =

∨n
i=1(Ii ∗ S).

2.2. Lebesgue measurability and the Baire property. Recall that
the Lebesgue outer measure of a set E ⊆ R, denoted by µ∗(E), is meant
the number µ∗(E) = inf {

∑∞
n=1 ℓ(In) : E ⊆

∪∞
n=1 In}, where inf is taken

over all sequences {In}∞n=1 consisting of open intervals covering the set
E. The Lebesgue outer measure is defined for all subsets of R, but it is
not countably additive.

A subset E of R is said to be Lebesgue measurable, if for each A ⊆
R, the equality µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec) is satisfied. If E
is a Lebesgue measurable set, then the Lebesgue measure of E is its
outer measure, and it is denoted by µ(E). Let N0 be the collection
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of all subsets of R having the Lebesgue measure zero (null subsets of
R). It is well known that the family N0 is a σ-ideal of sets on R. The
family L(R) of all Lebesgue measurable sets on R is a σ-algebra of sets
on R, containing the collection BO(R) of all Borel sets on R as well
as the collection N0. Let us note that there exist subsets of R which
are not measurable in the Lebesgue sense [5], [2]. Hence the domain
dom(µ) of the set function µ is not equal to P(R). As a consequence,
the complement Lc(R) = P(R) \ L(R) of L(R) in P(R) is not empty.

Recall [7] that, if O(R) ⊆ P(R) and Ψ(R) is a group of homeomor-
phisms of R onto itself, then the family O(R) is said to be invariant
under the action of Ψ(R), if for each A ∈ O(R) and for each h ∈ Ψ(R),
we have h(A) ∈ O(R).

The collection L(R) is invariant under the action of the group Φ(R)
of all translations of R; i.e., if E ∈ L(R) and t ∈ R, then E+ t := {e+ t :
e ∈ E} ∈ L(R). Furthermore, µ(E + t) = µ(E), and if E ∈ L(R), t ∈ R,
then tE := {te : e ∈ E} ∈ L(R) and µ(tE) = |t|µ(E), where |t| is the
absolute value of t. Hence, the families L(R) and Lc(R) are invariant
under the action of the group Π(R) for which elements are of the form
h(x) = ax+ b with a, b ∈ R and a ̸= 0.

Lemma 2.15 ([10]). Let A and B be subsets of R. If A ∈ L(R) and
µ(A∆B) = 0, then B ∈ L(R) and µ(A) = µ(B).

If A a subset of R, then Int(A) and Cl(A) are used to denote the
interior and the closure of A in R, respectively. A subset M of R is said
to be meager (or of first category), if it can be represented as a countable
union of nowhere dense; i.e., M =

∪∞
i=1Mi with Int Cl(Mi) = ∅ for each

i = 1, 2, · · · . It is well known that the collection Im of all first category
subsets of R is a σ-ideal of sets on R and that If ⊊ Ic ⊊ Im and
If ⊊ Ic ⊊ N0.

A subset A of R is said to have the Baire property in R if A can be
represented as A = O∆M , where O is open in R, M is a first category
set on R, and ∆ is the usual operation of standard symmetric difference
of sets [8], [19]. The family BP (R) of sets having the Baire property
in R is a σ-algebra, containing the collections BO(R) and Im, and it is
invariant under the action of the group H(R) of all homeomorphisms of
R onto itself. The Lebesgue measurability and the Baire property are
two important classical concepts in real analysis and topology.

2.3. Vitali selectors in the additive topological group of real
numbers. The Vitali selectors of R constitute an example of subsets of
R, which are not Lebesgue measurable and without the Baire property
in R. To define Vitali selectors, we follow [2] and [5], and we emphasize
that their existence is granted by the Axiom of Choice.
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Consider a countable dense subgroup Q of the additive topological
group (R,+) of real numbers. Define a relation R on R as follows: for
x, y ∈ R, let xRy if and only if x− y ∈ Q. Clearly, R is an equivalence
relation on R, and hence it divides R into equivalence classes. Let R/Q =
{Eα(Q) : α ∈ I} be the collection of all equivalence classes, where I is
some indexing set. Accordingly, we have the following decomposition of
R:

R =
∪

{Eα(Q) : α ∈ I}. (2.1)
It follows from the definition of R that the set R/Q consists of disjoint
translated copies of Q by elements of R. Namely, if t ∈ Eα(Q) and
Eα(Q) ∈ R/Q, then Eα(Q) = Q + t = {q + t : q ∈ Q}. Hence each
equivalence class Eα(Q) is a countable dense subset of R. Equality (2.1)
implies that Card(I) = c, where c is the continuum.

Example 2.16. The set Q of rational numbers, the set D = {a+ b
√
2 :

a, b ∈ 2N}, the set Q(γ) = {a+ bγ : a, b ∈ Q} for each irrational number
γ, and the set

√
2Q = {

√
2q : q ∈ Q}, are some examples of countable

dense subgroups of (R,+).
Definition 2.17 ([5], [2]). A Vitali selector of R related to Q is any
subset V of R containing one element for each equivalence class; i.e. any
subset V of R for which Card(V ∩ Eα(Q)) = 1 for each α ∈ I. A Vitali
selector is called a Vitali set, whenever the subgroup Q coincides with
the additive group Q of rational numbers.
Proposition 2.18 ([5], [2]). Let Q be a countable dense subgroup of
(R,+) and let V be a Vitali selector related to Q. Then, the following
statements hold:

(i) If q1, q2 ∈ Q and q1 ̸= q2, then (V + q1) ∩ (V + q2) = ∅.
(ii) Any two sets in the collection {V + q : q ∈ Q} are homeomorphic,

and
R =

∪
{V + q : q ∈ Q}. (2.2)

(iii) The set V is not of the first category in R, and it is not a null set.
The following theorem shows that the collection of all Vitali selectors

of R is invariant under the action of the group Φ(R) of all translations
of R.
Theorem 2.19 ([11], [16]). If U =

∪n
i=1 Vi, where each Vi is a Vitali

selector related to Qi and t ∈ R, then the set U + t := (
∪n

i=1 Vi) + t =∪n
i=1(Vi + t) is a union of Vitali selectors, where each Vi + t is related

to Qi, for i = 1, 2, · · · , n.
It is possible to define bounded and unbounded Vitali selectors of R.

If O is a non-empty open set of R, then one can define Vitali selectors
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which are dense in O. This implies, in particular, that there exist Vitali
selectors which are dense in R. We further point out that there exists
a Vitali selector which contains a perfect set [7], and it can be easily
observed that for any Vitali selector V of R the set R \ V is dense in R.

Theorem 2.20 ([2], [5]). Any Vitali selector V of R is not measurable
in the Lebesgue sense and does not have the Baire property in R.

It follows from Theorem 2.20 and Proposition 2.18 that if V be a
Vitali selector of R, then every Lebesgue measurable subset of V has the
Lebesgue measure zero, and every subset of V with the Baire property
is of the first category.

The next theorem is a more general result on the Baire property than
Theorem 2.20.

Theorem 2.21 ([14]). Let Vi be a Vitali selector for each i ≤ n, where
n is some integer such that n ≥ 1. Then the set U =

∪n
i=1 Vi does not

contain the difference O \M , where O is a non-empty open set and M
is a meager. In particular, the set U does not possess the Baire property
in R.

A similar result to Theorem 2.21 about non-Lebesgue measurability
of finite unions of Vitali selectors of R was proved by A.B. Kharazishvili.

Theorem 2.22 ([1]). If {Vα : 1 ≤ α ≤ m} is a non-empty finite family
of Vitali selectors of R, then the union

∪
{Vα : 1 ≤ α ≤ m} is not

measurable in the Lebesgue sense.

Below, we recall the classical Banach Theorem, and two important
lemmas, which were used in the proof of Theorem 2.22, and they will
be very useful in the sequel. For, first recall that Bb(R) is denoting the
family of all bounded subsets of R.

Theorem 2.23 (Banach Theorem [1]). Let R be a translation invariant
ring of subsets of R, satisfying the relations R ⊆ Bb(R) and [0, 1) ∈ R,
and let ϑ : R −→ [0,+∞) be a finitely additive translation invariant
functional such that ϑ([0, 1)) = 1. Then there exists a finitely additive
translation invariant functional η : Bb(R) −→ [0,+∞) such that η is an
extension of ϑ.

Lemma 2.24 ([1]). Let ϑ be as in Theorem 2.23, and let X ∈ Bb(R)
have the following property: There exists a bounded infinite sequence
{hk : k ∈ N} of elements of R such that the family {X + hk : k ∈ N} is
disjoint. If X ∈ dom(ϑ), then necessarily ϑ(X) = 0.

Lemma 2.25 ([1]). Let X be a bounded subset of a Vitali selector V .
Then, X has the property indicated in Lemma 2.24.
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It follows from Equality 2.2 in Proposition 2.18, that the results of
Theorem 2.21 and Theorem 2.22, are not valid for infinite countable
unions of Vitali selectors of R. However, the following theorem provides
examples of infinite countable unions of Vitali selectors without the Baire
property in R.
Theorem 2.26 ([9]). If V is a Vitali selector of R related to Q and Γ
is a non-empty proper subset of Q, then the set U =

∪
{V + q : q ∈ Γ}

does not possess the Baire property in R.
Question 2.27. Let V be a Vitali selector of R related to Q and let Γ
be an infinite countable proper subset of Q. Under what conditions the
set U =

∪
{V + q : q ∈ Γ} is not measurable in the Lebesgue sense?

It is clear that if Q \ Γ is finite, then by Theorem 2.22, the set
W =

∪
{V + q : q ∈ Q \ Γ} is not measurable in the Lebesgue sense.

Consequently, by Equality 2.2, the set U =
∪
{V + q : q ∈ Γ} is also not

measurable in the Lebesgue sense.
We also note [13] that, if O is a non-empty open subset of R, then

there exists a sequence {V1, V2, · · · } of (disjoint) Vitali selectors of R such
that O =

∪∞
i=1 Vi. It is clear that such a union is Lebesgue measurable

and has the Baire property in R.

2.4. Bernstein sets of the additive topological group of real
numbers. The Bernstein sets on R constitute also an example of sub-
sets of R which are not measurable in the Lebesgue sense. A Bernstein
set is a subset of R that meets every uncountable closed subset of R but
that contains none of them.
Definition 2.28 ([2], [8]). A subset B of R is called a Bernstein set if
B ∩ F ̸= ∅ and (R \B)∩ F ̸= ∅ for each uncountable closed subset F of
R.

The existence and the construction of Bernstein sets on R is based on
the Method of Transfinite Recursion as it is detailed in [8]. For Bernstein
sets, the following statements hold.
Proposition 2.29 ([8], [6]). Let B be a Bernstein subset of R. Then
the following statements hold.

(i) The complement R \B of B is also a Bernstein set, and Int(B) =
Int(R \B) = ∅.

(ii) Both B and R \B are dense subsets of R and we have Card(B) =
Card(R \B) = c.

The family BE(R) of all Bernstein subsets of R is invariant under the
action of the group H(R) of all homeomorphisms of R onto itself, i.e. if
B ∈ BE(R) and h ∈ H(R) then h(B) ∈ BE(R).
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Theorem 2.30 ([8]). Any Bernstein set B on R is not measurable in
the Lebesgue sense and does not have the Baire property. Indeed, every
Lebesgue measurable subset of either B or R\B has the Lebesgue measure
zero, and every subset of either B or R \B with the Baire property is of
the first category.

Corollary 2.31 ([8],[4]). Any set with positive Lebesgue measure has a
non-Lebesgue measurable subset. Any set of second category has a subset
that does not have the Baire property.

We point out that there exist Bernstein subsets of R, which have
some additional algebraic structures for subgroups of the additive group
(R,+), as it is indicated in the following statements.

Lemma 2.32 ([2], [18]). There exists a subgroup B of (R,+), such that
the factor group R/B is isomorphic to the group (R,+), and B is a
Bernstein set in R.

Theorem 2.33 ([2]). There exist two subgroups G1 and G2 of the ad-
ditive group (R,+) such that G1 ∩ G2 = {0}, and both G1 and G2 are
Bernstein sets in R.

For other notions and facts, we refer the reader to [12] and [8].

3. Semigroups of non-Lebesgue measurable sets generated
by Bernstein sets

3.1. Semigroups related to a Bernstein subgroup of (R,+). Let
B be a Bernstein subset of R which has the algebraic structure of be-
ing a subgroup of (R,+) as in Lemma 2.32. Consider the collection
R/B = {B + x : x ∈ R} of all cosets of B. Without losing generality,
we may assume that R/B consists of pairwise disjoint sets, and for sim-
plicity the collection R/B will be denoted by B. Hence, B is made of
pairwise translated copies of B by real numbers. From [3], we observe
that Card(B) ≥ ℵ0, where ℵ0 = Card(N), and Card(B) is the same as
the cardinality of the set {R \Y : Y ∈ B}. Since the family BE(R) is in-
variant under the action of the group H(R), it follows that each element
of B is also a Bernstein set on R.

Let S(B) = {
∪n

i=1Bi : Bi ∈ B, n ∈ N} be the semigroup of sets
generated by B. Evidently, the family S(B) is invariant under the action
of the group Φ(R) of all translations of R onto itself.

Lemma 3.1. If U is an element of the semigroup S(B), then U is a
Bernstein subset of R. Consequently, the semigroup S(B) consists of
sets which are not measurable in the Lebesgue sense, and without the
Baire property in R.
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Proof. Assume that U ∈ S(B). Then, there exists n ∈ N such that
U =

∪n
i=1Bi, where Bi ∈ B for i = 1, 2, · · · , n. Let F be an uncountable

closed subset of R.
Since each Bi is a Bernstein subset of R, then we have F ∩ Bi ̸= ∅

for each i = 1, 2, · · · , n. It follows that F ∩ U = F ∩ (
∪n

i=1Bi) =∪n
i=1(F ∩Bi) ̸= ∅.
Assume that F ∩(R\U) = ∅. Then F ⊆ U . Let Bk be an element of B

for some k /∈ {1, 2, · · · , n}. Such an element exists, since Card(B) ≥ ℵ0.
Since each element of B is a Bernstein set, we must have F ∩ Bk ̸= ∅
but by construction, Bk ∩ U = Bk ∩ (

∪n
i=1Bi) = ∅ implying that ∅ ̸=

F ∩ Bk ⊆ U ∩ Bk = ∅ . Hence the inclusion F ⊆ U is impossible.
Necessarily, we must have F ∩ (R \ U) ̸= ∅.

We conclude that U is a Bernstein subset of R. As a Bernstein set,
U is not measurable in the Lebesgue sense and does not have the Baire
property in R. □
Proposition 3.2. The families S(B)∗N0 and N0 ∗S(B) are semigroups
of sets on R such that S(B) ⊆ N0∗S(B) ⊆ S(B)∗N0. They are invariant
under the action of the group Φ(R), and they consist of sets which are
not measurable in the Lebesgue sense.
Proof. The families are semigroups of sets by Proposition 2.4 and the
inclusions follow from the same proposition.

Let A ∈ S(B)∗N0 and assume that A ∈ L(R). Then A = (U \M)∪N ,
where U ∈ S(B) and M,N ∈ N0. Note that A \U ⊆ N and U \A ⊆ M
and hence A∆U ⊆ M ∪ N . It follows that µ [(A \ U) ∪ (U \A)] =
µ(A∆U) ≤ µ(M ∪N) = 0 and thus µ(A∆U) = 0. Lemma 2.15 indicates
that the set U must be measurable in the Lebesgue sense. However, U
is a Bernstein set on R, and thus, it is not measurable in the Lebesgue
sense. This is a contradiction.

The family S(B)∗N0 is invariant under the action of the group Φ(R),
since both families S(B) and N0 are invariant under the action of the
group Φ(R). □
Lemma 3.3. Let Y be a bounded subset of a Bernstein set A in the
collection B. Then, Y has the property indicated in Lemma 2.24.
Proof. Consider a Bernstein set A ∈ B, and let Y be a bounded subset
of A. Then, we have A = B + x0, for some x0 ∈ R, where B is a
Bernstein set having an algebraic structure of being a subgroup of (R,+)
as described in Lemma 2.32, and Y + x ⊆ B + x0 + x = B + y for y =
x0+x ∈ R. In view of the definition of B, the family B = R/B = {B+x :
x ∈ R} of all cosets is made by pairwise disjoint sets. Consequently,
the family {Y + x : x ∈ R} consists of pairwise disjoint sets. Since
every infinite set contains an infinitely countable subset [17], let Λ be an
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infinitely countable bounded subset of R. The family {xk : xk ∈ Λ, k =
1, 2, · · · } can play the role of {hk : k ∈ N} in Lemma 2.24. It follows
that if Y ∈ dom(ϑ) then ϑ(Y ) = 0, and this ends the proof. □

Proposition 3.4. Let B be a Bernstein set of R that has the algebraic
structure of being a subgroup of (R,+). Any element U of the semigroup
S(B), cannot contain any set of strictly positive Lebesgue measure.

Proof. Suppose that there exists a Lebesgue measurable subset Y of R
such that µ(Y ) > 0 and Y ⊆ U . Since U ∈ S(B), then U =

∪n
i=1Bi with

Bi ∈ B for each i = 1, 2, · · · , n. Since Y =
∪∞

r=−∞ (Y ∩ [r, r + 1)) and
µ(Y ) > 0, then we have µ (Y ∩ [r, r + 1)) > 0 for some r. Without loss
of generality, we may assume that Y is bounded. Let ϑ be the restriction
of µ to the family Bb(R)∩dom(µ). Note that the family Bb(R)∩dom(µ)
is a ring of sets on R. So, there exits a functional η as in Theorem 2.23
extending ϑ on Bb(R). Then

0 < ϑ(Y ) = η(Y ) = η(Y ∩ U) = η

[
Y ∩

(
n∪

i=1

Bi

)]

= η

[
n∪

i=1

(Y ∩Bi)

]
≤

n∑
i=1

η(Y ∩Bi)

(3.1)

Inequality 3.1 implies that η(Y ∩ Bi) > 0 for some i ∈ {1, 2, · · · , n}.
Since Y ∩ Bi is a bounded subset of the Bernstein set Bi ∈ B ⊆ S(B),
then it has the property described in Lemma 3.3. According to Lemma
3.3, we must have the equality η(Y ∩Bi) = 0, and this is a contradiction.

□

Corollary 3.5. Let B be a Bernstein subset of R which has an algebraic
structure of being a subgroup of (R,+). Any element of the family
S(B) ∗N0, cannot contain any set of strictly positive Lebesgue measure.

Proof. Consider A ∈ S(B) ∗ N0. Note that A = (U \M) ∪N ⊆ U ∪N ,
where U ∈ S(B) and M,N ∈ N0. Assume that there exists Y ⊆ A
such that µ(Y ) > 0. Note that Y = (Y ∩ U) ∪ (Y ∩ N). This implies
that 0 < µ(Y ) ≤ µ(Y ∩ U) + µ(Y ∩ N) = µ(Y ∩ U). Hence the set
Y ∩U is a subset of U with a strictly positive Lebesgue measure, which
is impossible by Proposition 3.4. □

Observe that a contradiction in the proof of Corollary 3.5 can be
obtained by considering Lemma 3.1 and Theorem 2.30.

Theorem 3.6. Let Uk be an element of S(B) and hk be an element of
Φ(R) for k = 1, 2, · · · , n, where n ∈ N. Then, the set U =

∪n
k=1 hk(Uk)
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is not measurable in the Lebesgue sense, and it does not possess the Baire
property in R.

Proof. It is enough to show that the set U =
∪n

k=1 hk(Uk) is a Bernstein
set on R. Accordingly, we will show that U ∈ S(B).

Since Uk ∈ S(B), then Uk =
∪m

i=1Bki, where Bki ∈ B for i =
1, 2, · · · ,m and some m ∈ N. We can write the following:

U =

n∪
k=1

hk(Uk) =

n∪
k=1

hk

(
m∪
i=1

Bki

)
=

n∪
k=1

[
m∪
i=1

hk(Bki)

]
By the invariance of the family B under the action Φ(R), each set
hk(Bki) is also an element of B, and hence, a Bernstein set. Put Bk =∪m

i=1 hk(Bki). Since the family S(B) is invariant under the action of
Φ(R), it follows that Bk is an element of S(B). Now, the set U =∪n

k=1Bk is a finite union of elements of S(B). Since S(B) is a semigroup
of sets, then we have U ∈ S(B).

Lemma 3.1 implies that U is a Bernstein set and consequently, it is
not measurable in the Lebesgue sense, and it does not possess the Baire
property in R. □

3.2. Semigroups related to two Bernstein subgroups of (R,+).
Let B1 and B2 be Bernstein sets having an algebraic structure of being
subgroups of (R,+) as in Theorem 2.33, and consider the families B1 =
R/B1 and and B2 = R/B2 of all disjoint translates (cosets) of B1 and B2,
respectively. Let S(B1) and S(B2) be the semigroups of sets generated
by B1 and B2, respectively.

Lemma 3.7. Let B1 and B2 be Bernstein sets having the algebraic
structure of being subgroups of (R,+), and let U1 ∈ S(B1) and U2 ∈
S(B2). Then, the union U = U1 ∪ U2 cannot contain any subset of
strictly positive Lebesgue measure.

Proof. Assume that there exists a Lebesgue measurable set Y such that
µ(Y ) > 0 and Y ⊆ U = U1 ∪ U2, where U1 =

∪n
i=1B1i and U2 =∪m

k=1B2k with B1i ∈ B1 and B2k ∈ B2 for i = 1, 2, · · · , n and k =
1, 2, · · · ,m. Without loss of generality, we may assume that the set Y
is bounded. It follows from Proposition 3.4, that the set Y cannot be
placed entirely in U1 nor in U2. Write U =

∪n+m
i=1 Xi, where Xi = B1i

for i = 1, 2, · · · , n and Xn+k = B2k for k = 1, 2, · · · ,m. Accordingly, we
have the following:

0 < µ(Y ) = µ(Y ∩ U) = µ

[
n+m∪
i=1

(Y ∩Xi)

]
≤

n+m∑
i=1

µ(Y ∩Xi). (3.2)
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Inequality 3.2 implies that µ(Y ∩Xi) > 0 for some index i ∈ {1, 2, · · · , n+
m}. Since Y ∩ Xi ∈ Bb(R), let ϑ be the restriction of µ to the ring
Bb(R)∩dom(µ). For this ϑ, there exists a functional η as in Theorem 2.23
which is an extension of ϑ. It follows that 0 < µ(Y ∩Xi) = ϑ(Y ∩Xi) =
η(Y ∩Xi). We will have two cases to consider:
• If Xi ∈ B1, then we must have η(Y ∩Xi) = 0 by Lemma 3.3.
• If Xi ∈ B2, then we must have η(Y ∩Xi) = 0 by Lemma 3.3.
We conclude that the set Y cannot exist and this ends the proof. □
Theorem 3.8. The family S(B1) ∨ S(B2) is a semigroup of sets on R,
which consists of non-Lebesgue measurable sets, and it is invariant under
the action of the group Φ(R).

Proof. The family S(B1) ∨ S(B2) is a semigroup by Lemma 2.5. Let
U ∈ S(B1) ∨ S(B2) and assume that U is a Lebesgue measurable set.
Then, U = U1 ∪ U2, where U1 ∈ S(B1) and U2 ∈ S(B2).
• Assume that µ(U) = 0. Then µ(U1) = µ(U2) = 0. This is a contradic-

tion of Theorem 2.30, since U1 and U2 are Bernstein sets by Lemma
3.1.

• The inequality µ(U) > 0 is impossible by Lemma 3.7.
It follows that the set U is not Lebesgue measurable.

It is evident that for any h ∈ Φ(R) we have h(U) = h(U1 ∪ U2) =
h(U1)∪h(U2) ∈ S(B1)∨S(B2), due to the fact that both families S(B1)
and S(B2) are invariant under the action of the group Φ(R). □
Corollary 3.9. If A ∈ S(B1) ∨ S(B2), then dimA = 0, where dim is
the Lebesgue covering dimension.

Proof. Assume that there is an element A in S(B1) ∨ S(B2) such that
dimA = 1. Note that A = U1 ∪ U2, where U1 ∈ S(B1) and U2 ∈ S(B2).
Recall that each subset of R with dimA = 1 contains a non-empty
open subset of R [20]. It follows that there exists a non-empty open
set O in R such that O ⊆ A. Since every non-empty open set has a
positive Lebesgue measure [21], it follows that µ(O) > 0. This is a
contradiction to Lemma 3.7, and consequently, since A ̸= ∅, we must
have dimA = 0. □
Theorem 3.10. The families N0∗(S(B1) ∨ S(B2)) and (S(B1) ∨ S(B2))∗
N0 are semigroups of sets on R, and they satisfy the inclusions: S(B1)∨
S(B2) ⊆ N0 ∗ (S(B1) ∨ S(B2)) ⊆ (S(B1) ∨ S(B2)) ∗N0. They are invari-
ant under the action of the group Φ(R), and they consist of sets which
are not measurable in the Lebesgue sense.

Proof. The families are semigroups by Proposition 2.4. The inclusions
follow from the same proposition. The family (S(B1) ∨ S(B2)) ∗ N0 is
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invariant under the action of the group Φ(R) by Theorem 3.8 and the
fact that the collection N0 is invariant under the action of the group
Φ(R). The proof that each element of the family (S(B1) ∨ S(B2)) ∗ N0

is not measurable in the Lebesgue sense goes in the same line as in
Proposition 3.2 taking into consideration Theorem 3.8. □

The family S(B1) ∗ S(B1) does not need to be a semigroup of sets,
but the following statement shows that, it consists of elements, which
are not measurable in the Lebesgue sense.

Corollary 3.11. Each element of the family S(B1) ∗ S(B2) is not mea-
surable in the Lebesgue sense.

Proof. Let A ∈ S(B1) ∗ S(B2) and assume that A is a Lebesgue mea-
surable set. Note that A = (U1 \ U2) ∪ U3 for some U1 ∈ S(B1) and
U2, U3 ∈ S(B2). Since U3 is Bernstein set and U3 ⊆ A, then the set
A cannot have the Lebesgue measure zero. Assume that µ(A) > 0. It
follows that A = (U1 \U2) ∪U3 ⊆ U1 ∪U3 ∈ S(B1) ∨ S(B2). By Lemma
3.7, the set U1 ∪U2 can not contain any set of strictly positive Lebesgue
measure. □

Question 3.12. Is each element U in the families S(B1) ∨ S(B2) and
S(B1) ∗ S(B2) without the Baire property in R?

4. Semigroups of non-Lebesgue measurable sets generated
by Vitali selectors

Let C be the family of all countable dense subgroups of (R,+). The
following statement shows that, each finite union of Vitali selectors is
not measurable in the Lebesgue sense, and it generalizes Theorem 2.22.

Theorem 4.1 ([16]). Let U =
∪n

i=1 Vi be a finite union of Vitali selectors
of R, where Vi ∈ V(Qi) and each Qi is an element of C for i = 1, 2, · · · , n.
Then, the set U is not measurable in the Lebesgue sense.

For n = 2, Theorem 4.1 implies the following statement.

Corollary 4.2. Suppose that V1 and V2 are Vitali selectors related to
elements Q1 and Q2 respectively in C. Then, at least one of the sets
V1 \V2, V2 \V1 and V1∩V2 must be a non measurable set in the Lebesgue
sense.

Proof. It follows from Theorem 4.1 that the set V1∪V2 is not measurable
in the Lebesgue sense. Note that V1∪V2 = (V1 \V2)∪(V2 \V1)∪(V1∩V2)
and sets in this union are disjoint. If all the sets in this union are
Lebesgue measurable, then V1 ∪ V2 will be a Lebesgue measurable set,
and this will be a contradiction. □
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A result similar to Theorem 4.1 also holds in the case of the Baire
property, as it is proved in [12]. If Q ∈ C, then we denote by V(Q)
the family of all Vitali selectors related to Q, and V1(Q) the semigroup
generated by V(Q); that is V1(Q) = {

∪n
i=1 Vi : Vi ∈ V(Q), n ∈ N}, i.e.

the collection of all finite unions of elements of V(Q). The following
statement shows that each topological group isomorphism maps Vitali
selectors of R to Vitali selectors of R, not necessarily related to the same
subgroups of (R,+).

Theorem 4.3 ([16]). Let Q be a countable dense subgroup (R,+) and let
V ∈ V(Q). If h : (R,+) −→ (R,+) is a topological group isomorphism,
then P = h(Q) ∈ C and W = h(V ) ∈ V(P ).

Let Q1 and Q2 be elements of C such that Q1 ⊆ Q2 and Q1 ̸= Q2. It
was shown in [13] that if Card(Q2/Q1) < ∞ then V1(Q1) ⊆ V1(Q2) and
V1(Q1) ̸= V1(Q2), and if Card(Q2/Q1) = ℵ0 then V1(Q1) ∩ V1(Q2) = ∅.
From here, we consider the collection V = {V : V ∈ V(Q), Q ∈ C} of
all Vitali selectors of R, and we define the semigroup S(V) = {

∪n
i=1 Vi :

Vi ∈ V, n ∈ N} generated by the collection V of all Vitali selectors of
(R,+). Clearly, V(Q) ⊊ V and V1(Q) ⊊ S(V) for each Q ∈ C. It is well
known [12] that the families S(V), Im ∗ S(V) and S(V) ∗ Im consist of
sets without the Baire property and they are invariant under the action
of Φ(R).

Theorem 4.4 ([16]). The families N0 ∗ S(V) and S(V) ∗ N0 are semi-
groups of sets on R, for which elements are not measurable in the
Lebesgue sense, such that S(V) ⊊ N0 ∗ S(V) ⊊ S(V) ∗ N0, and they
are invariant under the action of the group Π(R) of all affine transfor-
mations of R onto itself.

The following theorem is a more general result than Theorem 4.1.

Theorem 4.5. Let U =
∪n

i=1 Vi be a finite union of Vitali selectors of
R, where Vi ∈ V(Qi) and each Qi is an element of C for i = 1, 2, · · · , n.
Then, the set U cannot contain any subset of strictly positive Lebesgue
measure.

Proof. Suppose that there exists a Lebesgue measurable subset Y of R
such that µ(Y ) > 0 and Y ⊆ U . Without loss of generality, we may
assume that the set Y is bounded. Let ϑ be the restriction of µ to the
ring of sets Bb(R)∩ dom(µ). For this ϑ, there exists a functional η as in
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Theorem 2.23. Clearly, we have

0 < ϑ(Y ) = η(Y ) = η(Y ∩ U) = η

[
Y ∩

(
n∪

i=1

Vi

)]

= η

[
n∪

i=1

(Y ∩ Vi)

]
≤

n∑
i=1

η(Y ∩ Vi)

(4.1)

Inequality 4.1 implies that η(Y ∩ Vi) > 0 for some i ∈ {1, 2, · · · , n}.
Since Y ∩ Vi is a bounded subset of the Vitali selector Vi, it follows
from Lemma 2.25, that it has the property described in Lemma 2.24.
According to Lemma 2.24, we must have the equality η(Y ∩Vi) = 0, but
this a contradiction. We conclude that the set U cannot contain any
Lebesgue measurable set with positive measure. □

It is important to point out that Theorem 4.5 is not valid in the case
of countable unions of Vitali selectors. A simple way to observe this
fact, is to consider Equality 2.2, but a more general result was proved
in [13], where it was shown that, if O is a non-empty open subset of
R, then there exist a sequence of Vitali selectors V1, V2, · · · such that
O =

∪∞
i=1 Vi. Such a union contains a set of strictly positive Lebesgue

measure.

Corollary 4.6. No element of the family S(V)∗N0 can contain any set
of strictly positive Lebesgue measure.

With the help of Theorem 4.5, we can prove the following statement.

Corollary 4.7. Let Uk =
∪n

i=1 Vik be a finite union of Vitali selectors
of R, where Vik ∈ V(Qk) and Qk is an element of C for each k, and
let hk be a topological group isomorphism of (R,+) onto itself, for each
k = 1, 2, · · · , n. Then, the union U =

∪m
k=1 hk(Uk), cannot contain any

Lebesgue measurable set of strictly positive measure.

Proof. By Theorem 4.5, it is enough to show that U is a finite union of
Vitali selectors of R. Note that hk(Uk) = hk (

∪n
i=1 Vik) =

∪n
i=1 hk (Vik).

By Theorem 4.3, the set hk(Vik) is a Vitali selector related to the group
hk(Qk) ∈ C. Hence, hk(Uk) is a finite union of Vitali selectors. It
follows that U =

∪m
k=1 hk(Uk) =

∪m
k=1

∪n
i=1 hk(Vik) is also a finite union

of Vitali selectors of R. □

5. Semigroups of non-Lebesgue measurable sets generated
by a combination of Bernstein sets and Vitali selectors

We now combine Bernstein sets and Vitali selectors of R, to construct
families of sets for which elements are not measurable in the Lebesgue
sense.
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Theorem 5.1. Let B be a Bernstein subset of R which has the algebraic
structure of being a subgroup of (R,+), and let S(V) be the semigroup
generated by the collection V all Vitali selectors of R. Any union U =
U1 ∪ U2, where U1 ∈ S(B) and U2 ∈ S(V), cannot contain any subset of
strictly positive Lebesgue measure.
Proof. Assume that there exists a Lebesgue measurable set Y such that
µ(Y ) > 0 and Y ⊆ U = U1 ∪U2, where U1 =

∪n
i=1Bi and U2 =

∪m
k=1 Vk

for Bi ∈ B and Vk ∈ V. Without loss of generality, we may assume that
the set Y is bounded. It follows from Proposition 3.4 and Theorem 4.5
that the set Y cannot stay entirely in U1 nor in U2. Write U =

∪n+m
i=1 Xi,

where Xi = Bi for i = 1, 2, · · · , n and Xn+k = Vk for k = 1, 2, · · · ,m.
Then we have the following:

0 < µ(Y ) = µ(Y ∩ U) = µ

[
n+m∪
i=1

(Y ∩Xi)

]
≤

n+m∑
i=1

µ(Y ∩Xi). (5.1)

It follows from Inequality 5.1 that µ(Y ∩ Xi) > 0 for some index i ∈
{1, 2, · · · , n+m}. Since Y ∩Xi ∈ Bb(R), let ϑ be the restriction of µ to
the ring of sets Bb(R)∩dom(µ). For this ϑ there exists a functional η as
in Theorem 2.23 which is an extension of ϑ. So we have 0 < µ(Y ∩Xi) =
ϑ(Y ∩Xi) = η(Y ∩Xi).
• If Xi is an element of V, then η(Y ∩Xi) = 0 by Lemma 2.25.
• If Xi is an element of B, then η(Y ∩Xi) = 0 by Lemma 3.3.
As a conclusion the set Y cannot exist. □
Corollary 5.2. Let B be a Bernstein set of R which has the algebraic
structure of being a subgroup of (R,+), and let S(V) be the semigroup
generated by the collection V all Vitali selectors of R. Then the semigroup
S(B) ∨ S(V) consists of sets which are not measurable in the Lebesgue
sense, and it is invariant under the action of the group Φ(R).
Proof. Assume that there exists a Lebesgue measurable set U in S(B)∨
S(V). Then, U = U1 ∪U2, where U1 ∈ S(B) and U2 ∈ S(V). Since U2 =∪n

i=1 Vi, where Vi ∈ V(Qi), let Vk be a fixed Vitali selector in this union
such that Vk ∈ V(Qk). Since by Equality 2.2, R =

∪
{Vk + q : q ∈ Qk}

and Vk ⊆ U2 ⊆ U , then we have R =
∪
{U + q : q ∈ Qk}. Given that

µ(U + q) = µ(U) for each q ∈ Qk and µ(R) > 0, then we must have
µ(U) > 0, and this contradicts Theorem 5.1.

Since the family S(V) is invariant under the action of the group Π(R)
and the family S(B) invariant under the action of the group Φ(R), it
follows that the family S(B) ∨ S(V) is invariant under the action of the
group Φ(R). □
Corollary 5.3. Each element of the family S(B)∗S(V) is not measurable
in the Lebesgue sense.
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Proof. Let A ∈ S(B)∗S(V) and assume that A is a Lebesgue measurable
set. Then, A = (U1 \ U2) ∪ U3 for some U1 ∈ S(B) and U2, U3 ∈ S(V).
Since U3 is a finite union of Vitali selectors and U3 ⊆ A, then the set
A cannot have the Lebesgue measure zero. Assume that µ(A) > 0. It
follows that A = (U1 \ U2) ∪ U3 ⊆ U1 ∪ U3 ∈ S(B1) ∨ S(V). But by
Theorem 5.1, the set U1 ∪ U2 cannot contain any set of strictly positive
Lebesgue measure. □

Let us point out that the family S(B) ∗ S(V) does not need to be a
semigroup of sets.

Theorem 5.4. The families N0 ∗(S(V) ∨ S(B)) and (S(V) ∨ S(B))∗N0

are semigroups of sets on R satisfying the inclusions: S(V) ∨ S(B) ⊆
N0 ∗ (S(V) ∨ S(B)) ⊆ (S(V) ∨ S(B)) ∗ N0. They are invariant under
the action of the group Φ(R), and they consist of sets which are not
measurable in the Lebesgue sense.

Proof. The given families are semigroups of sets by Proposition 2.4 and
Lemma 2.5. The inclusions follow from Proposition 2.4.

Let A ∈ (S(V) ∨ S(B)) ∗ N0 and assume that A is measurable in the
Lebesgue sense. Then A = ((U1 ∪U2) \M)∪N , where U1 ∈ S(V), U2 ∈
S(B) and M,N ∈ N0. Note that A\(U1∪U2) ⊆ N and (U1∪U2)\A ⊆ M
and hence A∆(U1 ∪ U2) ⊆ M ∪ N . It follows that µ(A∆(U1 ∪ U2)) ≤
µ(M ∪ N) = 0 and thus µ(A∆(U1 ∪ U2)) = 0. It follows from Lemma
2.15 that the set U1 ∪ U2 must be measurable in the Lebesgue sense.
But, Corollary 5.2 tells us that the set U1 ∪U1 is not measurable in the
Lebesgue sense, and we have a contradiction. □

Let us note that S(B)∨S(V) ⊆ S(B)∗S(V) and (S(B) ∨ S(V))∗N0 ⊆
(S(B) ∗ S(V))∗N0. It follows from Lemma 2.7 and Proposition 2.10 that
S(B∨V) ∗N0 = (S(V) ∨ S(B)) ∗N0 = (S(V) ∗N0)∨ (S(B) ∗N0). These
semigroups consist of sets which are not measurable in the Lebesgue
sense.

Corollary 5.5. The families N0 ∗ (S(B) ∗ S(V)) and (S(B) ∗ S(V))∗N0

consist of elements which are not measurable in the Lebesgue sense.

Question 5.6. Is each element of the families S(B) ∨ S(V) and S(B) ∗
S(V) without the Baire property in R?

The positive answer to Question 5.6 will imply that the semigroups
of sets S(V) ∨ S(B), Im ∗ (S(V) ∨ S(B)) and (S(V) ∨ S(B)) ∗ Im; which
are invariant under the action of the group Φ(R), consist of sets without
the Baire property in R.

Lemma 5.7. Let B1 and B2 be Bernstein subsets of R having the
algebraic structure of being subgroups of (R,+), and let S(V) be the
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semigroup generated by all Vitali selectors of R. Then, any union
U = U1 ∪ U2 ∪ U3, where U1 ∈ S(B1), U2 ∈ S(B3) and U3 ∈ S(V)
cannot contain any set of strictly positive Lebesgue measure. In partic-
ular, the family S(B1) ∨ S(B2) ∨ S(V) is a semigroup of sets for which
elements are not measurable in the Lebesgue sense, and it is invariant
under the action of the group Φ(R).
Proof. To prove that the element U cannot contain any set of positive
measure, we proceed as in Theorem 5.1. It is clear that the family
S(B1)∨S(B2)∨S(V) is a semigroup of sets by Lemma 2.5. It is invariant
under the action of the group Φ(R), since both families S(B1),S(B2) and
S(V) are invariant under the action of the group Φ(R). □

The following statement can be proved in a similar way as Theorem
5.4 by taking into account Lemma 5.7.
Theorem 5.8. Let B1 and B2 be Bernstein subsets of R having the
algebraic structure of being subgroups of (R,+), and let S(V) be the
semigroup generated by all Vitali selectors of R. Then the families
N0∗(S(B1)∨S(B2)∨S(V)) and (S(B1)∨S(B2)∨S(V))∗N0 are semigroups
of sets on R such that S(B1) ∨ S(B2) ∨ S(V) ⊆ N0 ∗ (S(B1) ∨ S(B2) ∨
S(V)) ⊆ (S(B1)∨S(B2)∨S(V))∗N0. They are invariant under the action
of the group Φ(R) and they consist of sets which are not measurable in
the Lebesgue sense.

It follows from Proposition 2.8 and Lemma 2.7 that S(B1 ∨ B2 ∨ V) ∗
N0 = (S(B1)∨S(B2)∨S(V))∗N0 = (S(B1)∗N0)∨(S(B2)∗N0)∨(S(V)∗
N0) and N0∗(S(B1)∨S(B2)∨S(V)) = (N0∗S(B1))∨(N0∗S(B2))∨(N0∗
S(V). All these semigroups consist of sets which are not measurable in
the Lebesgue sense. We have used the σ-ideal N0 in the construction of
different semigroups for which elements are not Lebesgue measurable.
All the statements remain valid by using an ideal of sets I such that
I ⊆ N0. Different statements involving the collection S(V) remain valid
when S(V) is replaced by V1(Q) for any countable dense subgroup Q of
(R,+).
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