Caspian Journal of Mathematical Sciences (CJMS) University of Mazandaran, Iran [http://cjms.journals.umz.ac.ir](http://cjms. journals. umz. ac.ir) <https://doi.org/10.22080/CJMS.2023.26011.1668> Caspian J Math Sci. **13**(1)(2024), 49-61 (RESEARCH ARTICLE)

Weakly compact weighted composition operators on pointed Lipschitz spaces

Rezvan Barzegari $^{\rm 1}$ and Davood Alimohammadi $^{\rm 2}$ $^{\rm 2}$ $^{\rm 2}$ ¹*,*² Department of Mathematics, Faculty of Science, Arak University, Arak 3848177584, Iran.

ABSTRACT. Let (X, d) be a pointed compact metric space with the base point x_0 and let $Lip((X,d),x_0)$ (lip($(X,d),x_0$)) denote the pointed (little) Lipschitz space on (X, d) . In this paper, we prove that every weakly compact composition operator uC_{φ} on $Lip((X, d), x_0)$ is compact provided that $lip((X, d), x_0)$ has the uniform separation property, φ is a base point preserving Lipschitz self-map of *X* and $u \in \text{Lip}(X, d)$ with $u(x) \neq 0$ for all $x \in X \setminus \{x_0\}$.

Keywords: Compact operator, Lipschitz space, weakly compact operator, weighted composition operator.

2020 Mathematics subject classification: 47B38, 47B33; Secondary 46E15.

1. Introduction and Preliminaries

The symbol $\mathbb K$ denotes a field that can be either $\mathbb R$ or $\mathbb C$. Let $\mathcal X$ and $\mathcal Y$ be two normed linear spaces over K. The space of all bounded linear operators from X into Y is denoted by $\mathcal{B}(\mathcal{X}, \mathcal{Y})$. The *adjoint operator* of $T \in \mathcal{B}(\mathcal{X}, \mathcal{Y})$ is the operator $T^* \in \mathcal{B}(\mathcal{Y}^*, \mathcal{X}^*)$ which is defined by

²Corresponding author: d-alimohammadi@araku.ac.ir

Received: 11 September 2023

Revised: 13 November 2023

Accepted: 13 November 2023

How to Cite: Barzegari, Rezvan; Alimohammadi, Davood. Weakly compact weighted composition operators on pointed Lipschitz spaces, Casp.J. Math. Sci., $13(1)(2024)$, 49-61.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2023 by University of Mazandaran. Subbmited for possible open access publication under the terms and conditions of the Creative Commons Attribution(CC BY) license(https://craetivecommons.org/licenses/by/4.0/)

⁴⁹

 $T^*(y^*) = y^* \circ T$ whenever $y^* \in \mathcal{Y}^*$. We say that a linear operator *T* from $\mathcal X$ into $\mathcal Y$ is (weakly) compact if T maps bounded sets in $\mathcal X$ into relatively (weakly) compact sets in *Y*. Clearly, every (weakly) compact operator is bounded. It is known [\[3,](#page-12-0) Proposition V.4.1] that if $\mathcal X$ is a normed linear space over K, the $\pi_{\mathcal{X}}(\mathcal{B}_{\mathcal{X}})$ is $\sigma(\mathcal{X}^{**}, \mathcal{X}^*)$ dense in $\mathcal{B}_{\mathcal{X}^{**}}$, where $\pi_{\mathcal{X}}$ is the natural embedding from $\mathcal X$ to $\mathcal X^{**}$ and $\mathcal B_{\mathcal Y}$ is the closed unit ball of the normed space *Y*. Therefore, exactly as the proof of the case that *X* and *Y* are Banach spaces, one can show that for normed linear spaces *X* and *Y*, an operator $T \in \mathcal{B}(\mathcal{X}, \mathcal{Y})$ is weakly compact if and only if *T ∗∗*(*X ∗∗*) is contained in *π^Y* (*Y*).(see [\[5,](#page-12-1) Theorem VI.4.2])

Let *X* be a nonempty set and *A* be a nonempty subset of K^X , the set of all K-valued functions on *X*. For each $u \in K^{\overline{X}}$ and every self-map φ of *X*, the map $f \mapsto u.(f \circ \varphi) : A \to \mathbb{K}^X$ is denoted by uC_{φ} on *A*. A map $T: A \rightarrow A$ is called a weighted composition operator on *A* if there exist a function $u \in \mathbb{K}^X$ and a self-map φ of X such that $T = uC_{\varphi}$ on A. It is clear that such a map T is a linear map over $\mathbb K$ if A is a linear subspace of \mathbb{K}^X over \mathbb{K} . In the special case $u = 1_X$, the weighted composition operator $T = uC_{\varphi} : A \to A$ reduces to the composition operator C_{φ} on *A*.

Let (X, d) and (Y, ρ) be metric spaces. A function $\varphi : X \to Y$ is said to be a *Lipschitz mapping* from (X, d) to (Y, ρ) if

$$
\mathcal{L}(\varphi) = \sup \{ \frac{\rho(\varphi(x), \varphi(y))}{d(x, y)} : x, y \in X, x \neq y \} < \infty
$$

and a *supercontractive* if

$$
\lim_{d(x,y)\to 0} \frac{\rho(\varphi(x), \varphi(y))}{d(x,y)} = 0.
$$

Let (X, d) be a metric space. We denote by $Lip(X, d)$ the set of all K-valued bounded functions *f* on *X* for which

$$
\mathcal{L}_{(X,d)}(f) = \sup \{ \frac{|f(x) - f(y)|}{d(x,y)} : x, y \in X, x \neq y \} < \infty.
$$

Then $\text{Lip}(X, d)$ is a commutative unital Banach algebra over K with unit 1_X , the constant function with value 1 and with the algebra norm $\|\cdot\|_{\text{Lip}(X,d)}$ defined by

$$
\|f\|_{\text{Lip}(X,d)} = \|f\|_X + \mathcal{L}_{(X,d)}(f) \qquad (f \in \text{Lip}(X,d)),
$$

where $|| f ||_X = \sup\{|f(x)| : x \in X\}$. We denote by $lip(X, d)$ the set of all $f \in \text{Lip}(X, d)$ for which

$$
\lim_{d(x,y)\to 0} \frac{|f(x) - f(y)|}{d(x,y)} = 0.
$$

Then $\text{lip}(X, d)$ is a closed subalgebra of $\text{Lip}(X, d)$ that contains 1_X .

Let (X, d) be a metric space and A be the Lipschitz algebra $\text{Lip}(X, d)$. It is known that if $\varphi: X \to X$ is a Lipschitz mapping from (X, d) to (X, d) and $u \in \text{Lip}(X, d)$, then $uC_{\varphi}: A \to A$ is a bounded weighted composition operator on *A*. (see [\[1,](#page-12-2) Theorems 2.2 and 2.4])

Let *B* be a nonempty subset of $Lip(X, d)$. We say that *B separates uniformly the points* of X if there exists a constant $C > 1$ such that for every $x, y \in X$, there exists a function $f \in B$ with $L_{(X,d)}(f) \leq C$ such that $|f(x) - f(y)| = d(x, y)$. It is known that Lip(*X, d*) has the uniform separation property. Let (X, d) be a metric space. For $\alpha \in (0, 1]$, the map $d^{\alpha}: X \times X \to \mathbb{R}$ defined by $d^{\alpha}(x, y) = (d(x, y))^{\alpha}, (x, y \in X),$ is a metric on *X* and the induced topology by d^{α} on *X* coincides by the induced topology by *d* on *X*. It is known that $lip(X, d^{\alpha})$ separates uniformly the points of *X* whenever (X, d) is compact and $\alpha \in (0, 1)$.

A metric space (X, d) is pointed if it carries a distinguished element or a base point, say x_0 . We denote by $((X, d), x_0)$ the pointed metric space (X, d) with the base point x_0 . We denote by $\text{Lip}((X, d), x_0)$ the set of all K-valued Lipschitz functions f on X for which $f(x_0) = 0$. It is easy to see that $Lip((X,d),x_0)$ is a maximal ideal of $Lip(X,d)$ whenever (X, d) is bounded and a Banach space with the Lipschitz norm $L_{(X,d)}(\cdot)$. Note that as a Banach space, $Lip((X,d),x_0)$ does not depend on the base point x_0 . Explicitly, if x_0 and x_1 are two different choices, then the map $f \mapsto f - f(x_1)$ takes $\text{Lip}((X, d), x_0)$ linearly and isometrically onto $\text{Lip}((X,d),x_1)$. We denote by $\text{lip}((X,d),x_0)$ the set of all $f \in$ $Lip((X, d), x_0)$ for which f is supercontractive. It is easy to see that $lip((X, d), x_0)$ is closed subset of $Lip((X, d), x_0)$.

Let $((X, d), x_0)$ be a pointed compact metric space and A be the pointed Lipschitz space $\text{Lip}((X, d), x_0)$. If $\varphi : X \to X$ is a Lipschitz mapping with $\varphi(x_0) = x_0$ and $u \in \text{Lip}(X, d)$, then $uC_{\varphi}: A \to A$ is a weighted composition operator on *A*. (see [[4](#page-12-3), Theorem 2.1])

Let *B* be a nonempty subset of $Lip((X,d),x_0)$. We say that *B* separates uniformly the points of *X* if there exists a constant $C > 1$ such that for every $x, y \in X$, there exists a function $f \in B$ with $L_{(X,d)}(f) \leq C$ such that $|f(x)-f(y)| = d(x, y)$. It is known [[10,](#page-12-4) Proposition 3.2.2] that lip((X, d^{α}) , x_0) has the uniform separation property where $0 < \alpha < 1$.

Golbaharan and Mahyar in [\[7\]](#page-12-5) studied weighted composition operators on Lipschitz algebras, whenever (X, d) is a compact metric space. In [[1](#page-12-2)], these operators studied between Lipschitz algebras $\text{Lip}(X, d)$ and $Lip(Y, \rho)$ whenever metric spaces (X, d) and (Y, ρ) are not necessarily compact. Compact composition operators between pointed Lipschitz spaces studied in [[9](#page-12-6)]. A. Jiménez–Vargas in [[8](#page-12-7)] studied weakly compact composition operators on pointed Lipschitz spaces $Lip((X,d),x_0)$

and pointed little Lipschitz space $lip((X,d), x_0)$, where $((X,d), x_0)$ is a pointed compact metric space and $lip((X, d), x_0)$ has the uniform separation property. Compact weighted composition operators between pointed Lipschitz spaces were studied in [\[2,](#page-12-8) [4](#page-12-3)]. A. Golbaharan in [[6](#page-12-9)] studied weakly compact weighted composition operators on $\text{Lip}(X, d)$ where (X, d) is a compact metric space.

In this paper, we study weakly compact weighted composition operators on pointed Lipschitz spaces $\text{Lip}((X,d),x_0)$, where $((X,d),x_0)$ is a pointed compact metric space. We first show that if $((X, d), x_0)$ is a pointed compact metric space, $lip((X,d),x_0)$ separates uniformly the points of *X*, $\varphi: X \to X$ is a Lipschitz mapping with $\varphi(x_0) = x_0$, $u \in \text{Lip}(X, d)$ with $u(x) \neq 0$ for all $x \in X \setminus \{x_0\}$ and weighted composition operator $uC_{\varphi}: \text{Lip}((X, d), x_0) \to \text{Lip}((X, d), x_0)$ is weakly compact, then uC_{φ} is compact. We next show that if (X, d) is a compact metric space, $lip(X, d)$ separates uniformly the points of $X, \varphi : X \to X$ is a Lipschitz mapping, $u \in \text{Lip}(X, d)$ with $u(x) \neq 0$ for all $x \in X$ and $uC_{\varphi}: \text{Lip}(X, d) \to \text{Lip}(X, d)$ is weakly compact, then uC_{φ} is compact.

2. Main result

To prove the main result , we need the following lemmas.

Lemma 2.1. *Let* $((X, d), x_0)$ *be a pointed compact metric space and A be the pointed Lipschitz space* $Lip((X,d),x_0)$ *. Let* $\varphi: X \to X$ *be a Lipschitz mapping with* $\varphi(x_0) = x_0$ *and* $u \in \text{Lip}(X, d)$ *. If composition operator* $C_{\varphi}: A \rightarrow A$ *is compact, then weighted composition operator* $\iota uC_{\varphi}: A \to A$ *is compact.*

Proof. Let $C_{\varphi}: A \to A$ be a compact operator. Suppose that $\{f_{\lambda}\}_{\lambda \in \Lambda}$ be a bounded net in $(A, L_{(X,d)}(\cdot))$ which converges to 0_X on X. By [[2](#page-12-8), Proposition 3.2], there exists a subnet $\{f_{\gamma}\}_{\gamma \in \Gamma}$ of $\{f_{\lambda}\}_{\lambda \in \Lambda}$ such that

$$
\lim_{\gamma} \mathcal{L}_{(X,d)}(C_{\varphi}(f_{\gamma})) = 0. \tag{2.1}
$$

Let $\gamma \in \Gamma$. For all $x, y \in X$ we have $|uC_{\varphi}(f_{\gamma})(x) - uC_{\varphi}(f_{\gamma})(y)| \leq |u(x)||f_{\gamma}(\varphi(x)) - f_{\gamma}(\varphi(y))|$ $+ |u(x) - u(y)||f_{\gamma}(\varphi(y))|$ \leq $||u||_X$ $\mathcal{L}_{(X,d)}(C_\varphi(f_\gamma))d(x,y)$ $+ L_{(X,d)}(u) d(x,y) |f_{\gamma}(\varphi(y)) - f_{\gamma}(\varphi(x_0))|$ \leq $||u||_X$ $\mathcal{L}_{(X,d)}(C_\varphi(f_\gamma))d(x,y)$ $+ L_{(X,d)}(u)d(x,y)L_{(X,d)}(C_{\varphi}(f_{\gamma}))d(y,x_0)$ \leq $||u||_X$ $\mathcal{L}_{(X,d)}(C_\varphi(f_\gamma))d(x,y)$ $+ L_{(X,d)}(u) d(x, y) L_{(X,d)}(C_{\varphi}(f_{\gamma})) \text{ diam}(X).$ Therefore,

$$
L_{(X,d)}(uC_{\varphi}(f_{\gamma})) \le (\|u\|_{X} + L_{(X,d)}(u) \operatorname{diam}(X)) L_{(X,d)}(C_{\varphi}(f_{\gamma})). \quad (2.2)
$$

Since ([2.2\)](#page-4-0) holds for all $\gamma \in \Gamma$, according to ([2.1\)](#page-3-0) we get

$$
\lim_{\gamma} \mathcal{L}_{(X,d)}(uC_{\varphi}(f_{\gamma}) = 0.
$$

Hence, uC_{φ} is compact by [\[2,](#page-12-8) Proposition 3.2].

Lemma 2.2. Let $((X, d), x_0)$ be pointed compact metric space and let B *be a linear subspace of* $Lip((X,d),x_0)$ *over* K.

(i) For each $x \in X$, the map $e_{B,x}$: B → K *defined by*

 $e_{B,x}(g) = g(x)$ $(g \in B)$,

belongs to B^* *and* $||e_{B,x}|| \leq \text{diam}(X)$ *, where* B^* *is the dual space of normed space* $(B, L_{(X,d)}(\cdot))$ *.*

 $f(i)$ $\|e_{B,x} - e_{B,y}\| \le d(x,y)$ *for all* $x, y \in X$ *.*

Proof. (i) Let $x \in X$. It is clear that $e_{B,x}$ is a linear functional on *B*. Since

$$
|e_{B,x}(g)| = |g(x)| = |g(x) - g(x_0)|
$$

\n
$$
\leq \mathcal{L}_{(X,d)}(g)d(x, x_0) \leq \mathcal{L}_{(X,d)}(g)\operatorname{diam}(X)
$$

for all $g \in B$, we deduce that $e_{B,x} \in B^*$ and $||e_{B,x}|| \leq \text{diam}(X)$.

(ii) Let $x, y \in X$. Then $e_{B,x} - e_{B,y} \in B^*$ and

$$
|(e_{B,x} - e_{B,y})(g)| = |g(x) - g(y)| \le \mathcal{L}_{(X,d)}(g)d(x,y)
$$

for all $g \in B$. Hence, $||e_{B,x} - e_{B,y}|| \le d(x,y)$. □

Lemma 2.3. Let $((X,d),x_0)$ be a pointed compact metric space and *let B be a linear subspace of* $lip((X,d),x_0)$ *over* K*. Then the map* $\Phi_B : B^{**} \to \text{Lip}((X,d),x_0)$ *defined*

$$
\Phi_B(\Lambda) = \Lambda \circ E_{X,B} \qquad (\Lambda \in B^{**})
$$

is a bounded linear operator and $\|\Phi_B\| \leq 1$.

Proof. Let $\Lambda \in B^{**}$. By part (ii) of Lemma [2.2](#page-4-1), for all $x, y \in X$ we have

$$
|\Phi_B(\Lambda)(x) - \Phi_B(\Lambda)(y)| = |(\Lambda \circ E_{X,B})(x) - (\Lambda \circ E_{X,B})(y)|
$$

\n
$$
= |\Lambda(e_{B,x}) - \Lambda(e_{B,y})|
$$

\n
$$
= |\Lambda(e_{B,x} - e_{B,y})|
$$

\n
$$
\leq ||\Lambda|| ||e_{B,x} - e_{B,y}||
$$

\n
$$
\leq ||\Lambda|| d(x,y).
$$

This implies that $\Phi_B(\Lambda) \in \text{Lip}(X, d)$ and

$$
L_{(X,d)}(\Phi_B(\Lambda)) \le \|\Lambda\|.\tag{2.3}
$$

Since x_0 is the base-point of X, we have

$$
e_{B,x_0}(g) = g(x_0) = 0
$$

for all $g \in B$. Thus $e_{B,x_0} = 0_{B^*}$, where 0_{B^*} is the zero linear functional on *B*. Therefore,

$$
\Phi_B(\Lambda)(x_0) = (\Lambda o E_{B,X})(x_0) = \Lambda(e_{B,x_0}) = \Lambda(0_{B^*}) = 0.
$$

Hence, $\Phi_B(\Lambda) \in \text{Lip}((X,d), x_0)$ and so Φ_B is well-defined. It is easy to see that Φ_B is a linear operator. Since ([2.3\)](#page-4-2) holds for all $\Lambda \in B^*$, we deduce that Φ_B is bounded and $\|\Phi_B\| \leq 1$. This completes the proof. \Box

Theorem 2.4. Let $((X,d),x_0)$ be a pointed compact metric space, $\varphi: X \to X$ *be a Lipschitz mapping with* $\varphi(x_0) = x_0$ *and* $u \in \text{Lip}(X, d)$ $with u(x) \neq 0$ *for all* $x \in X \setminus \{x_0\}$. Suppose that $lip((X, d), x_0)$ sep*arates uniformly the points of X. If weighted composition operator* $uC_\varphi: \text{Lip}((X,d), x_0) \to \text{Lip}((X,d), x_0)$ *is weakly compact, then* uC_φ *is compact.*

Proof. Let the weighted composition operator $uC_\varphi : \text{Lip}((X, d), x_0) \rightarrow$ Lip($(X, d), x_0$) be weakly compact. Set $A = \text{lip}((X, d), x_0)$ and $B =$ $\mathcal{U}C_{\varphi}(A)$. Since $\mathcal{U}C_{\varphi}$ is a linear mapping and *A* is a linear subspace of $Lip((X, d), x_0)$, we deduce that *B* is a linear subspace of *A*. We claim that $uC_\varphi(\text{Lip}((X,d), x_0))$ is contained in *B*. Define the map $T: A \to B$ by

$$
T(f) = uC_{\varphi}(f) \qquad (f \in A).
$$

Then *T* is a bounded linear operator from *A* into *B*. It is easy to see that

$$
e_{B,x} \circ T = u(x) E_{X,A}(\varphi(x)) \tag{2.4}
$$

for all $x \in X$. Define the map $\Phi_A : A^{**} \to \text{Lip}((X, d), x_0)$ by

$$
\Phi_A(\Lambda) = \Lambda \circ E_{X,A} \qquad (\Lambda \in A^{**}). \tag{2.5}
$$

By [[10,](#page-12-4) Theorems 3.3.3 and 2.2.2], is *A∗∗* with the operator norm is isometrically isomorphism to $\text{Lip}((X,d), x_0)$ with the norm $\text{L}_{(X,d)}(\cdot)$ via the map Φ_A since $lip((X,d), x_0)$ separates uniformly the points of X.

Define the map $\Phi_B : B^{**} \to \text{Lip}((X,d),x_0)$ by

$$
\Phi_B(\Lambda) = \Lambda \circ E_{X,B} \qquad (\Lambda \in B^{**}). \tag{2.6}
$$

By Lemma [2.3](#page-4-3), Φ_B is a bounded linear operator from B^{**} with the operator norm into $\text{Lip}((X,d), x_0)$ with the norm $\text{L}_{(X,d)}(\cdot)$. We show that

$$
\Phi_B \circ T^{**} \circ \Phi_A^{-1} = uC_\varphi \tag{2.7}
$$

on $\text{Lip}((X,d),x_0)$. Let $f \in \text{Lip}((X,d),x_0)$. The surjectivity of Φ_A implies that there exists $\Lambda \in A^{**}$ such that

$$
\Phi_A(\Lambda) = f. \tag{2.8}
$$

Since $\Lambda \circ T^* \in B^{**}$, by [\(2.8](#page-5-0)) and ([2.6\)](#page-5-1) we have

$$
(\Phi_B \circ T^{**} \circ \Phi_A^{-1})(f) = (\Phi_B \circ T^{**})(\Lambda) = \Phi_B(\Lambda \circ T^*) = \Lambda \circ T^* \circ E_{X,B}.
$$
 (2.9)
Since (2.4) holds for all $x \in X$, according to (2.8) we get

$$
(\Lambda \circ T^* \circ E_{X,B})(x) = (\Lambda \circ T^*)(e_{B,x}) = \Lambda(T^*(e_{B,x}))
$$

\n
$$
= \Lambda(e_{B,x} \circ T) = \Lambda(u(x)E_{X,A}(\varphi(x))
$$

\n
$$
= u(x)\Lambda(E_{X,A}(\varphi(x))) = u(x)(\Lambda \circ E_{X,A})(\varphi(x))
$$

\n
$$
= u(x)\Phi_A(\Lambda)(\varphi(x)) = u(x)f(\varphi(x))
$$

\n
$$
= uC_{\varphi}(f)(x)
$$

for all $x \in X$. This implies that

$$
\Lambda \circ T^{**} \circ E_{X,B} = uC_{\varphi}(f). \tag{2.10}
$$

According to (2.9) (2.9) and (2.10) (2.10) , we get

$$
(\Phi_B \circ T^{**} \circ \Phi_A^{-1})(f) = uC_\varphi(f). \tag{2.11}
$$

Since ([2.11](#page-6-2)) holds for all $f \in Lip((X, d), x_0)$, we deduce that ([2.7\)](#page-5-3) holds on $Lip((X,d),x_0)$. The weak compactness of $uC_\varphi: Lip((X,d),x_0) \to$ $Lip((X,d),x_0)$ implies that $T:A\to B$ is weakly compact. This implies that

$$
T^{**}(A^{**}) \subseteq \pi_B(B), \tag{2.12}
$$

where $\pi_B(B)$ is the natural embedding of *B* in B^{**} . By ([2.12](#page-6-3)) and $A^{**} = \Phi_A^{-1}(\text{Lip}((X, d), x_0)),$ we get

$$
T^{**}(\Phi_A^{-1}(\text{Lip}((X,d),x_0)) \subseteq \pi_B(B).
$$

It follows that

$$
(\Phi_B \circ T^{**} \circ \Phi_A^{-1})(\text{Lip}((X,d),x_0)) \subseteq (\Phi_B \circ \pi_B)(B). \tag{2.13}
$$

By (2.13) (2.13) and (2.7) (2.7) , we get

$$
uC_{\varphi}(\text{Lip}((X,d),x_0)) \subseteq (\Phi_B \circ \pi_B)(B). \tag{2.14}
$$

Now, we show that

$$
(\Phi_B \circ \pi_B)(B) \subseteq B. \tag{2.15}
$$

Let $f \in A$. Then

$$
(\Phi_B \circ \pi_B)(T(f))(x) = \Phi_B(\pi_B(T(f)))(x) = (\pi_B(T(f))) \circ E_{X,B})(x)
$$

= $\pi_B(T(f))(E_{X,B}(x)) = \pi_B(T(f))(e_{B,x})$
= $e_{B,x}(T(f)) = T(f)(x)$

for all $x \in X$. This implies that

$$
(\Phi_B \circ \pi_B)(T(f)) = T(f). \tag{2.16}
$$

Since $T(A) = B$ and ([2.16](#page-6-5)) holds for all $f \in A$, we deduce that ([2.15](#page-6-6)) holds. According to (2.14) and (2.15) (2.15) (2.15) , we get

$$
uC_{\varphi}(\text{Lip}((X,d),x_0)) \subseteq B. \tag{2.17}
$$

Therefore, our claim is justified.

Assume towards a contradiction that uC_φ is not compact. By Lemma $2.1, C_{\varphi}: \text{Lip}((X, d), x_0) \to \text{Lip}((X, d), x_0)$ is not compact. According to [\[9,](#page-12-6) Theorem 1.2], we deduce that φ is not supercontractive. By using [\[8,](#page-12-7) Lemma 2.1], there exist $\varepsilon > 0$, two sequences $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$
in X converging a point z in (X, d) such that $0 < d(x_n, y_n) < \frac{1}{n}$ and $\frac{1}{n}$ and $\varepsilon < \frac{d(\varphi(x_n), \varphi(y_n))}{d(x_n, y_n)}$ for all $n \in \mathbb{N}$, and a function $f \in \text{Lip}((X, d), x_0)$ such that $f(\varphi(x_n)) = d(\varphi(x_n), \varphi(y_n))$ and $f(\varphi(y_n)) = 0$ for all $n \in \mathbb{N}$. According to $f \in \text{Lip}((X, d), x_0)$ and ([2.17\)](#page-7-0), we get $uC_\varphi(f) \in B$. This implies that there exists $g \in A$ such that

$$
uC_{\varphi}(f) = T(g) = uC_{\varphi}(g). \tag{2.18}
$$

Since $(C_{\varphi} f)(x_0) = f(\varphi(x_0)) = 0 = g(\varphi(x_0)) = (C_{\varphi} f)(x_0), u(x) \neq 0$ for all $x \in X \setminus \{x_0\}$, by [\(2.18\)](#page-7-1) we get

$$
C_{\varphi}(f) = C_{\varphi}(g).
$$

This implies that $g(\varphi(x_n)) = d(\varphi(x_n), \varphi(y_n))$ and $g(\varphi(y_n)) = 0$. Therefore,

$$
\frac{|g(\varphi(x_n)) - g(\varphi(y_n))|}{d(x_n, y_n)} = \frac{d(\varphi(x_n), \varphi(y_n))}{d(x_n, y_n)} > \varepsilon
$$

for all $n \in \mathbb{N}$. This contradict to $g \in \text{lip}((X,d), x_0)$ since $0 < d(x_n, y_n)$ 1 $\frac{1}{n}$ for all $n \in \mathbb{N}$. Hence, the proof is complete. □

Note that Theorem [2.4](#page-5-4) is an extension of [[8](#page-12-7), Corollary 2.4].

As an application of Theorem [2.4,](#page-5-4) we give a weighted composition operator on a pointed Lipschitz space $\text{Lip}((X, d), x_0)$ which is not weakly compact.

Example 2.5. Let $X = \{z \in \mathbb{C} : |z| \leq 1\}$, ρ be the Euclidean metric on *X*, $\alpha \in (0,1)$, *d* be the metric ρ^{α} on *X* and 0 be the base point of *X*. Then lip((*X, d*)*,* 0) separates uniformly the points of *X*. Define the function $u: X \to \mathbb{C}$ by $u(z) = 1 + |z|, z \in X$, and the self-map φ of X by $\varphi(z) = \frac{z}{2}, z \in X$. Then $u \in \text{Lip}(X, d)$, $u(z) \neq 0$ for all $z \in X \setminus \{0\}$ and φ is a base point preserving Lipschitz mapping from (X, d) to (X, d) . Since

$$
|u(z)| \frac{d(\varphi(z), \varphi(w))}{d(z, w)} = (1 + |z|) \frac{|\frac{z}{2} - \frac{w}{2}|^{\alpha}}{|z - w|^{\alpha}} = 2^{-\alpha} (1 + |z|) \le 2^{1 - \alpha}
$$

for all $z, w \in X$ with $z \neq w$, by [[4](#page-12-3), Theorem 2.1] we conclude that the map $T = uC_\varphi$ is a weighted composition operator on Lip((X, d) , 0). It is clear that $\cos(u) = X$, where $\cos(u) = \{z \in X : u(z) \neq 0\}$. This implies that $\varphi(\text{coz}(u)) = \varphi(X) = \{z \in X : |z| \leq \frac{1}{2}\}.$ Therefore, $\varphi(\text{coz}(u))$ is a totally bounded set in (X, d) . It is easy to see that

$$
|u(z)| \frac{d(\varphi(z), \varphi(w))}{d(z, w)} \ge 2^{-\alpha}
$$

for all $z, w \in X$ with $z \neq w$. This implies that

$$
\lim_{d(z,w)\to 0} |u(z)| \frac{d(\varphi(z), \varphi(w))}{d(z,w)} \neq 0.
$$

Therefore, $T = uC_\varphi$ is not compact by [\[4,](#page-12-3) Theorem 4.3]. According to Theorem [2.4](#page-5-4), we deduce that *T* is not weakly compact.

As an application of Theorem [2.4,](#page-5-4) we show that certain weakly compact composition operators on $Lip(X, d)$ are compact. To this aim, we need the following lemma which is a modification of [\[2,](#page-12-8) Lemma 2.2] and the paragraph after that.

Lemma 2.6. *Let* (X, d) *be a bounded metric space,* $x_0 \notin X$ *and* $X_0 =$ *X* ∪ $\{x_0\}$ *.*

(i) *Define the function* $d_0: X_0 \times X_0 \to \mathbb{R}$ by

$$
d_0(x, y) = \begin{cases} d(x, y) & x, y \in X, \\ \frac{1}{2} \operatorname{diam}(X) & \text{either} \quad x = x_0, y \in X \quad \text{or} \quad x \in X, y = x_0, \\ 0 & x = y = x_0. \end{cases}
$$
\n(2.19)

Then d_0 *is a bounded metric space on* (X_0, d_0) *.*

(ii) (X_0, d_0) *is a compact if and only if* (X, d) *is compact.*

(iii) *If* $\varphi: X \to X$ *is a Lipschitz mapping from* (X, d) *to* (X, d) *, then the map* $\varphi_0: X_0 \to X_0$ *, defined by* $\varphi_0 = \varphi$ *on X and* $\varphi_0(x_0) = x_0$ *, is a base point preserving Lipschitz mapping from* (X_0, d_0) *to* (X_0, d_0) *with* $L(\varphi_0) \leq \max\{1, L(\varphi)\}.$

(iv) *If* $f \in \text{Lip}(X, d)$ *, then the function* $f_0: X \to \mathbb{K}$ *defined by* $f_0 = f$ *on X and* $f_0(x_0) = 0$ *, belongs to* Lip((*X*₀*,d*₀)*, x*₀) *with* L_(*X*₀*,d*₀)(*f*) ≤ $2L_{(X,d)}(f)$.

 (v) *If* $g \in \text{Lip}((X_0, d_0), x_0)$ *and* $f = g|_X$ *, then* $f \in \text{Lip}(X, d)$ *with* $L_{(X,d)}(f) \leq L_{(X_0,d_0)}(g).$

(vi) *The map* Ψ : $\text{Lip}(X, d) \rightarrow \text{Lip}((X_0, d_0), x_0)$ *defined by*

$$
\Psi(f) = f_0 \qquad (f \in \text{Lip}(X, d)), \tag{2.20}
$$

is a bijective bounded linear operator from Lip(*X, d*) *with the sum norm* $\|\cdot\|_{\text{Lip}(X,d)}$ to $\text{Lip}((X_0,d_0),x_0)$ with the Lipschitz norm $\text{L}_{(X_0,d_0)}(\cdot)$. In *particular,* Ψ*−*¹ *is continuous and bounded linear operator.*

(vii) $\Psi(\text{lip}(X, d))$ *is contained in* $\text{lip}((X_0, d_0), x_0)$ *.*

(viii) *If the Lipschitz algebra* lip(*X, d*) *separates uniformly the points of X, then the Lipschitz space* $lip((X_0, d_0), x_0)$ *separates uniformly the points of* X_0 *.*

Proof. We prove (ii) and (viii).

To prove (ii), we first assume that (X, d) is compact. Let $\{y_n\}_{n=1}^{\infty}$ be a sequence in X_0 . Set

$$
K = \{ n \in \mathbb{N} : y_n = x_0 \}.
$$

Case 1. K = \emptyset . Then $\{y_n\}_{n=1}^{\infty}$ is a sequence in *X*. The compactness of (X, d) implies that there exist a subsequence $\{y_{n_k}\}_{k=1}^{\infty}$ of $\{y_n\}_{n=1}^{\infty}$ and a point $y \in X$ such that

$$
\lim_{k \to \infty} d(y_{n_k}, y) = 0.
$$

It follows $y \in X_0$ and

$$
\lim_{k \to \infty} d_0(y_{n_k}, y) = 0.
$$

Case 2. K is finite and $K \neq \emptyset$. Assume that $m = \max(K)$. Then ${y_{m+n}}_{n=1}^{\infty}$ is a sequence in *X*. The compactness of (X, d) implies that there exist a subsequence $\{y_{m+n_k}\}_{k=1}^{\infty}$ of $\{y_{m+n}\}_{n=1}^{\infty}$ and a point $y \in X$ such that

$$
\lim_{k \to \infty} d(y_{m+n_k}, y) = 0.
$$

It follows that $y \in X_0$ and

$$
\lim_{k \to \infty} d_0(y_{m+n_k}, y) = 0.
$$

Case 3. K is infinite. Then there exists a sequence $\{n_k\}_{k=1}^{\infty}$ in N with $n_{k+1} > n_k$ for all $k \in \mathbb{N}$ such that $y_{n_k} = x_0$. Therefore, $\{y_{n_k}\}_{k=1}^{\infty}$ is a subsequence of $\{y_n\}_{n=1}^{\infty}$ and

$$
\lim_{k \to \infty} d_0(y_{n_k}, x_0) = 0.
$$

Hence, (X_0, d_0) is compact.

We now assume that (X_0, d_0) is compact. Let $\{y_n\}_{n=1}^{\infty}$ be a sequence in *X*. Then $\{y_n\}_{n=1}^{\infty}$ is a sequence in X_0 . The compactness of (X_0, d_0) implies that there exist a subsequence $\{y_{n_k}\}_{k=1}^{\infty}$ of $\{y_n\}_{n=1}^{\infty}$ and a point $y \in X_0$ such that

$$
\lim_{k \to \infty} d_0(y_{n_k}, y) = 0. \tag{2.21}
$$

We claim that $y \neq x_0$. If $y = x_0$, then $d_0(y_{n_k}, y) = \frac{1}{2} \operatorname{diam}(X)$ for all $k \in \mathbb{N}$. Therefore, $\lim_{k\to\infty} d_0(y_{n_k}, y) = \frac{1}{2} \operatorname{diam}(X)$ which contradicts to [\(2.21\)](#page-9-0). Hence, our claim is justified. It follows that $y \in X$ and

$$
\lim_{k \to \infty} d(y_{n_k}, y) = 0.
$$

Therefore, (*X, d*) is compact.

To prove (viii), assume that $lip(X, d)$ separates uniformly the points of *X*. Then there exists a constant $C > 1$ such that, for every $x, y \in X$, there exists a function $f \in \text{lip}(X, d)$ with $\text{L}_{(X,d)}(f) \leq C$ such that $|f(x)$ $f(y)$ = $d(x, y)$. We show that $lip((X_0, d_0), x_0)$ separates uniformly the points of X_0 . To this aim, take $C_0 = 2C$. Let $x, y \in X_0$, We show that there exists a function $g \in \text{lip}((X_0, d_0), x_0)$ with $L_{(X_0, d_0)}(g) \leq C_0$ such that $|g(x) - g(y)| = d_0(x, y)$.

Case 1. $x, y \in X$. Then there exists a function $f \in \text{lip}(X, d)$ with $L_{(X,d)}(f) \leq C$ such that $|f(x) - f(y)| = d(x,y)$. Take $g = f_0 = \Psi(f)$. Then $g \in \text{lip}((X_0, d_0), x_0)$ by (vii). Furthermore,

$$
L_{(X,d)}(g) = L_{(X,d)}(f_0) \le 2L_{(X,d)}(f) \le 2C = C_0,
$$

 $|g(x) - g(y)| = |f_0(x) - f_0(y)| = |f(x) - f(y)| = d(x, y) = d_0(x, y).$

Case 2. $x \in X$, $y = x_0$. Take $f = \frac{1}{2}$ $\frac{1}{2}$ diam(*X*)1_{*X*}. Then $f \in \text{lip}(X, d)$ and $L_{(X,d)}(f) = 0$. Take $g = f_0$. Then $g \in \text{lip}((X_0, d_0), x_0)$ by (vii). Furthermore,

$$
L_{(X_0,d_0)}(g) = L_{(X_0,d_0)}(f_0) \le 2L_{(X,d)}(f) = 0 \le C_0,
$$

$$
|g(x) - g(y)| = |f_0(x) - f_0(y)| = |f_0(x)| = \frac{1}{2} \operatorname{diam}(X) = d_0(x, y).
$$

Case 3. $x = x_0, y \in X$. Take $f = \frac{1}{2}$ $\frac{1}{2}$ diam(*X*)1_{*X*} and $g = f_0$. Then $g \in \text{lip}((X_0, d_0), x_0)$ by (vii). Furthermore,

$$
L_{(X_0,d_0)}(g) = L_{(X_0,d_0)}(f_0) = 2L_{(X,d)}(f) = 0 \le C_0,
$$

$$
|g(x) - g(y)| = |f_0(x) - f_0(y)| = |f_0(y)| = \frac{1}{2} \operatorname{diam}(X) = d_0(x,y).
$$

Case 4. $x = x_0, y = x_0$. Take $g = 0_{X_0}$. Then $g \in \text{lip}((X_0, d_0), x_0)$, $L_{(X_0,d_0)}(g) = 0 \le C_0$ and

$$
|g(x) - g(y)| = |0 - 0| = 0 = d_0(x_0, x_0) = d_0(x, y).
$$

Therefore, $\text{Lip}((X_0, d_0), x_0)$ separates uniformly the points of X. \Box

Theorem 2.7. *Let* (X,d) *be a compact metric space,* $\varphi : X \to X$ *be a Lipschitz mapping from* (X,d) *to* (X,d) *and* $u \in \text{Lip}(X,d)$ *with* $u(x) \neq 0$ *for all* $x \in X$ *. Let* lip (X, d) *separates the points of* X *. If* $T = uC_{\varphi} : \text{Lip}(X, d) \to \text{Lip}(X, d)$ *is weakly compact, then T is compact.*

Proof. Let $x_0 \notin X$, $X_0 = X \cup \{x_0\}$ and $d_0: X_0 \times X_0 \to \mathbb{R}$ be the metric on *X* which is defined in Lemma [2.6](#page-8-0) (i). By Lemma 2.6 (ii), (X_0, d_0) is a compact metric space since (X, d) is compact. Thus, $((X_0, d_0), x_0)$ is a pointed compact metric space with the base point x_0 . For each

K-valued function *f* on *X*, let f_0 be the K-valued function on X_0 defined by $f_0(x) = f(x)$ if $x \in X$ and $f_0(x_0) = 0$. Define the map Ψ : $\text{Lip}(X, d) \to \text{Lip}((X_0, d_0), x_0)$ by $\Psi(f) = f_0$ where $f \in \text{Lip}(X, d)$. According to Lemma [2.6](#page-8-0) (vi), we deduce that Ψ is a bounded linear operator from $\text{Lip}(X, d)$ with the sum norm $\lVert \cdot \rVert_{\text{Lip}(X, d)}$ onto $\text{Lip}((X_0, d_0), x_0)$ with the Lipschitz norm $L_{(X_0,d_0)}(\cdot)$. Let φ_0 be the self-map of X_0 which is defined by $\varphi_0(x) = \varphi(x)$ for $x \in X$ and $\varphi_0(x_0) = x_0$. By Lemma [2.6](#page-8-0) (iii), φ_0 is a Lipschitz mapping from (X_0, d_0) to (X_0, d_0) with $\varphi_0(x_0) = x_0$. Take $T_0 = u_0 C_{\varphi_0}$. Then T_0 is a weighted composition operator on $Lip((X_0,d_0),x_0)$. It is easy to see that

$$
\Psi \circ T = T_0 \circ \Psi. \tag{2.22}
$$

Let $T = uC_\varphi$ be compact. By [\[5,](#page-12-1) Theorem VI.4.5], we deduce that $\Psi \circ T$ is a weakly compact operator from $\text{Lip}(X, d)$ with the sum norm $\|\cdot\|_{\text{Lip}(X,d)}$ to $\text{Lip}((X_0,d_0),x_0)$ with the Lipschitz norm $\text{L}_{(X_0,d_0)}(\cdot)$. Again, by [\[5,](#page-12-1) Theorem VI.4.5], we deduce that $\Psi \circ T \circ \Psi^{-1}$ is a weakly compact operator on $\text{Lip}((X_0, d_0), x_0)$ with the Lipschitz norm $\text{L}_{(X_0, d_0)}(\cdot)$. By Lemma [2.6](#page-8-0)(viii), $lip((X_0, d_0), x_0)$ separates uniformly the points of X_0 since $lip(X, d)$ separates uniformly the points of X. According to Theorem [2.4,](#page-5-4) we deduce that the weighted composition operator $T_0 = u_0 C_{\varphi_0}$ is a compact operator on $\text{Lip}((X_0, d_0), x_0)$ with the Lipschitz norm $L_{(X_0,d_0)}(\cdot)$. By [\[5,](#page-12-1) Theorem VI.5.4], $T_0 \circ \Psi$ is a compact operator from $\text{Lip}((X_0, d_0), x_0)$ with the Lipschitz norm $\text{L}_{(X_0, d_0)}(\cdot)$ to Lip(*X*, *d*) with the sum norm $\|\cdot\|_{\text{Lip}(X,d)}$. Again by [\[5,](#page-12-1) Theorem VI.5.4], we conclude that $\Psi^{-1} \circ T_0 \circ \Psi$ is a compact operator on Lip(*X, d*) with the sum norm $\lVert \cdot \rVert_{\text{Lip}(X,d)}$. Therefore, according to ([2.22](#page-11-0)) we conclude that $T = uC_{\varphi}$ is compact. \square

As an application of Theorem [2.7,](#page-10-0) we give a weighted composition operator on a Lipschitz algebra $Lip(X, d)$ which is not weakly compact.

Example 2.8. Let $X = \{z \in \mathbb{C} : |z| \leq 2\}$, ρ be the Euclidean metric on *X*, $\alpha \in (0,1)$ and *d* be the metric ρ^{α} on *X*. Then $lip(X, d)$ separates uniformly the points of *X*. Define the function $u: X \to \mathbb{C}$ by $u(z) = e^{|z|}$, $z \in X$, and the self-map φ of *X* by $\varphi(z) = \frac{z}{3}$, $z \in X$. Then $u \in \text{Lip}(X, d)$, $u(z) \neq 0$ for all $z \in X$ and φ is a Lipschitz mapping from (X, d) to (X, d) . Since

$$
|u(z)|\frac{d(\varphi(z),\varphi(w))}{d(z,w)}=|e^{|z|}|\frac{|\frac{z}{3}-\frac{w}{3}|^\alpha}{|z-w|^\alpha}=e^{|z|}3^{-\alpha}\leq e^23^{-\alpha}
$$

for all $z, w \in X$ with $z \neq w$, by [\[1,](#page-12-2) Theorem 2.4] we deduce that $T = uC_{\varphi}$ is a weighted composition operator on Lip(*X, d*). In addition, $\varphi(\text{coz}(u)) = \varphi(X) = \{z \in X : |z| \leq \frac{2}{3}\}$ which implies that $\varphi(\text{coz}(u))$ is a totally bounded set in (X, d) . It is easy to see that

$$
|u(z)|\frac{d(\varphi(z), \varphi(w))}{d(z, w)} \ge 3^{-\alpha}
$$

for all $z, w \in X$ with $z \neq w$. It follows that

$$
\lim_{d(z,w)\to 0} u(z) \frac{d(\varphi(z), \varphi(w))}{d(z,w)} \neq 0.
$$

Therefore, $T = uC_{\varphi}$ is not compact by [\[1,](#page-12-2) Theorem 4.6]. According to Theorem [2.7](#page-10-0), we deduce that *T* is not weakly compact.

Acknowledgment. The authors would like to thank the referee for carefully reading the paper and his/her valuable comments and suggestions.

REFERENCES

- [1] D. Alimohammadi and S. Daneshmand, Weighted composition operators between Lipschitz algebras of complex-valued bounded functions, Caspian J. Math. Sci. **9**(1) (2020), 100-123.
- [2] Sh. Behrouzi, A. Golbaharan and H. Mahyar, Weighted composition operators between pointed Lipschitz spaces, Results in Mathematics **77**(4) (2022), 1-16.
- [3] J.B. Conway, A Course in Functional Analysis, Springer, New York, 1990.
- [4] S. Daneshmand and D. Alimohammadi, Weighted composition operators between Lipschitz spaces on pointed metric spaces, Operators and Matrices **13**(2) (2019), 545-561.
- [5] N. Dunford and J.T. Schwartz, Linear Operators, Part I, General Theory, Interscience Publishers. New York, 1958.
- [6] A. Golbaharan, Weakly compact weighted composition operators on spaces of Lipschitz functions, Positivity **22**(5) (2018), 1265-1268.
- [7] A. Golbaharan and H. Mahyar, Weighted composition operators on Lipschitz algebras, Houston J. Math. **42**(3) (2016), 905-917.
- [8] A. Jiménez-Vargas, Weakly compact composition operators on spaces of Lipschitz functions, Positivity **19**(4) (2015), 807-815.
- [9] A. Jiménez-Vargas and M. Villegas-Vallecillos, Compact composition operators on noncompact Lipschitz spaces, J. Math. Anal. Appl. **398**(1) (2013), 221-229.
- [10] N. Weaver, Lipschitz algebras, Second Edition, World Scientific, New Jersey, 2018.