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Abstract. In this article, a numerical scheme is constructed to
approximate the generalized fractional Volterra integro-differential
equations with the regularized Prabhakar derivative. The solution
of the problem is represented in the form of inverse Laplace trans-
form in the complex plane. Then, we select the parabolic contour
as an optimal contour and use trapezoidal rule to approximate the
inverse Laplace transform. Next, the performance of the numerical
scheme is implemented for an example. Further, we obtain the ab-
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high order accuracy.
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1. Introduction

The fractional Volterra integro-differential equations have many applica-
tions in physics, engineering, economics, diffusion problems. Since the
exact solutions of fractional Volterra integro-differential equations are
difficult in many cases, so numerical methods are proposed to obtain
the solution of these types of equations [3, 2, 23, 24, 25, 27, 28, 39].
From another point of view, some authors [17, 29, 38] generalized the
Riemann-Liouville (Caputo) fractional integral and derivative to the
Prabhakar fractional integral and derivative with the generalized Mittag-
Leffler function [38] in kernel. The Prabhakar fractional derivative has
fundamental applications in the applied mathematics [4, 9, 10, 11, 13,
17, 37], the time-evolution of polarization processes [17, 18, 22, 37], the
fractional Poisson process [17], the fractional Maxwell model in linear
viscoelasticity [20], the generalized model of particle deposition in porous
media [46] and the generalized reaction-diffusion equations [1]. The great
importance for considering the Prabhakar fractional derivative and in-
tegral is related to the description of relaxation and response in the
anomalous dielectrics of the Havriliak-Negami models [16, 19, 32, 35].
Our aim in this work is to propose a numerical scheme to approximate
the generalized fractional Volterra integro-differential equations (GF-
VIDEs) with the regularized Prabhakar fractional derivative. To this
end, we construct the numerical method based on the Laplace trans-
form. Then, we get the solution of GFVIDEs in the sense of contour
integral in the complex plane by applying the Laplace transform. Next,
we select the parabolic contour and use the trapezoidal rule with equal
step size to approximate this integral. Finally, the performance of the
numerical method is tested for an example. The structure of this arti-
cle is as follows. In Section 2, we state some materials in generalized
fractional calculus. In Section 3, numerical method to approximate the
GFVIDEs with the regularized Prabhakar fractional derivative is pro-
posed. In Section 4, we give an example to show absolute errors for
various parameters by using our numerical scheme on parabolic contour.

2. Preliminaries

In year 1971, Prabhakar introduced the generalized Mittag-Leffler
function on his study on singular integral equations as follows [38]

Eγ
ρ,µ(z) =

∞∑
k=0

(γ)k
Γ(ρk + µ)

zk

k!
, (2.1)

where γ, ρ, µ ∈ C, ℜ(ρ) > 0, ℜ(µ) > 0. Also, (γ)k is the Pochhammer
symbol [7]
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(γ)0 = 1,

(γ)k = γ(γ + 1)...(γ + k − 1), k = 1, 2, · · · .
For γ = 1, we get the two-parameter Mittag-Leffler function Eρ,µ(z)
defined by

Eρ,µ(z) := E1
ρ,µ(z) =

∞∑
k=0

zk

Γ(ρk + µ)
, ρ, µ ∈ C,ℜ(ρ) > 0, (2.2)

in addition, for γ = µ = 1, this function coincides with the classical
Mittag-Leffler function Eρ(z) [34]

Eρ(z) := E1
ρ,1(z) =

∞∑
k=0

zk

Γ(ρk + 1)
, ρ ∈ C,ℜ(ρ) > 0. (2.3)

Recently, some researchers have established many contributions on the
generalized Mittag-Leffler function, especially in the theory of fractional
calculus, and have detected some of its applications in the physics. For
example, new definitions of generalized fractional derivatives were in-
troduced and solutions of the Cauchy-type initial and boundary value
problems were expressed in terms of the generalized Mittag-Leffler func-
tion [14, 17, 26, 29, 30, 31, 42, 43]. Also, the Mittag-Leffler function
and many different generalizations have been calculated in the whole
complex plane [26, 40]. The main conclusions in the classical theory of
Mittag-Leffler functions are given by Erdélyi in the handbook [8] and
the new conclusions are presented by Dzherbashyan [6]. See more details
of the generalized Mittag-Leffler function in [5, 12, 15, 37, 40, 41].

Definition 2.1. For f ∈ L1[0, b], the Prabhakar fractional integral op-
erator with the generalized Mittag-Leffler function in its kernel is defined
as follows [17]

Eγ
ρ,µ,ω,0+f(x) =

∫ x

0
(x−u)µ−1Eγ

ρ,µ

(
ω(x−u)ρ

)
f(u)du, 0 < x < b ≤ ∞.

(2.4)

Remark 2.2. We note that for γ = 0, the Prabhakar fractional integral
operator (2.4) coincides with the Riemann-Liouville fractional integral
of order µ as

E0
ρ,µ,ω,0+f = Iµ0+f, (2.5)

where the Riemann-Liouville fractional integral of order µ is defined as
[30, 36]

Iµ0+f(x) =
1

Γ(µ)

∫ x

0

f(ξ)

(x− ξ)1−µ
dξ, µ > 0, f ∈ L1[0, b], 0 < x < b ≤ ∞.

(2.6)
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Definition 2.3. Let f ∈ L1[0, b], 0 < x < b ≤ ∞. The Prabhakar
fractional derivative is defined by [17]

Dγ
ρ,µ,ω,0+f(x) =

dm

dxm
E−γ

ρ,m−µ,ω,0+f(x), (2.7)

where ρ, µ, ω, γ ∈ C,ℜ(ρ),ℜ(µ) > 0. Also, its regularized Caputo coun-
terpart (the regularized Prabhakar fractional derivative) for f ∈ ACm[o, b],
0 < x < b < ∞, is given by

CDγ
ρ,µ,ω,0+f(x) = E−γ

ρ,m−µ,ω,0+

dm

dxm
f(x)

= Dγ
ρ,µ,ω,0+f(x)−

m−1∑
k=0

xk−µE−γ
ρ,k−µ+1(ωx

ρ)f (k)(0+),

(2.8)

where ρ, µ, ω, γ ∈ C,ℜ(ρ),ℜ(µ) > 0. The notation ACm[0, b] is the space
of real-valued functions f(x) with continuous derivatives up to order
m − 1 on [0, b] such that f (m−1)(x) belongs to the space of absolutely
continuous functions AC[0, b]:

ACm[0, b] =
{
f : [0, b] → R :

dm−1

dxm−1
f(x) ∈ AC[0, b]

}
.

Remark 2.4. It is obvious that the Prabhakar fractional derivative (2.7)
and the regularized Prabhakar fractional derivative (2.8) generalize the
Riemann-Liouville and the Caputo fractional derivatives of order µ, re-
spectively, i.e., for γ = 0 we have

D0
ρ,µ,ω,0+f = Dµ

0+f,

CD0
ρ,µ,ω,0+f = CDµ

0+f,

where the Riemann-Liouville and the Caputo fractional derivatives of
order µ (m− 1 < µ < m, m ∈ Z) are defined as follows [30, 36]

Dµ
0+f(x) =

1

Γ(m− µ)

dm

dxm

∫ x

0
(x− ξ)m−1−µf(ξ)dξ, x > 0. (2.9)

CDµ
0+f(x) = Im−µ

0+

dm

dxm
f(x) =

1

Γ(m− µ)

∫ x

0
(x− ξ)m−1−µ dm

dξm
f(ξ)dξ.

(2.10)

Lemma 2.5. The Laplace transform of the generalized Mittag-Leffler
function (2.1) has the following form [38]

L
[
xµ−1Eγ

ρ,µ(ωx
ρ)
]
(s) = s−µ(1− ωs−ρ)−γ , |ωs−ρ| < 1, (2.11)

where γ, ρ, µ, ω, s ∈ C and ℜ(µ) > 0, ℜ(s) > 0.
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3. Numerical approximation of the GFVIDEs

Consider the following GFVIDEs with the regularized Prabhakar frac-
tional derivative

CDγ
ρ,µ,ω,0+f(t) = g(t) +

∫ t

0
k(t, τ)f(τ)dτ, m− 1 ≤ α < m, m ∈ N.

(3.1)
For the convolution type of equation (3.1), the kernel will be of the form
k(t, τ) = k(t− τ). Therefore, the equation (3.1) becomes

CDγ
ρ,µ,ω,0+f(t) = g(t) +

∫ t

0
k(t− τ)f(τ)dτ. (3.2)

By taking the Laplace transform on the both side of (3.2) with respect
to t, we have

L{CDγ
ρ,µ,ω,0+f(t); t → s} = L{g(t); t → s}+L{

∫ t

0
k(t−τ)f(τ)dτ ; t → s}.

(3.3)
By using the convolution theorem and the Laplace transform of the
generalized Mittag-Leffler function, we obtain the left hand side of the
above relation as follows

L{CDγ
ρ,µ,ω,0+f(x); s} = L{E−γ

ρ,m−µ,ω,0+

dm

dxm
f(x); s}

= L{xm−µ−1E−γ
ρ,m−µ(ωx

ρ)}L{ dm

dxm
f(x); s}

= sµ−m(1− ωs−ρ)γ
[
smF (s)−

m−1∑
k=0

sm−k−1f (k)(0)
]

= sµ(1− ωs−ρ)γF (s)−
m−1∑
k=0

sµ−k−1(1− ωs−ρ)γf (k)(0).

So, we rewrite (3.3) as

sµ(1− ωs−ρ)γF (s) =
m−1∑
k=0

sµ−k−1(1− ωs−ρ)γf (k)(0) +G(s) +K(s)F (s),

(3.4)

where

F (s) = L{f(t); s}, G(s) = L{g(t); s} K(s) = L{k(t); s}.
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Finally, we get

F (s) =
G(s)

sµ(1− ωs−ρ)γ −K(s)

+

∑m−1
k=0 sµ−k−1(1− ωs−ρ)γf (k)(0)

sµ(1− ωs−ρ)γ −K(s)
. (3.5)

By taking the inverse Laplace, the problem reduces to compute the
following integral in the complex plane

f(t) =
1

2πi

∫ c+i∞

c−i∞
F (s)estds. (3.6)

The numerical method for the inversion of Laplace transform is based
on the approximation of the Bromwich complex contour integral. We
select the contour of integration to approximate the path from c − i∞
to c+ i∞. To this end we consider the parabolic contour [44, 45]. The
parametric equation of parabolic contour is given by [33, 44, 45]

s = β
(
(1− c)2 − ζ2

)
+ 2iβζ(1− c), −∞ < ζ < +∞, (3.7)

where β and c are parameters and need to be optimized for better ac-
curacy. More details about the parabolic contour are given in [33, 45].
The numerical solution can be represented in the following form

f(t) = L−1{F (s); s → t} =
1

2πi

∫
Γ
F (s(ζ))es(ζ)ts′(ζ)ds. (3.8)

If we use equal weight quadrature rule, i.e the trapezoidal rule with the
step size h, then the equation (3.8) can be approximated as

fN (t) =
h

2πi

N∑
j=−N

F (s(ζj))e
s(ζj)ts′(ζj), 1 < α < 2, ζj = jh. (3.9)

4. Example

Consider the following GFVIDEs

CDγ
ρ,µ,ω,0+f(t) = tµ−1Eγ

ρ,µ(ωt
ρ) +

∫ t

0
(t− τ)µ−1Eγ

ρ,µ(ω(t− τ)ρ)f(τ)dτ,

(4.1)

with the initial condition f(0) = 0. Where ρ, ω, γ ∈ R and µ ∈ (0, 1).
The exact solution of the GFVIDEs (4.1) is

f(t) =
∞∑
i=0

t2µ(i+1)−1E
2γ(i+1)
ρ,2µ(i+1)(ωt

ρ). (4.2)
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To give the approximate solution of the GFVIDEs (4.1), we use the pre-
sented numerical scheme. By applying the Laplace transform to equa-
tion (4.1) with respect to t, we have

sµ(1− ωs−ρ)γF (s) = sµ−1(1− ωs−ρ)γf(0)

+ s−µ(1− ωs−ρ)−γ + s−µ(1− ωs−ρ)−γF (s).

The initial condition f(0) = 0 yields

F (s) =
s−µ(1− ωs−ρ)−γ

sµ(1− ωs−ρ)γ − s−µ(1− ωs−ρ)−γ

=
s−2µ(1− ωs−ρ)−2γ

1− s−2µ(1− ωs−ρ)−2γ
, ρ, ω, γ ∈ R, 0 < µ < 1. (4.3)

From the above equation and the relation (3.9), we get the approximate
solution as

fN (t) =
h

2πi

N∑
j=−N

(s(ζj))
−2µ(1− ω(s(ζj))

−ρ)−2γ

1− (s(ζj))−2µ(1− ω(s(ζj))−ρ)−2γ
es(ζj)ts′(ζj),

where ζj = jh. For our numerical experiments, we choose the param-
eters such that the absolute error has the least value. So, we take the
parameters as follows

c = 0.3, h =
3

N
, β =

πN

12t
.

Table (1) and Figures (1)-(5) show the absolute errors for approximate
solution of the GFVIDEs (4.1). Figure (1) shows the absolute errors
for N = 100, γ = 2.5, ρ = 0.1, ω = −45 and various µ. Figures (2)-
(4) show the absolute errors along the change of γ, µ, ω for N = 100
and t = 0.01. Figure (5) indicates absolute error for γ = 2.5, ρ = 0.1,
ω = −45, µ = 0.75 and different N .

5. Conclusion

In this article, we constructed a numerical scheme to approximate the
GFVIDEs with the regularized Prabhakar fractional derivative. The
proposed numerical method is based on the Laplace transform and the
quadrature rule. Then, we performed the proposed method for an exam-
ple and showed the absolute value errors for approximating the solution
of GFVIDEs.



196 Shiva Eshaghi

N t γ ρ µ ω Absolute error
20 0.1 0.2 0.1 0.99 -1 1.9514e-11
30 0.1 0.2 0.1 0.99 -1 4.1930e-17
40 0.1 0.2 0.1 0.99 -1 1.1110e-16
50 0.1 0.2 0.1 0.99 -1 3.8858e-16
100 0.1 0.2 0.1 0.99 -1 3.0341e-14
100 1 0.2 0.1 0.99 -1 4.9028e-14
100 0.01 0.2 0.1 0.99 -1 1.1645e-14
100 0.01 1.5 0.1 0.99 -1 4.2241e-15
100 0.01 2.5 0.1 0.99 -1 2.1133e-15
100 0.01 2.5 0.2 0.99 -1 3.7637e-15
100 0.01 2.5 0.4 0.99 -1 1.1763e-14
100 0.01 2.5 0.1 0.95 -1 3.6462e-15
100 0.01 2.5 0.1 0.75 -1 8.6063e-14
100 0.01 2.5 0.1 0.75 -0.1 3.0590e-13
100 0.01 2.5 0.1 0.75 -10 5.0779e-17
100 0.01 2.5 0.1 0.75 -45 8.1248e-20

Table 1. Absolute errors of the GFVIDEs (4.1) using
our numerical scheme and the parabolic contour.
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