Caspian Journal of Mathematical Sciences (CJMS) University of Mazandaran, Iran <http://cjms.journals.umz.ac.ir> <https://doi.org/10.22080/CJMS.2023.25757.1664>

Caspian J Math Sci. **13**(1)(2024), 38-48 (RESEARCH ARTICLE)

Totally synchronizing generated system

Manouchehr Shahamat 1 1 and Ali Ganjbakhsh Sanatee 2 ¹ Department of Mathematics, Dezful branch, Islamic Azad University, Dezful, Iran. ² Faculty of Mathematical Sciences, Department of Mathematics, University of Quchan.

> Abstract. We introduce the notion of a minimal generator *G* for the coded system *X*; that is a generator for coded system *X* whenever $u \in G$, then $u \notin W(\overline{<} G \setminus \{u\} >)$. Such an X is called *minimally generated system*. We aim to introduce a class of minimally generated subshifts generated by some certain synchronizing blocks. These systems are precisely the tool that will enable us to show that for such subshifts *X*, each $x \in X$ can be written uniquely as $x = \ldots v_{-1}v_0v_1v_2\ldots$, where { $\ldots, v_{-1}, v_0, v_1, v_2, \ldots$ } ∈ *G*. Shows that the converse of that theorem isn't necessarily true. We will show which of the components of the Kreiger graph of such a subshift could be a candidate to be suitable for a Fischer cover.

> Keywords: Coded System, Strong Synchronizing, Minimal Generator.

2000 Mathematics subject classification: 37B10, 37B40, 54H20.

¹Corresponding author: m.shahamat@iaud.ac.ir Received: 22 July 2023

Revised: 22 September 2023

Accepted: 23 September 2023

How to Cite: Shahamat, Manouchehr; Ganjbakhsh Sanatee, Ali. Totally synchronizing generated system, Casp.J. Math. Sci.,**13**(1)(2024), 38-48.

This work is licensed under a Creative Commons Attribution 4.0 International License.

 $\overline{\mathbb{C}}$ Copyright \odot 2023 by University of Mazandaran. Subbmited for possible open access publication under the terms and conditions of the Creative Commons Attribution(CC BY) license(https://craetivecommons.org/licenses/by/4.0/)

³⁸

1. Introduction

One of the most studied dynamical systems is a subshift of finite type (SFT). SFT *X* is a system whose set of forbidden blocks is finite [\[7\]](#page-10-0); or equivalently, *X* is SFT iff there is $M \in \mathbb{N}$ such that any block of length greater than *M* is synchronizing. Recall that a block *m* is synchronizing if whenever v_1m and mv_2 are both blocks of *X*, then v_1mv_2 is a block of *X* as well. If an irreducible system has at least one synchronizing block, then it is called a *synchronized system* and examples are *sofics* where they are factors of SFT's. Synchronized systems, has attracted much attention and extension of them has been of interest since that notion was introduced [\[3\]](#page-10-1). One was via *half synchronized systems*; that is, systems having *half synchronizing* blocks. In fact, if for a left transitive point such as *rm* and *mv* any block in *X* one has a gain rm \in X^- = $\{x_- := \cdots x_{-1}x_0 : x = \cdots x_{-1}x_0x_1 \cdots \in X\}$, then *m* is called half synchronizing [\[3](#page-10-1)]. Clearly any synchronized system is half synchronized. Dyke (or Dyck!) subshifts and certain *β*-shifts are non-synchronized but half synchronized systems [[8](#page-10-2)]. Here in Section (3), we will introduce the notion of a *totally synchronizing generated system*, generated by *G* such that all blocks in *G* are synchronizing. These systems enable us to show that for such subshifts *X*, if $x \in X$, then there is unique $\{..., v_{-1}, v_0, v_1, v_2, ...\}$ ∈ *G* such that $x = ... v_{-1}v_0v_1v_2...$ In 1992, Fiebigs in [[3](#page-10-1)], as an extension to the Fischer cover of a synchronized system, introduced a unique component of the Kreiger graph as the Fischer cover of a half synchronized subshift. In Section (4), give another right resolving and follower separated cover for *X*, denoted by \mathcal{H}_G which is not necessarily Fischer cover of *X* and gives a sufficient condition on a minimal generator *G* that the cover \mathcal{H}_G be Fischer coverand gives a sufficient condition on a minimal generator G that the cover \mathcal{H}_G be Fischer cover.

2. Background and definitions

Let *A* be a non empty finite set. The full shift *A*-shift $(A^{\mathbb{Z}})$, is the collection of all bi-infinite sequences of symbols in *A*. A *block* is a finite sequence of symbols. The *shift map* σ on the $\mathcal{A}^{\mathbb{Z}}$ maps a point x to the point $y = \sigma(x)$ whose *i*-th coordinate is $y_i = x_{i+1}$. Let F be the collection of all forbidden blocks over \mathcal{A} [\[11](#page-10-3)]. For a $\mathcal{A}^{\mathbb{Z}}$, set $X_{\mathcal{F}}$ to be the collection of sequences in $\mathcal{A}^{\mathbb{Z}}$ not containing any block from \mathcal{F} . A *shift space* or *subshift* is a subset *X* of a full shift such that $X = X_F$ for some subset *F*.

Let $W_n(X)$ be the set of all admissible *n*-blocks. A subshift X is *irreducible* if for every blocks $u_1, u_2 \in W(X)$ there is a block $u \in W(X)$

such that $u_1 u u_2 \in W(X)$. A shift of *sofic* is the image of an SFT by a factor code [[12\]](#page-10-4).

Let $\mathcal{E}(G)$ be the set of vertices and $\mathcal{V}(G)$ be the set of *edge shift* for a graph *G*. Suppoze that X_G to be

$$
\{(\xi_i)_{i\in\mathbb{Z}}\in\mathcal{E}^{\mathbb{Z}}:t(\xi_i)=i(\xi_{i+1})\}
$$

where $i(e)$ and $t(e)$ are initiate and terminate vertex of edge e . A labeled graph is a pair $\mathcal{G} = (G, \mathcal{L})$, where $\mathcal E$ is edge set for graph G and $\mathcal L$ is the labeling $\mathcal{L} : \mathcal{E}(G) \to \mathcal{A}$.

Let $\mathcal{L}_{\infty}(\xi)$ be the sequence of bi-infinite labels of a bi-infinite path ξ in *G*. Set

$$
X_{\mathcal{G}} := \{ \mathcal{L}_{\infty}(\xi) : \ \xi \in X_G \} = \mathcal{L}_{\infty}(X_G).
$$

We say *G* is a *presentation* or *cover* of $X = \overline{X_g}$.

Let *X* be a subshift and $x \in X$. Set $w_+(x_-) = \{x_+ \in X^+ : x_- x_+ \in$ *X*} and for *m* ∈ *W*(*X*) set $w_+(m) = \{x_+ \in X^+ : mx_+ \in X^+\}$. Analogously, we define predecessor sets *w−*(*x*+) and *w−*(*m*). Consider the collection of all $w_+(x_-)$ as the set of vertices of a graph. There is an edge labeled *a* from I_1 to I_2 if and only if there is an $x_-\$ such that $x-a \in X^-$ and $I_1 = w_+(x_-), I_2 = w_+(x_-a)$. This graph is called the *Krieger graph* for *X*. For synchronized system *X* with synchronizing *m*, the irreducible component of the Krieger graph containing $w_+(m)$ is denoted by X_0^+ and is called the *Fischer cover* of *X* [\[5\]](#page-10-5).

3. minimal generator

A coded system is a shift space that can be presented by an irreducible countable labeled graph [[7](#page-10-0)].

Definition 3.1. [[10\]](#page-10-6) Let *G* be a generator for coded system *X*. Then, *G* is called *minimal* (resp. *weak minimal*), whenever $u \in G$, then $u \notin$ *W*(*Z*), (resp. $X \neq Z$) where $Z = \langle G \setminus \{u\} \rangle$. Such an *X* is called *minimally* (resp. *weak minimally*) generated system.

Example 3.2. Let $\emptyset \neq S \subseteq \mathbb{N}$. Then, $G := \{10^n1 : n \in S\}$ is a minimal generator for subshift $X := \overline{\langle G \rangle}$.

- **Theorem 3.3.** *(1) The shift space X has a minimal (resp. minimal weak) generator if and only if X−*¹ *has so.*
	- *(2) Let G be a minimal (resp. minimal weak) generator for product shift space* $X_1 \times X_2$ *. Then,* X_i *has minimal (resp. minimal weak) generator as well for* $i = 1, 2$ *.*

Proof. Note that *G* is a minimal (resp. minimal weak) generator for *X*, t hen $G^{-1} := \{v^{-1} = v_i v_{i-1} \dots v_1 : v = v_1 \dots v_{i-1} v_i \in G\}$ is a minimal (resp. minimal weak) generator for *X−*¹ . This proves part (*i*).

(*ii*) Set
$$
G := \{v_1^1 \times v_1^2, v_2^1 \times v_2^2, ...\}
$$
 and let $i \in \{1, 2\}$. We claim that

$$
G_i := \{v_j^i : j \in \mathbb{N}\}
$$

is a minimal (resp. minimal weak) generator for X_i . Since $X_1 \times X_2 =$ $\overline{< G >}$, so $X_i = \overline{< G_i >}$ is trivial. It suffice to show that for any $v_j^i \in G_i$, $v_j^i \notin W(\overline{}).$

If $v_j^i \in W(< G_i \setminus \{v_j^i\}>)$, then there is $\{v_{j_1}^i, v_{j_2}^i, \ldots v_{j_l}^i\} \subseteq G_i$ such that for $1 \leq k \leq l$, we have $v_j^i \subseteq v_{j_1}^i \dots v_{j_l}^i$ and $v_j^i \neq v_{j_k}^i$. This show that

$$
v_j^1 \times v_j^2 \in W(\overline{)
$$

That is absurd. \Box

Definition 3.4. [\[9\]](#page-10-7) Let *X* be a synchronized system. We call a block *m* an *strong synchronizing* for *X* if whenever *e, e′* are finite paths in Fischer cover X_0^+ labeled *m*, then $e = e'$.

An irreducible shift space with a strong synchronizing block is called *strong synchronized*. Any strong synchronized system is synchronized. we will show that every strong synchronized system is weak minimally system. First, let *X* be a strong synchronized system and $S_t(X)$ (resp. $S(X)$) denote the set of all strong synchronizing (resp. synchronizing) blocks for *X*.

Theorem 3.5. *Let X be a strong synchronized system with generator G. Suppoze there is* $m \in S_t(X) \cap G$ *such that for all* $u \in G$ *, there are not non empty blocks* a, b *such that* $vu = avb$ *or* $uv = avb$ *. Then,* X *has a weak minimal generator.*

Proof. Pick $m \in S_t(X)$ and let π_m be a unique path in Fischer cover X_0^+ such that $\mathcal{L}(\pi_m) = m$. Set $i(\pi_m) := I$, $t(\pi_m) := J$ and

$$
G_m := \{ ma : \text{ } \text{mam} \in W(X) \text{ and } m \not\subseteq a \}. \tag{3.1}
$$

We claim that G_m is a weak minimal generator for *X*. Clearly $X =$ $\overline{< G_m >}$ and so G_m is a generator for *X*. Thus it suffices to show that for all $ma \in G_m$, $X \neq Z$ where $Z = \langle G_m \setminus \{ma\} \rangle$. Pick $ma_0 \in G_m$. Thus $ma_0m \in W(X)$ and so there is a path π_{a_0} in Fischer cover X_0^+ with initial vertex *J* and terminal vertex *I*. Figure [1.](#page-4-0) Note that if π be a finite path in X_0^+ labeled ma_0m , then $\pi = \pi_m \pi_{a_0} \pi_m$ and so if $ma_0m \subseteq ma_1ma_2 \dots ma_k$, then there is $1 \leq i \leq k$ such that $a_0 = a_i$. Hence $ma_0m \notin W(Z)$ and we are done.

The next example shows that the converse of theorem [3.5](#page-3-0) does not hold.

FIGURE 1. The subgraph of X_0^+ .

- **Example 3.6.** (1) Pick $S \subseteq \mathbb{N} \cup \{0\}$ such that $0 \in S$. Set $G :=$ ${10^n : n \in S}$ and claim that *G* is a weak minimal generator for *S*-gap shift *X*(*S*). For all $n \in S$, $(10^n1)^\infty \notin \overline{}$ and so $\overline{\langle G \rangle} \neq \overline{\langle G \setminus \{10^n\}\rangle}$. Also $\overline{\langle G \rangle} = X(S)$ is trivial and we are done.
	- (2) Let *D* be the Dyke subshift. Add a symbol *∗* to the set of brackets. Let *X* be the shift space which consists of all sequences of these five symbols such that any finite subblock which doesn't contain a *∗* obeys the rules of standard bracket [\[8\]](#page-10-2). Then, *X* is not a strong synchronized system [[9](#page-10-7)].

It is easy to see that It is easily to see that

 $G_* = \{ *u : * \notin u \in W(X) \}$

is a weak minimal generator for *X* and we are done.

Note that if $m \in S_t(X)$ and $m^2 \in W(X)$, then G_m as in ([3.1\)](#page-3-1) is a minimal generator for *X* if and only if $G_m = \{m\}$.

Theorem 3.7. *Let* X *be a strong synchronized system and* $m \in S_t(X)$ *such that* $m^2 \notin W(X)$. Then, G_m *as in* ([3.1\)](#page-3-1) *is a minimal generator for X if and only if all cycles in the Fischer cover* X_0^+ *meeting* $I := i(\pi_m)$ *, passes over m.*

Proof. Let G_m be a minimal generator for X and let there is a cycle *C* passing through $I := i(\pi_m)$ and labeled *u* such that $m \nsubseteq u$. Pick a finite path π_{u_0} in X_0^+ with initial vertex $J := i(\pi_m)$ and terminal vertex *I* such that $m \nsubseteq u_0$ as in Figure [5.](#page-8-0) Then, mu_0 , $mu_0 u \in G_m$ such that $mu_0 \subseteq mu_0 u$ that is absurd.

Conversely, let all cycles in X_0^+ that passing through *I*, containing *m*. Pick $ma_0 \in G_m$. If $ma_0 \subseteq ma_1 \dots ma_k$ for some $1 \leq i \leq k$, then there are $1 \leq i \leq k$ and $u_i \in W(X)$ such that $ma_i = ma_0u_i$. Let $u_i \neq \varepsilon$. But $i(\pi_{u_i}) = t(\pi_{a_0}) = I = t(\pi_{a_i}) = t(\pi_{u_i})$, so there is a cycle labeled u_i and passing through *I* such that $m \nsubseteq u_i$. That is absurd and so u_i is the empty block and so $ma_i = ma_0$. This means that G_m is a minimal generator for X . \Box

The next example shows that the hypothesis of Theorem [3.7](#page-4-1) can not be weakened to synchronized system.

FIGURE 2. The grapg *H* for the cover of a synchronized system such that G_m is not a minimal generator for X_H .

Example 3.8. Let *H* be the graph as in Figure [2](#page-5-0) and $X = X_H$. Then, $m := 101$ is a synchronizing block of *X* such that $m \notin S_t(X)$ and

G^m = *{m*0*, m*010*, m*012*, m*01210*, m*2*, m*210*}.*

Pick $a := 210$ and $a_1 := 01210$. Then, $ma \subseteq 10ma = ma_1$ and so $ma \in W(Z)$ where $Z = \overline{\langle G_m \setminus \{ma\} \rangle}$. Thus G_m is not a minimal generator for *X*. But all cycles in the Fischer cover $X_0^+ = H$ meeting $I := i(\pi_m)$, passes over *m*.

Note that if $m \in S(X)$ and $m \subseteq u$, then $u \in S(X)$. But it is not true when $m \in S_t(X)$. This fact can be seen by the fact that in Figure [2](#page-5-0), $2 \in S_t(X)$ but $0.12 \notin S_t(X)$.

Let *G* be a minimal generator for a subshift *X*. Set G_{ts} denote the set of all $v \in G$ such that for all $u \in G$, there are not non empty blocks *a, b* such that $vu = avb$ or $uv = avb$.

Theorem 3.9. *Let G be a minimal generator of* $X \subseteq A^{\mathbb{Z}}$ *and* $v :=$ $v_1v_2...v_n \in G$ *. Then,* $v \in G$ *ts if and only if for each* $u \in G$ *,* $v \nsubseteq G$ $v_2 \ldots v_n u$ and $v \not\subseteq uv_1v_2 \ldots v_{n-1}$.

Proof. Suppose that $v \in G$ _{ts} and let there is a block $u = u_1 u_2 \ldots u_k \in G$ such that $v \subseteq v_2 \dots v_n u$. Then, $v = v_{n'} \dots v_n u_1 u_2 \dots u_{n'-1}$ such that $n' > 1$. Also

 $vu = v_1v_2 \ldots v_{n'-1}v_{n'} \ldots v_nu_1u_2 \ldots u_{n'-1}u_{n'}u_{n'+1} \ldots u_k.$

Set $a := v_1 v_2 \ldots v_{n'-1}$ and $b := u_{n'} u_{n'+1} \ldots u_k$. Then, $vu = avb$ that is absurd.

Conversely, suppose that for each $u \in G$, $v \nsubseteq v_2 \ldots v_n u$ and $v \nsubseteq$ $uv_1v_2 \ldots v_{n-1}$. Also let there is a block $u = u_1u_2 \ldots u_k \in G$ such that $vu = avb$ for some non empty blocks $a = a_1 a_2 \dots a_i, b = b_1 b_2 \dots b_j$. Then,

$$
v_1v_2\ldots v_iv_{i+1}\ldots v_nu_1u_2\ldots u_k=a_1a_2\ldots a_ivb.
$$

Thus $v_1v_2...v_i = a_1a_2...a_i$ and $v = v_{i+1}...v_nu_1u_2...u_i$ and so $v \subseteq$ $v_{i+1} \ldots v_n u$ that is absurd.

Theorem 3.10. *If* $v \in G$ *ts and period* $(v^{\infty}) = n$ *, then* $|v| = n$ *.*

Proof. Set $r := |v|$. If $r > n$, then there is $k > 1$ such that $r = nk$ and so there is $v' \in W_n(X)$ such that $v = (v')^k$. Thus $v^2 = v'v(v')^{k-1}$ that is absurd and so v^{∞} has least period $|v|$.

Theorem 3.11. *Let G be a minimal generator for a subshift X. Then,*

- (1) *If* $v \in G$ _{ts} and av , $vb \in W(X)$, then a and b are terminal segment *and initial segment of a finite concatenation of elements in G respectively.*
- (2) *If* $v, v' \in G$ _{ts}, then $w_-(v) = w_-(v')$ and $w_+(v) = w_+(v')$.
- (3) G _{ts} \subseteq $S(X)$.
- *Proof.* (1) Since $av \in W(X)$, so there is $\{v_1, v_2, \ldots, v_n\} \subseteq G$ such that $av \subseteq v_1v_2 \ldots v_n$ and so

$$
v_1v_2...v_n = v'_1v''_1v_2...v_j...v_{n-2}v'_{n-1}v''_{n-1}v'_nv''_n
$$

where $v_i = v'_i v''_i$ for $i = 1, n - 1, n, v = v''_{n-1} v'_n$ and $a = u''_i$ $v''_1 v_2 \ldots v_{n-2} v'_{n-1}$. Figure [3](#page-7-0). But $v \subseteq v_{n-1} v_n$, so $v_n = v$ or $v_1 v_2 ... v_{n-2} v_{n-1}$. Figure 3. But $v \le v_{n-1} v_n$, so $v_n - v$ or $v_{n-1} = v$. Suppose that $v_n = v$. Then, $v_{n-1} v = v_{n-1} v_n = v$. $v'_{n-1}vv''_n$ and so $v'_{n-1} = \varepsilon$ or $v''_n = \varepsilon$. If $v'_{n-1} = \varepsilon$, then $a =$ *v*^{*''*} *v*₂ *. . . v*_{*n*−2} and we are done.

Now let $v'_{n-1} \neq \varepsilon$. Then, v''_n must be an empty block and so $v'_n = v_n = v = v''_{n-1}v'_n$. Hence $v''_{n-1} = \varepsilon$. Thus $v_{n-1} = v'_{n-1}$ and so $a = v''_1 v_2 \ldots v_{n-1}$. Similar reasoning works for $v_{n-1} = v$.

If $vb \in W(X)$, then by use same routine as in the before case, to show that there is $\{u_1, u_2, \ldots, u_{n'}\} \subseteq G$ such that $b =$ $u_2 \ldots u_{n'-1} u'_{n'}$ where $u_{n'} = u'_{n'} u''_{n'}.$

(2) Let $a \in w_-(v)$. Then, it follows from (*i*) that there is

$$
\{v_1, v_2, \ldots, v_n\} \subseteq G
$$

such that $a = v''_1 v_2 \dots v_n$ where $v_1 = v'_1 v''_1$ and so

$$
av' = v_1''v_2 \dots v_nv' \subseteq v_1v_2 \dots v_nv' \in W(X).
$$

Thus $av' \in W(X)$ and so $w_-(v) = w_-(v')$. Similar reasoning works for $b \in w_+(v)$ and so $w_+(v) = w_+(v')$.

(3) Let $v \in G_{ts}$ and $av, vb \in W(X)$. Then, it follows from (*i*) that $av = v''_1 v_2 \dots v_n v$ and $vb = vu_2 \dots u_{n'-1} u'_{n'}$. Thus

$$
avb = v_1''v_2 \dots v_n vu_2 \dots u_{n'-1}u'_{n'} \subseteq v_1v_2 \dots v_nvu_2 \dots u_{n'}
$$

and so $avb \in W(X)$.

□

Let *G* be a minimal generator for a subshift *X* with $G = G_{ts}$. Then, *G* is called a *totally synchronizing generator*. Such an *X* is called *totally synchronizing generated system*.

Figure 3. Lemma 3.13.

The next example shows that there are non sofic but totally synchronizing generated systems.

Example 3.12. Let *P* be the set of all prime numbers. Set $G := \{10^n1:$ $n \in P$ } and $X := \overline{<} G >$. Then, *X* is a totally synchronizing generated system. But it is easy to check that for $i = 1, 2, 3, \ldots$ the follower sets $w_{+}(10^{i})$ are all different from each other, so that the shift space *X* has infinitely many follower sets and so by [[7](#page-10-0), Theorem 3.2.10], *X* is not a sofic.

Let $G = \{u_1, u_2, \ldots\}$ be a minimal generator for a subshift *X*. We give another right resolving and follower separated cover for *X*, denoted by \mathcal{H}_G which is not necessarily Fischer cover of X. To do so fix $\{a_1, a_2, \ldots\} \subseteq \mathbb{N}$. Let the loop graph $\mathcal G$ has one vertex I_0 and infinite self loops e_i labeled a_i at that vertex $(i \geq 1)$. We construct a new graph from G denoted by $\mathcal{G}_{u_i \leftrightarrow a_i}$ by replacing u_i for a_i whenever there is a path in *G* labeled a_i for all $i \geq 1$. We can suppose that $\mathcal{G}_{u_i \hookrightarrow a_i}$ is right resolving. Now let \mathcal{H}_G be the merged graph from $\mathcal{G}_{u_i \hookrightarrow a_i}$ [[10\]](#page-10-6). Then, by [\[7,](#page-10-0) Lemma 3.3.8] $X = X_{\mathcal{G}_{u_i \hookrightarrow u_i}} = X_{\mathcal{H}_G}$ and \mathcal{H}_G is right resolving and follower separated [[4](#page-10-8)]. For instance see the next example.

Example 3.13. (1) Let $X := \overline{\langle G \rangle}$ where

G := *{*()*,* (())*,* [()]*,* ((()))*,* [(())]*, . . .} ∪ {*[]*,* ([])*,* [[]]*,* [[[]]]*,* ([[]])*, . . .}.*

Then, *G* is a minimal generator for *X*. Figure [4](#page-8-1) shows \mathcal{H}_G for *G*.

(2) Let *X* be a strong synchronized system, $m \in S_t(X)$ and

$$
G_m:=\{ma_1, ma_2,\ldots\}
$$

be a minimal generator for *X* where $\{a_1, a_2, \ldots\} \subseteq W(X)$. Then, $X_0^+ = X_{\mathcal{H}_G}$ where \mathcal{H}_G is the merged graph from $\mathcal{G}_{u_i \hookrightarrow a_i}$ and $\mathcal{G}_{u_i \hookrightarrow a_i}$ is as the Figure [8](#page-9-0).

The following gives a sufficient condition on a minimal generator *G* that the cover \mathcal{H}_G be Fischer cover. For this we first need to define the *magic block m* for a right reasolving cover if there is one and only one

FIGURE 4. The graph $\mathcal{G}_{u_i \leftrightarrow a_i}$; \mathcal{H}_G is the merged graph from $\mathcal{G}_{u_i \to a_i}$ with $G := \{10^n 1 : n \in P\}.$

FIGURE 5. The subgrapg of X_0^+ .

FIGURE 6. A subgraph of \mathcal{H}_G where $ab = v_0 = bc$.

vertex *I* such that $m \in F_-(I)$ where

 F ^{*−*}(*I*) = { \mathcal{L} -labels of all finite paths terminating at *I}.*

Theorem 3.14. *Let G be a minimal generator for the coded system X and assume that* $v_0 \in G_{ts}$ *. Then,*

(1) $\mathcal{H}_G = X_0^+$. (2) G *ts* \subseteq S *t*(*X*)*.*

Proof. (i) To show that $\mathcal{H}_G = X_0^+$, it suffices by [\[3,](#page-10-1) Theorem 2.16] to show that \mathcal{H}_G has a magic block. The construction of \mathcal{H}_G shows that $v_0 \in F_-(I_0)$. Let $v_0 \in F_-(J)$ and $J \neq I_0$. Then, there are non empty blocks *a, b, c, d* of *X* such that $ab = v_0 = bc$ and $v = cd$ as in Figure [6](#page-8-2). Then, $v_0v = av_0d$ and so $a = \varepsilon$ or $d = \varepsilon$ that is absurd and so v_0 is a magic block for the \mathcal{H}_G which set over claim.

(ii) Since there is exactly one path labeled v_0 in the Fischer cover \mathcal{H}_G , so v_0 is a strong synchronizing block of *X*. □

The next theorem can be applied in the reference [[1](#page-10-9)].

FIGURE 7. A subgraph of \mathcal{H}_G .

FIGURE 8. The graph $\mathcal{G}_{u_i \hookrightarrow a_i}$; $\mathcal{H}_G = (X_{\mathcal{H}_G})_0^+$ is the merged graph from $\mathcal{G}_{u_i \hookrightarrow a_i}$.

Theorem 3.15. *Let* $G = G$ _{ts} for a subshift X and $x = \ldots v_{-1}v_0v_1\ldots$ $... v'_{-1}v'_0v'_1...$ where $v_j, v'_j \in G$. Then,

- *(1) There are* $i, j \in \mathbb{Z}$ *such that for all* $k \in \mathbb{Z}$ *,* $v_{i+k} = v'_{j+k}$ *.*
- (2) If $v_i = x_0 x_1 \ldots x_{i_0}$, then there is $j \in \mathbb{Z}$ such that $v'_j = v_i$ and $x = \ldots v'_{j-1} \cdot v'_j v'_{j+1} \cdot \ldots$

Proof. There are $i_0, j_0 \in \mathbb{Z}$ such that $x_0 \in v_{i_0} \cap v'_{j_0}$. Then, $v'_{j_0} \subseteq v_{i_0-1}v_{i_0}$ or $v'_{j0} \subseteq v_{i0}v_{i0+1}$. Without loss of generality, we can assume $v'_{j0} \subseteq$ $v_{i_0}v_{i_0+1}$. Thus $v'_{j_0} = v_{i_0}$ or $v'_{j_0} = v_{i_0+1}$. Hence there is $l \in \{i_0, i_0+1\}$ such that $v_{l+k} = v'_{j_0+k}$ for all $k \in \mathbb{Z}$.

Part (ii) follows from Part (i) .

$$
\Box
$$

The next example shows that the converse of the above theorem is not necessarily true.

Example 3.16. (1) Let *G* and *X* to be as in 3.13. Suppose that $x := \cdots v_{-1}v_0v_1 \cdots = \cdots v'_{-1}v'_0v'_1 \cdots$ where $v_i, v'_i \in G$ and $i \in \mathbb{Z}$. Then, there is $n \in \mathbb{X}$ such that

$$
\ldots v_{i_0} = v'_{j_0}, v_{i_0+1} = v'_{j_0+1}, v_{i_0+2} = v'_{j_0+2}, \ldots
$$

But *G* is not minimal generator.

(2) Set $G := \{v_1 := 101, v_2 := 010, v_3 := 0101\}$ and

$$
x := (v_1v_2)^{\infty} \cdot (v_1v_2)^{\infty} \in X := \overline{< G>}.
$$

Then, $x = (v_3)^\infty$. But there is no $i \in \{1, 2\}$ such that $v_3 = v_i =$ $x_{[0,2]}$. This shows that the hypothesis of Theorem [3.15](#page-9-1) can not be weakened to the generator.

4. Conclusion

These systems are precisely the tool that will enable us to create a bridge between dynamical systems and other mathematical branches. By creating such a connection, we will be able to introduce the basic concepts linear independence and dependence from the branch of linear algebra to dynamic systems and enter the topic of applied mathematics.

REFERENCES

- [1] P. Ahmad Naik, Global dynamics of a fractional-order SIR epidemic model with memory, International Journal of Biomathematics, **13(8)**, 2050071, (2020).
- [2] D. Ahmadi Dastjerdi and S. Jangjooye Shaldehi, On semi-open codes and bi-continuing almost everywhere codes, Topology and its Applications, **270**, (2020).
- [3] D. Fiebig and U. Fiebig, Covers for coded systems, Contemporary Mathematics, **135**, (1992), 139-179.
- [4] U. Jung, On the existence of open and bi-continuous codes, Trans. Amer. Math. Soc. **363** (2011), 1399-1417.
- [5] Liu, Kairan, Yixiao Qiao, and Leiye Xu, Topological entropy of nonautonomous dynamical systems, Journal of Differential Equations **268.9**, (2020), 5353-5365.
- [6] J. Kopra, Direct prime subshifts and canonical covers, Ergodic, Theory and Dynamical Systems, **43**, (2023), 1922-1941.
- [7] D. Lind and B. Marcus, An introduction to symbolic dynamics and coding, Cambridge Univ. Press. (1995).
- [8] T. Meyerovitvh, Tail invariant measures of the Dyke-shift and non-sofic systems, M.Sc. Thesis, Tel-Aviv university, (2004).
- [9] M. Shahamat, Strong synchronized system, Journal of Mathematical Extension, (2022), 1-16.
- [10] M. Shahamat and D. Ahmadi and B. Panbehkar, Minimally generated subshifts, Journal of Mathematical Extension, (2021), 18-24.
- [11] K. Thomsen, On the ergodic theory of synchronized systems, Ergod. Th. Dynam. Sys. **356** (2006) 1235-1256.
- [12] K. Thomsen, On the structure of a sofic shift space, American Mathematical Society, 356, Number **9**, 3557-3619.