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Abstract. We introduce the notion of a minimal generator G
for the coded system X; that is a generator for coded system X

whenever u ∈ G, then u ̸∈ W (< G \ {u} >). Such an X is called
minimally generated system. We aim to introduce a class of mini-
mally generated subshifts generated by some certain synchronizing
blocks. These systems are precisely the tool that will enable us to
show that for such subshifts X, each x ∈ X can be written uniquely
as x = . . . v−1v0v1v2 . . ., where {. . . , v−1, v0, v1, v2, . . .} ∈ G. Shows
that the converse of that theorem isn’t necessarily true. We will
show which of the components of the Kreiger graph of such a sub-
shift could be a candidate to be suitable for a Fischer cover.
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1. Introduction

One of the most studied dynamical systems is a subshift of finite
type (SFT). SFT X is a system whose set of forbidden blocks is finite
[7]; or equivalently, X is SFT iff there is M ∈ N such that any block
of length greater than M is synchronizing. Recall that a block m is
synchronizing if whenever v1m and mv2 are both blocks of X, then
v1mv2 is a block of X as well. If an irreducible system has at least one
synchronizing block, then it is called a synchronized system and examples
are sofics where they are factors of SFT’s. Synchronized systems, has
attracted much attention and extension of them has been of interest
since that notion was introduced [3]. One was via half synchronized
systems; that is, systems having half synchronizing blocks. In fact, if
for a left transitive point such as rm and mv any block in X one has
again rmv ∈ X− = {x− := · · ·x−1x0 : x = · · ·x−1x0x1 · · · ∈ X}, then
m is called half synchronizing [3]. Clearly any synchronized system is
half synchronized. Dyke (or Dyck!) subshifts and certain β-shifts are
non-synchronized but half synchronized systems [8]. Here in Section (3),
we will introduce the notion of a totally synchronizing generated system,
generated by G such that all blocks in G are synchronizing. These
systems enable us to show that for such subshifts X, if x ∈ X, then there
is unique {. . . , v−1, v0, v1, v2, . . .} ∈ G such that x = . . . v−1v0v1v2 . . .. In
1992, Fiebigs in [3], as an extension to the Fischer cover of a synchronized
system, introduced a unique component of the Kreiger graph as the
Fischer cover of a half synchronized subshift. In Section (4), give another
right resolving and follower separated cover for X, denoted by HG which
is not necessarily Fischer cover of X and gives a sufficient condition on
a minimal generator G that the cover HG be Fischer coverand gives
a sufficient condition on a minimal generator G that the cover HG be
Fischer cover.

2. Background and definitions

Let A be a non empty finite set. The full shift A-shift (AZ), is the
collection of all bi-infinite sequences of symbols in A. A block is a finite
sequence of symbols. The shift map σ on the AZ maps a point x to
the point y = σ(x) whose i-th coordinate is yi = xi+1. Let F be the
collection of all forbidden blocks over A [11]. For a AZ, set XF to be
the collection of sequences in AZ not containing any block from F . A
shift space or subshift is a subset X of a full shift such that X = XF for
some subset F .

Let Wn(X) be the set of all admissible n-blocks. A subshift X is
irreducible if for every blocks u1, u2 ∈ W (X) there is a block u ∈ W (X)
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such that u1uu2 ∈ W (X). A shift of sofic is the image of an SFT by a
factor code [12].

Let E(G) be the set of vertices and V(G) be the set of edge shift for
a graph G. Suppoze that XG to be

{(ξi)i∈Z ∈ EZ : t(ξi) = i(ξi+1)}
where i(e) and t(e) are initiate and terminate vertex of edge e. A labeled
graph is a pair G = (G, L), where E is edge set for graph G and L is the
labeling L : E(G) → A.

Let L∞(ξ) be the sequence of bi-infinite labels of a bi-infinite path ξ
in G. Set

XG := {L∞(ξ) : ξ ∈ XG} = L∞(XG).

We say G is a presentation or cover of X = XG .
Let X be a subshift and x ∈ X. Set w+(x−) = {x+ ∈ X+ : x−x+ ∈

X} and for m ∈ W (X) set w+(m) = {x+ ∈ X+ : mx+ ∈ X+}. Anal-
ogously, we define predecessor sets w−(x+) and w−(m). Consider the
collection of all w+(x−) as the set of vertices of a graph. There is an
edge labeled a from I1 to I2 if and only if there is an x− such that
x−a ∈ X− and I1 = w+(x−), I2 = w+(x−a). This graph is called the
Krieger graph for X. For synchronized system X with synchronizing
m, the irreducible component of the Krieger graph containing w+(m) is
denoted by X+

0 and is called the Fischer cover of X [5].

3. minimal generator

A coded system is a shift space that can be presented by an irreducible
countable labeled graph [7].

Definition 3.1. [10] Let G be a generator for coded system X. Then,
G is called minimal (resp. weak minimal), whenever u ∈ G, then u ̸∈
W (Z), (resp. X ̸= Z) where Z = < G \ {u} >. Such an X is called
minimally (resp. weak minimally) generated system.

Example 3.2. Let ∅ ̸= S ⊆ N. Then, G := {10n1 : n ∈ S} is a minimal
generator for subshift X := < G >.

Theorem 3.3. (1) The shift space X has a minimal (resp. minimal
weak) generator if and only if X−1 has so.

(2) Let G be a minimal (resp. minimal weak) generator for product
shift space X1×X2. Then, Xi has minimal (resp. minimal weak)
generator as well for i = 1, 2.

Proof. Note that G is a minimal (resp. minimal weak) generator for X,
then G−1 := {v−1 = vivi−1 . . . v1 : v = v1 . . . vi−1vi ∈ G} is a minimal
(resp. minimal weak) generator for X−1. This proves part (i).
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(ii) Set G := {v11 × v21, v
1
2 × v22, . . .} and let i ∈ {1, 2}. We claim that

Gi := {vij : j ∈ N}

is a minimal (resp. minimal weak) generator for Xi. Since X1 ×X2 =
< G >, so Xi = < Gi > is trivial. It suffice to show that for any vij ∈ Gi,
vij ̸∈ W (< Gi \ {vij} >).

If vij ∈ W (< Gi \ {vij} >), then there is {vij1 , v
i
j2
, . . . vijl} ⊆ Gi such

that for 1 ≤ k ≤ l, we have vij ⊆ vij1 . . . v
i
jl

and vij ̸= vijk . This show that

v1j × v2j ∈ W (< G1 ×G2 \ {v1j × v2j } >).

That is absurd. □

Definition 3.4. [9] Let X be a synchronized system. We call a block
m an strong synchronizing for X if whenever e, e′ are finite paths in
Fischer cover X+

0 labeled m, then e = e′.

An irreducible shift space with a strong synchronizing block is called
strong synchronized. Any strong synchronized system is synchronized.
we will show that every strong synchronized system is weak minimally
system. First, let X be a strong synchronized system and St(X) (resp.
S(X)) denote the set of all strong synchronizing (resp. synchronizing)
blocks for X.

Theorem 3.5. Let X be a strong synchronized system with generator
G. Suppoze there is m ∈ St(X) ∩ G such that for all u ∈ G, there are
not non empty blocks a, b such that vu = avb or uv = avb. Then, X has
a weak minimal generator.

Proof. Pick m ∈ St(X) and let πm be a unique path in Fischer cover
X+

0 such that L(πm) = m. Set i(πm) := I, t(πm) := J and

Gm := {ma : mam ∈ W (X) and m ̸⊆ a}. (3.1)

We claim that Gm is a weak minimal generator for X. Clearly X =
< Gm > and so Gm is a generator for X. Thus it suffices to show that
for all ma ∈ Gm, X ̸= Z where Z = < Gm \ {ma} >. Pick ma0 ∈ Gm.
Thus ma0m ∈ W (X) and so there is a path πa0 in Fischer cover X+

0
with initial vertex J and terminal vertex I. Figure 1. Note that if π
be a finite path in X+

0 labeled ma0m, then π = πmπa0πm and so if
ma0m ⊆ ma1ma2 . . .mak, then there is 1 ≤ i ≤ k such that a0 = ai.
Hence ma0m ̸∈ W (Z) and we are done. □

The next example shows that the converse of theorem 3.5 does not
hold.
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I J
m

a0

Figure 1. The subgraph of X+
0 .

Example 3.6. (1) Pick S ⊆ N ∪ {0} such that 0 ∈ S. Set G :=
{10n : n ∈ S} and claim that G is a weak minimal generator for
S-gap shift X(S). For all n ∈ S, (10n1)∞ ̸∈ < G \ {10n} > and
so < G > ̸= < G \ {10n} >. Also < G > = X(S) is trivial and
we are done.

(2) Let D be the Dyke subshift. Add a symbol ∗ to the set of
brackets. Let X be the shift space which consists of all sequences
of these five symbols such that any finite subblock which doesn’t
contain a ∗ obeys the rules of standard bracket [8]. Then, X is
not a strong synchronized system [9].

It is easy to see that It is easily to see that
G∗ = {∗u : ∗ ̸∈ u ∈ W (X)}

is a weak minimal generator for X and we are done.

Note that if m ∈ St(X) and m2 ∈ W (X), then Gm as in (3.1) is a
minimal generator for X if and only if Gm = {m}.

Theorem 3.7. Let X be a strong synchronized system and m ∈ St(X)
such that m2 ̸∈ W (X). Then, Gm as in (3.1) is a minimal generator for
X if and only if all cycles in the Fischer cover X+

0 meeting I := i(πm),
passes over m.

Proof. Let Gm be a minimal generator for X and let there is a cycle
C passing through I := i(πm) and labeled u such that m ̸⊆ u. Pick a
finite path πu0 in X+

0 with initial vertex J := i(πm) and terminal vertex
I such that m ̸⊆ u0 as in Figure 5. Then, mu0, mu0u ∈ Gm such that
mu0 ⊆ mu0u that is absurd.

Conversely, let all cycles in X+
0 that passing through I, containing m.

Pick ma0 ∈ Gm. If ma0 ⊆ ma1 . . .mak for some 1 ≤ i ≤ k, then there
are 1 ≤ i ≤ k and ui ∈ W (X) such that mai = ma0ui. Let ui ̸= ε.
But i(πui) = t(πa0) = I = t(πai) = t(πui), so there is a cycle labeled ui
and passing through I such that m ̸⊆ ui. That is absurd and so ui is
the empty block and so mai = ma0. This means that Gm is a minimal
generator for X. □

The next example shows that the hypothesis of Theorem 3.7 can not
be weakened to synchronized system.
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1 0 1

0

2

Figure 2. The grapg H for the cover of a synchronized
system such that Gm is not a minimal generator for XH .

Example 3.8. Let H be the graph as in Figure 2 and X = XH . Then,
m := 101 is a synchronizing block of X such that m ̸∈ St(X) and

Gm = {m0,m010,m012,m01210,m2,m210}.
Pick a := 210 and a1 := 01210. Then, ma ⊆ 10ma = ma1 and so
ma ∈ W (Z) where Z = < Gm \ {ma} >. Thus Gm is not a minimal
generator for X. But all cycles in the Fischer cover X+

0 = H meeting
I := i(πm), passes over m.

Note that if m ∈ S(X) and m ⊆ u, then u ∈ S(X). But it is not true
when m ∈ St(X). This fact can be seen by the fact that in Figure 2,
2 ∈ St(X) but 012 ̸∈ St(X).

Let G be a minimal generator for a subshift X. Set Gts denote the
set of all v ∈ G such that for all u ∈ G, there are not non empty blocks
a, b such that vu = avb or uv = avb.
Theorem 3.9. Let G be a minimal generator of X ⊆ AZ and v :=
v1v2 . . . vn ∈ G. Then, v ∈ Gts if and only if for each u ∈ G, v ̸⊆
v2 . . . vnu and v ̸⊆ uv1v2 . . . vn−1.
Proof. Suppose that v ∈ Gts and let there is a block u = u1u2 . . . uk ∈ G
such that v ⊆ v2 . . . vnu. Then, v = vn′ . . . vnu1u2 . . . un′−1 such that
n′ > 1. Also

vu = v1v2 . . . vn′−1vn′ . . . vnu1u2 . . . un′−1un′un′+1 . . . uk.

Set a := v1v2 . . . vn′−1 and b := un′un′+1 . . . uk. Then, vu = avb that is
absurd.

Conversely, suppose that for each u ∈ G, v ̸⊆ v2 . . . vnu and v ̸⊆
uv1v2 . . . vn−1. Also let there is a block u = u1u2 . . . uk ∈ G such that
vu = avb for some non empty blocks a = a1a2 . . . ai, b = b1b2 . . . bj .
Then,

v1v2 . . . vivi+1 . . . vnu1u2 . . . uk = a1a2 . . . aivb.

Thus v1v2 . . . vi = a1a2 . . . ai and v = vi+1 . . . vnu1u2 . . . ui and so v ⊆
vi+1 . . . vnu that is absurd. □
Theorem 3.10. If v ∈ Gts and period(v∞) = n, then |v| = n.
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Proof. Set r := |v|. If r > n, then there is k > 1 such that r = nk and
so there is v′ ∈ Wn(X) such that v = (v′)k. Thus v2 = v′v(v′)k−1 that
is absurd and so v∞ has least period |v|. □

Theorem 3.11. Let G be a minimal generator for a subshift X. Then,
(1) If v ∈ Gts and av, vb ∈ W (X), then a and b are terminal segment

and initial segment of a finite concatenation of elements in G
respectively.

(2) If v, v′ ∈ Gts, then w−(v) = w−(v
′) and w+(v) = w+(v

′).
(3) Gts ⊆ S(X).

Proof. (1) Since av ∈ W (X), so there is {v1, v2, . . . , vn} ⊆ G such
that av ⊆ v1v2 . . . vn and so

v1v2 . . . vn = v′1v
′′
1v2 . . . vj . . . vn−2v

′
n−1v

′′
n−1v

′
nv

′′
n

where vi = v′iv
′′
i for i = 1, n − 1, n, v = v′′n−1v

′
n and a =

v′′1v2 . . . vn−2v
′
n−1. Figure 3. But v ⊆ vn−1vn, so vn = v or

vn−1 = v. Suppose that vn = v. Then, vn−1v = vn−1vn =
v′n−1vv

′′
n and so v′n−1 = ε or v′′n = ε. If v′n−1 = ε, then a =

v′′1v2 . . . vn−2 and we are done.
Now let v′n−1 ̸= ε. Then, v′′n must be an empty block and so

v′n = vn = v = v′′n−1v
′
n. Hence v′′n−1 = ε. Thus vn−1 = v′n−1 and

so a = v′′1v2 . . . vn−1. Similar reasoning works for vn−1 = v.
If vb ∈ W (X), then by use same routine as in the before

case, to show that there is {u1, u2, . . . , un′} ⊆ G such that b =
u2 . . . un′−1u

′
n′ where un′ = u′n′u′′n′ .

(2) Let a ∈ w−(v). Then, it follows from (i) that there is
{v1, v2, . . . , vn} ⊆ G

such that a = v′′1v2 . . . vn where v1 = v′1v
′′
1 and so

av′ = v′′1v2 . . . vnv
′ ⊆ v1v2 . . . vnv

′ ∈ W (X).

Thus av′ ∈ W (X) and so w−(v) = w−(v
′). Similar reasoning

works for b ∈ w+(v) and so w+(v) = w+(v
′).

(3) Let v ∈ Gts and av, vb ∈ W (X). Then, it follows from (i) that
av = v′′1v2 . . . vnv and vb = vu2 . . . un′−1u

′
n′ . Thus

avb = v′′1v2 . . . vnvu2 . . . un′−1u
′
n′ ⊆ v1v2 . . . vnvu2 . . . un′

and so avb ∈ W (X).
□

Let G be a minimal generator for a subshift X with G = Gts. Then,
G is called a totally synchronizing generator. Such an X is called totally
synchronizing generated system.
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Figure 3. Lemma 3.13.

The next example shows that there are non sofic but totally synchro-
nizing generated systems.

Example 3.12. Let P be the set of all prime numbers. Set G := {10n1 :
n ∈ P} and X := < G >. Then, X is a totally synchronizing generated
system. But it is easy to check that for i = 1, 2, 3, . . . the follower sets
w+(10

i) are all different from each other, so that the shift space X has
infinitely many follower sets and so by [7, Theorem 3.2.10], X is not a
sofic.

Let G = {u1, u2, . . .} be a minimal generator for a subshift X. We
give another right resolving and follower separated cover for X, de-
noted by HG which is not necessarily Fischer cover of X. To do so
fix {a1, a2, . . .} ⊆ N. Let the loop graph G has one vertex I0 and infi-
nite self loops ei labeled ai at that vertex (i ≥ 1). We construct a new
graph from G denoted by Gui↪→ai by replacing ui for ai whenever there is
a path in G labeled ai for all i ≥ 1. We can suppose that Gui↪→ai is right
resolving. Now let HG be the merged graph from Gui↪→ai [10]. Then, by
[7, Lemma 3.3.8] X = XGui↪→ai

= XHG
and HG is right resolving and

follower separated [4]. For instance see the next example.

Example 3.13. (1) Let X := < G > where
G := {(), (()), [()], ((())), [(())], . . .} ∪ {[], ([]), [[]], [[[]]], ([[]]), . . .}.

Then, G is a minimal generator for X. Figure 4 shows HG for
G.

(2) Let X be a strong synchronized system, m ∈ St(X) and
Gm := {ma1, ma2, . . .}

be a minimal generator for X where {a1, a2, . . .} ⊆ W (X). Then,
X+

0 = XHG
where HG is the merged graph from Gui↪→ai and

Gui↪→ai is as the Figure 8.

The following gives a sufficient condition on a minimal generator G
that the cover HG be Fischer cover. For this we first need to define the
magic block m for a right reasolving cover if there is one and only one
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I0 · · ·1 02 0 02

1

1

1

Figure 4. The graph Gui↪→ai ; HG is the merged graph
from Gui↪→ai with G := {10n1 : n ∈ P}.

I J
m

u0

u

Figure 5. The subgrapg of X+
0 .

J I0

d

c

b

a

Figure 6. A subgraph of HG where ab = v0 = bc.

vertex I such that m ∈ F−(I) where
F−(I) = {L-labels of all finite paths terminating at I}.

Theorem 3.14. Let G be a minimal generator for the coded system X
and assume that v0 ∈ Gts. Then,

(1) HG = X+
0 .

(2) Gts ⊆ St(X).

Proof. (i) To show that HG = X+
0 , it suffices by [3, Theorem 2.16] to

show that HG has a magic block. The construction of HG shows that
v0 ∈ F−(I0). Let v0 ∈ F−(J) and J ̸= I0. Then, there are non empty
blocks a, b, c, d of X such that ab = v0 = bc and v = cd as in Figure 6.
Then, v0v = av0d and so a = ε or d = ε that is absurd and so v0 is a
magic block for the HG which set over claim.

(ii) Since there is exactly one path labeled v0 in the Fischer cover HG,
so v0 is a strong synchronizing block of X. □

The next theorem can be applied in the reference [1].
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I0

u′′
n

u′
n

Figure 7. A subgraph of HG.

I0
m

a1

a2

Figure 8. The graph Gui↪→ai ; HG = (XHG
)+0 is the

merged graph from Gui↪→ai .

Theorem 3.15. Let G = Gts for a subshift X and x = . . . v−1v0v1 . . . =
. . . v′−1v

′
0v

′
1 . . . where vj , v

′
j ∈ G. Then,

(1) There are i, j ∈ Z such that for all k ∈ Z, vi+k = v′j+k.
(2) If vi = x0x1 . . . xi0, then there is j ∈ Z such that v′j = vi and

x = . . . v′j−1.v
′
jv

′
j+1 . . .

Proof. There are i0, j0 ∈ Z such that x0 ∈ vi0 ∩v′j0 . Then, v′j0 ⊆ vi0−1vi0
or v′j0 ⊆ vi0vi0+1. Without loss of generality, we can assume v′j0 ⊆
vi0vi0+1. Thus v′j0 = vi0 or v′j0 = vi0+1. Hence there is l ∈ {i0, i0 + 1}
such that vl+k = v′j0+k for all k ∈ Z.

Part (ii) follows from Part (i). □
The next example shows that the converse of the above theorem is

not necessarily true.
Example 3.16. (1) Let G and X to be as in 3.13. Suppose that

x := · · · v−1v0v1 · · · = · · · v′−1v
′
0v

′
1 · · · where vi, v

′
i ∈ G and i ∈ Z.

Then, there is n ∈ X such that
. . . vi0 = v′j0 , vi0+1 = v′j0+1, vi0+2 = v′j0+2, . . . .

But G is not minimal generator.
(2) Set G := {v1 := 101, v2 := 010, v3 := 0101} and

x := (v1v2)
∞.(v1v2)

∞ ∈ X := < G >.

Then, x = (v3)
∞. But there is no i ∈ {1, 2} such that v3 = vi =

x[0,2]. This shows that the hypothesis of Theorem 3.15 can not
be weakened to the generator.
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4. Conclusion

These systems are precisely the tool that will enable us to create a
bridge between dynamical systems and other mathematical branches.
By creating such a connection, we will be able to introduce the basic
concepts linear independence and dependence from the branch of linear
algebra to dynamic systems and enter the topic of applied mathematics.
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