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1. Introduction

One of the most effective ways to characterize a Riemannian manifold is
to examine the geometrical characteristics belonging to several type of
particular vector fields. With this examination, various basic properties
and relations provided by Riemannian manifolds can be obtained. These
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particular vector fields are geodesic, Killing, concurrent, concircular,
recurrent and torse-forming vector fields, etc.

Concircular vector fields were firstly established by A. Fialkow in [14].
A smooth vector field v on a Riemannian manifold is defined a concir-
cular vector field if there subsists a smooth function φ satisfying

∇̃Xv = φX (1.1)

for each tangent vector field X. Here, ∇̃ indicates the Levi-Civita con-
nection. If φ = 1, then v is said to be concurrent.

There exist remarkable applications of concircular vector fields to
Ricci solitons in the literature. Some results dealing with concircular
vector fields and their practices to Ricci solitons are obtained on Rie-
mannian manifolds in [4, 6, 7, 8, 17, 21], on space-time in [18, 19], on
various contact space forms in [1, 15, 16, 20], on Euclidean space [5],
etc.

The primary aim of this study is to maintain this investigation on
lightlike submanifolds. For this purpose, the followings are obtained:

(1) Some identities and examples of Ricci soliton lightlike submani-
folds admitting a concircular vector field are presented.

(2) With the aim of the rigged metric defined on lightlike submani-
folds, it is proved that every Ricci soliton lightlike submanifold
whose potential vector field is concircular belongs to the radical
space.

2. Preliminaries

Let (M̃, h̃) be an (m̃+ñ)−dimensional semi-Riemannian manifold and
(M,h) be an ñ− dimensional submanifold having the induced metric h

from h̃. If h is degenerate on M , then (M,h) is said to be a lightlike
submanifold of (M̃, h̃). In this circumstance, the radical distribution at
p ∈ M is given by

RadTpM = {ξp ∈ TpM : hp(ξ,X) = 0 for any X ∈ Γ(TM)}.

Assume that S(TM) is a complementary vector bundle of Rad(TM).
Then we write

TM = Rad(TM)⊕orth S(TM). (2.1)
Here, ⊕orth indicates the orthogonal direct sum. The distribution S(TM)
is defined a screen distribution (M,h). We pay attention that S(TM)
is a non-degenerate distribution and it is not single. Hence, a lightlike
submanifold is mostly indicated by the triple (M,h,S(TM)).
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Now, let rank(Rad(TM)) = r, r > 0, rank(S(TM)) = n such that
ñ = r+n, m̃ = ñ+m+ r. In the circumstances, one of the undernamed
situations occurs:

i) (M,h,S(TM)) is a r−lightlike submanifold if 1 ≤ r < min{n+
r,m+ r}.

ii) (M,h,S(TM)) is a coisotropic lightlike submanifold if m = 0.
iii) (M,h,S(TM)) is a isotropic lightlike submanifold if n = 0.
iv) (M,h,S(TM)) is a totally lightlike submanifold if m = n = 0

[12, 13].
Let (M,h,S(TM)) be a r−lightlike submanifold. Then, we can con-

sider the following quasi-orthonormal basis on Γ(TM̃):

{ξ1, . . . , ξr, e1, . . . , en, N1, . . . , Nr, u1, . . . , um}

such that

h̃(Ni, ξl) = δil, h̃(Ni, Nl) = h̃(Ni, uα) = h̃(ξi, uα) = 0 (2.2)

for any i, l ∈ {1, . . . , r}, α ∈ {1, . . . ,m} and

h̃(Ni, ej) = h̃(uα, ej) = 0 (2.3)

for any j ∈ {1, . . . , n}. Here, δil denotes the Kronecker delta function.
For an r−lightlike submanifold, we get the following subspaces:

Rad(TM) = Span{ξ1, . . . , ξr}, ltr(TM) = Span{N1, . . . , Nr},

S(TM) = Span{e1, . . . , en}, S(TM⊥) = Span{u1, . . . , um}.

Let ∇̃ be the Levi-Civita connection on (M̃, h̃). The Gauss and Wein-
garten formulae are expresses as

∇̃X1X2 = ∇X1X2 + II(X1, X2),

= ∇X1X2 +
r∑

l=1

Bl(X1, X2)Nl +
m∑

α=1

Dα(X1, X2)uα, (2.4)

∇̃X1Nk = −ANk
X1 +

r∑
l=1

γkl(X1)Nl +
m∑

α=1

γ′kα(X1)uα, (2.5)

∇̃X1uβ = −Auβ
X1 +

r∑
l=1

θβl(X1)Nl +
m∑

α=1

θ′βα(X1)uα (2.6)

for any X1 ∈ Γ(TM), k ∈ {1, . . . , r} and β ∈ {1, . . . ,m}. Here, ∇ is the
induced connection on Γ(TM), ANk

and Auβ
are the shape operators of

M , γ, γ′, θ and θ′ are 1−forms, II is a second fundamental form.
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Let P be the projection of Γ(TM) onto Γ(S(TM)). The Gauss and
Weingarten formulae on S(TM) are demonstrated with

∇X1PX2 = ∇∗
X1

PX2 + II∗(X1, X2)

= ∇∗
X1

PX2 +

r∑
l=1

C l(X1, PX2)ξl, (2.7)

∇X1ξk = −A∗
ξk
X1 −

r∑
l=1

γkl(X1)ξl, (2.8)

where ∇∗ is the induced connection on Γ(S(TM)), Aξk is the local shape
operator of M for each k ∈ {1, . . . , r} and II∗ is the second fundamental
form. An r−lightlike submanifold is defined

i) totally geodesic if II = 0,
ii) S(TM)−geodesic if II∗ = 0,
iii) totally umbilical if there subsists a smooth transversal vector

field H ∈ ltr(TM) such that II(X,Y ) = h̃(X,Y )H is held,
iv) S(TM)−totally umbilical if there subsists a smooth transversal

vector field H∗ ∈ ltr(TM) such that II∗(X,Y ) = g̃(X,Y )H∗ is
held [10].

Now, let us symbolize the Riemannian curvature tensors of M and
M̃ by R and R̃, consecutively. The Gauss equation for (M,h,S(TM))
is demonstrated by the undermentioned equality:

h̃(R̃(X1, X2)PX3, PX4) = h(R(X1, X2)PX3, PX4)

+

r∑
l=1

Bl(X1, PX3)C
l(X2, PX4)

−
r∑

l=1

Bl(X2, PX3)C
l(X1, PX4)

m∑
α=1

[Dα(X1, PX3)D
α(X2, PX4)

−Dα(X2, PX3)D
α(X1, PX4)] . (2.9)

Considering the fact that II∗ is not symmetric in (2.9), it follows that
the sectional curvature map is not needed to be symmetric on a lightlike
submanifold. From (2.4)-(2.8), we find the following equalities:

Bl(X1, Y ) = h(A∗
ξl
X1, X2), (2.10)

C l(X1, Y ) = h(ANl
X1, X2), (2.11)

εαD
α(X1, X2) = h(AuαX1, X2)− θαl(X1)ηα(X2), (2.12)
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where εα = h̃(uα, uα) = ∓1, ηα(X2) = h̃(X2, Nα), i, l ∈ {1, . . . , r} and
α ∈ {1, . . . ,m} [11]. Handling the truth that ∇̃ is a metric connection,
we find

X3h(X1, X2) = h̃(∇̃X3X1, X2 + h̃(∇̃X3X2, X1)

= h(∇X3X1, X2) + h(∇X3X2, X1) +

r∑
l=1

Bl(X1, X3)ηl(X2)

+

r∑
l=1

Bl(X2, X3)ηl(X1). (2.13)

Also, the Lie derivative of g is demonstrated by

(LX3h)(X1, X2) = X3h(X1, X2)− h(∇X3X1, X2)− h(∇X3X2, X1)

+ h(∇X1X3, X2) + h(∇X2X3, X1). (2.14)

Putting (2.13) in (2.14), we find

(LX3h)(X1, X2) =

r∑
l=1

Bl(X2, X3)ηl(X1) + h(∇X1X3, X2)

+ h(∇X2X3, X1). (2.15)

From (2.14), it is easy to see that the induced connection ∇ is not a
metric connection.

Now, let {e1, . . . , en} be an orthonormal frame field of S(TM). The
induced Ricci type tensor, denoted by R(0,2), is expressed as

R(0,2)(X1, X2) =
n∑

j=1

h(R(X1, ej)ej , X1) +
n∑

j=1

h̃(R(ξl, X1)X2, Nα).

(2.16)
Putting (2.9) in (2.16), it can be obtained that
R(0,2)(X1, X2) ̸= R(0,2)(X2, X1) [9].

Theorem 2.1. [9] Let (M,h,S(TM)) be an r−lightlike submanifold.
Then, the undermentioned situations are equivalent:

i) S(TM) is integrable.
ii) II∗ is symmetric on S(TM).
iii) AN is self-adjoint.

In view of Theorem 2.1, if S(TM) is integrable, then R(0,2) is sym-
metric. We pay attention that R(0,2) is said to be Ricci tensor when it
is symmetric.
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3. Ricci soliton lightlike submanifolds

Let ν be a vector field on Γ(TM̃). Thus, we may put

ν = ν⊤ +

r∑
l=1

flNl +

m∑
α=1

ραuα, (3.1)

where fl and ρα are smooth functions for l ∈ {1, . . . , r} and α ∈ {1, . . . ,m}.
In view of (3.1), we find

fl = h̃(ν, ξl) and ρα = h̃(ν, uα). (3.2)

Proposition 3.1. Let (M, g,S(TM)) be an r−lightlike submanifold. If
the vector field ν is a concircular, then the undermentioned relations are
held:

∇Xν⊤ = φX +

r∑
l=1

flANl
X +

m∑
α=1

ραAuαX, (3.3)

Bl(X, ν⊤) = −∇̃Xfl −
r∑

s=1

flγls(X)−
m∑

α=1

ραθ
′
αl(X), (3.4)

Dα(X, ν⊤) = −∇̃Xρα −
m∑

β=1

ραθαβ(X)−
r∑

l=1

flγ
′
lα(X). (3.5)

Proof. Under the supposition, if the vector field ν is a concircular, we
put

∇̃Xν = φX = ∇̃Xν⊤ + ∇̃X(
r∑

l=1

flNl) + ∇̃X(
m∑

α=1

ραuα),

which implies that

φX = ∇Xν⊤ +
r∑

l=1

Bl(X, ν⊤)Nl +
m∑

α=1

Dα(X, ν⊤)uα

+
r∑

l=1

(∇̃Xfl)Nl +
m∑

α=1

(∇̃Xρα)uα −
r∑

l=1

flANl
X

+
r∑

l=1

r∑
s=1

flγls(X)Ns +
r∑

l=1

fl

m∑
α=1

γ′lα(X)uα

−
m∑

α=1

ραAuαX +
m∑

α=1

ρα

r∑
l=1

θαl(X)Nl +
m∑

α=1

ρα

m∑
β=1

θ′αβ(X)uβ.

Taking into account the tangential and transversal components in last
equality, we achieve (3.3), (3.4) and (3.5) immediately. □
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For a special case m = 0, we write

ν = ν⊤ +
r∑

l=1

flNl. (3.6)

Then we find

Proposition 3.2. Let (M,h,S(TM)) be a coisotropic lightlike subman-
ifold. If the vector field ν is a concircular, then the undermentioned
relations are held:

∇Xν⊤ = φX +

r∑
l=1

flANl
X, (3.7)

Bl(X, ν⊤) = −∇̃Xfl −
r∑

s=1

flγls(X). (3.8)

For a special case ν = ν⊤, we have the followings:

Proposition 3.3. For any r−lightlike submanifold (M,h,S(TM)) con-
taining a concircular vector field ν = ν⊤, we have

∇Xν⊤ = φX (3.9)
and

Bl(X, ν⊤) = Dα(X, ν⊤) = 0, (3.10)
where l ∈ {1, . . . , r} and α ∈ {1, . . . ,m}.

Corollary 3.4. If ν = νT is a concircular vector field on (M,h,S(TM)),
v is also concircular in regard to the induced connection ∇.

Proposition 3.5. Let (M,h,S(TM)) be a coisotropic lightlike subman-
ifold containing a concircular vector field ν = ν⊤. Then, we get

∇Xν⊤ = φX and Bl(X, ν⊤) = 0 (3.11)
for each l ∈ {1, . . . , r}.

From (2.13), (3.10) and (3.11), we find

Theorem 3.6. Let (M,h,S(TM)) be an r−lightlike or coisotropic light-
like submanifold containing a concircular vector field ν = ν⊤. Then g
is parallel in regard to ν⊤.

Example 3.7. Let R8
4 be the Euclidean 8-space with the signature

(−,−,+,+,−,−,+,+). Take into account a submanifold M of R8
4 de-

fined by

x3 =
√
x21 + x22, x4 =

√
x25 + x26, x7 = x8 = 0.
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Then we find (M,h, S(TM)) is a 2-lightlike submanifold of R8
4 that

satisfies
Rad(TM) = Span {ξ1 = x1∂x1 + x2∂x2 + x3∂x3,

ξ2 = x4∂x4 + x5∂x5 + x6∂x6} ,
S(TM) = Span{X1 = x3∂x1 + x1∂x3, X2 = x5∂x4 + x4∂x5},

ltr(TM) = Span{N1 =
1

2x23
(−x1∂x1 − x2∂x2 + x3∂x3),

N2 =
1

2x24
(x4∂x4 − x5∂x5 − x6∂x6)}},

S(TM⊥) = Span{u1 = ∂x7, u2 = ∂x8},

where {∂xi}i∈{1,...,8} is the standard basis on R8
4. If we put v = ξ1 + ξ2

then we obtain that vector field v is a concircular on Γ(TM) with φ = 1.

Now, we remember the description of Ricci soliton lightlike subman-
ifolds.

Definition 3.8. Let (M,h,S(TM)) be a lightlike submanifold such that
S(TM) is integrable. Then (M,h,S(TM)) is said to be a Ricci soliton
if the undermentioned equality holds for any X1, X2 ∈ Γ(TM):

(Lνh)(X1, X2) + 2R(0,2)(X1, X2) = 2λh(X1, X2), (3.12)
where λ is a constant and ν is said to be the potential vector field.

A Ricci soliton lightlike submanifold is said to be shrinking if λ > 0,
steady if λ = 0 and expanding if λ < 0.

We remark that the Ricci soliton equation vanishes its geometrical
meaning when R(0,2) is not symmetric. Considering Theorem 2.1, we
investigate the Ricci soliton equation on lightlike submanifolds whose
screen distribution is integrable throughout this paper.

Proposition 3.9. Let (M,h,S(TM)) be an r−lightlike submanifold con-
taining a concircular vector field ν. Then we possess the undermentioned
relation:

(Lν⊤h)(X1, X2) =

r∑
l=1

Bl(X1, ν
⊤)ηl(X2) +

r∑
l=1

BlX2, ν
⊤)ηl(X1)

+ 2h(φX1, X2) + 2

r∑
l=1

flh(ANl
X1, X2)

+ 2

m∑
α=1

ραh(AuαX1, X2). (3.13)
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If the vector field ν is a concurrent, then we possess

(Lν⊤h)(X1, X2) =
r∑

l=1

Bl(X1, ν
⊤)ηl(X2) +

r∑
l=1

BlX2, ν
⊤)ηl(X1)

+ 2h(X1, X2) + 2
r∑

l=1

flh(ANl
X1, X2)

+ 2
m∑

α=1

ραh(AuαX1, X2). (3.14)

Proof. Using (3.3) in (2.15), the proof of (3.13) is straightforward. If ν
is concurrent, putting φ = 1 in (3.13), we obtain (3.14). □

For a special case m = 0, we find

Proposition 3.10. Let (M,h,S(TM)) be a coisotropic submanifold ad-
mitting a concircular vector field ν. Then we possess the undermentioned
relation:

(Lν⊤h)(X1, X2) =
r∑

l=1

Bl(X1, ν
⊤)ηl(X2) +

r∑
l=1

Bl(X2, ν
⊤)ηl(X1)

+ 2h(φX1, X2) + 2
r∑

l=1

flh(ANl
X1, X2). (3.15)

If the vector field ν is a concurrent, then we possess

(Lν⊤h)(X1, X2) =

r∑
l=1

Bl(X1, ν
⊤)ηl(X2) +

r∑
l=1

Bl(X2, ν
⊤)ηl(X1)

+ 2h(X1, X2) + 2

r∑
l=1

flh(ANl
X1, X2). (3.16)

In view (3.10) and (3.13), we find

Proposition 3.11. Let (M,h,S(TM)) be an r−dimensional lightlike
submanifold containing a concircular vector field ν = ν⊤. Then we
possess

(Lν⊤h)(X1, X2) = 2h(φX1, X2) + 2

r∑
l=1

flh(ANl
X1, X2)

+ 2

m∑
α=1

ραh(AuαX1, X2). (3.17)



Concircular Vector Fields on Lightlike Submanifolds 31

If the vector field ν is a concurrent, then we possess

(Lν⊤h)(X1, X2) = 2h(X1, X2) + 2
r∑

l=1

flh(ANl
X1, X2)

+ 2
m∑

α=1

ραg(AuαX1, X2). (3.18)

Proposition 3.12. Let (M,h,S(TM)) be a coisotropic lightlike sub-
manifold containing a concircular vector field ν = ν⊤.Then we possess

(Lν⊤h)(X1, X2) = 2h(φX1, X2) + 2

r∑
l=1

flh(ANl
X1, X2). (3.19)

If the vector field ν is a concurrent, then we possess

(Lν⊤h)(X1, X2) = 2h(X1, X2) + 2
r∑

l=1

flh(ANl
X1, X2). (3.20)

Based on (3.12) and (3.13), we find

Theorem 3.13. Let (M,h,S(TM)) be an r−lightlike submanifold con-
taining a concircular vector field ν. Then, (M,h,S(TM)) is a Ricci
soliton having the potential vector ν⊤ if and only if

R(0,2)(X1, X2) = −1

2

r∑
l=1

Bl(X1, ν
⊤)ηl(X2)−

1

2

r∑
l=1

Bl(X2, ν
⊤)ηl(X1)

+ (λ− φ)h(X1, X2)−
r∑

l=1

flh(ANl
X1, X2)

−
m∑

α=1

ραh(AuαX1, X2). (3.21)

is satisfied.

Based on (3.12) and (3.15), we possess

Theorem 3.14. Let (M,h,S(TM)) be a coisotropic lightlike submanifold
containing vector field ν. Then, (M,h,S(TM)) is a Ricci soliton having
the potential vector field ν⊤ if and only if

R(0,2)(X1, X2) = −1

2

r∑
l=1

Bl(X1, ν
⊤)ηl(X2)−

1

2

r∑
l=1

Bl(X2, ν
⊤)ηl(X1)

+ (λ− φ)h(X1, X2)−
r∑

l=1

flh(ANl
X1, X2). (3.22)

is satisfied.
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Based on (3.12) and (3.17), we possess

Theorem 3.15. Let (M,h,S(TM)) be an r−dimensional lightlike sub-
manifold containing a concircular vector field ν = ν⊤. Then, (M,h,S(TM))
is a Ricci soliton having the potential vector field ν if and only if

R(0,2)(X1, X2) = (λ− φ)h(X1, X2) (3.23)

is satisfied.

Based on (3.12) and (3.19), we possess

Theorem 3.16. Let (M,h,S(TM)) be a coisotropic lightlike subman-
ifold admitting a concircular vector field ν = ν⊤. (M,h,S(TM)) is a
Ricci soliton having the potential vector field ν if and only if

R(0,2)(X1, X2) = (λ− φ)h(X1, X2) (3.24)

is satisfied.

As a result of Theorem 3.15 and Theorem 3.16, we find

Corollary 3.17. Every r-lightlike or coisotropic lightlike submanifold
containing a concircular vector field ν = ν⊤ is an Einstein manifold.

4. Some characterizations on lightlike submanifolds
involving a rigged metric

First, we recall the notions of rigging vector fields and rigged metrics
on lightlike hypersurfaces:

Definition 4.1. [2, 3] Let (M,h,S(TM)) be a lightlike hypersurface
and ωp /∈ TpM . The tangent vector ωp is called a rigging vector field at
p ∈ M if there subsists a 1−form η that satisfies

η(X1) = h̃(X1, ω) (4.1)

for any X1 ∈ Γ(TM).

Now, let us choose Np as a rigging vector field. In the circumstances,
we can determine a (0, 2)−type tensor h such that

h(X1, X2) = h(X1, X2) + η(X1)η(X2) (4.2)

is satisfied. Then the tensor field h is called a rigged metric on
(M,h,S(TM)).

The concept of rigged metrics could be given on r−lightlike subman-
ifolds as follows:
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Definition 4.2. Let (M,h,S(TM)) be a r−lightlike submanifold. A
metric h on (M,h,S(TM)) satisfying

h(X1, X2) = h(X1, X2) +
r∑

l=1

ηl(X1)ηl(X2) (4.3)

is called a rigged metric.
Considering (4.3), we find

h(ξl, ξs) = δls, h(ξl, X1) = ηl(X1), ∀X1 ∈ Γ(TM), (4.4)
and

h(X1, X2) = h(X1, X2), ∀X1, X2 ∈ Γ(S(TM)). (4.5)
Proposition 4.3. Let (M,h,S(TM)) be an r−lightlike submanifold con-
taining a concircular vector field ν. Then we have the undermentioned
equality:

Xh(ν, ν) = 2h(φX, ν) + 2

r∑
l=1

[η2l (ν)− h(ANX, ν)η(ν)] (4.6)

for any X ∈ Γ(TM).
Proof. Based on (4.3), we can write

Xh(ν, ν) = Xh̃(ν, ν) +X

(
r∑

l=1

η2l (ν)

)
. (4.7)

Putting (2.4) and (2.5) in (4.7), we arrive at (4.6). □
Theorem 4.4. Let (M,h,S(TM)) be an r−lightlike submanifold con-
taining a concircular vector field ν that satisfies ν ∈ Γ(S(TM)). Then
ν is not a constant velocity vector in regard to h.
Proof. Assume that ν is a constant velocity vector in regard to h. In
this case, we find

h(φX, ν) = 0

for any X ∈ Γ(S(TM)). The last statement shows that ν belongs to
Γ(Rad(TM)). This result contradicts the fact that ν ∈ Γ(S(TM)). □
Proposition 4.5. Let (M,h,S(TM)) be an r−lightlike submanifold con-
taining a concircular vector field ν that satisfies ν = ν⊤. Then we possess

X2h(X1, ν) = h(∇∗
X2

X1, ν) + h(X1, φX2) +

r∑
l=1

Bl(X2, X1)ηl(ν)

+

r∑
l=1

r∑
s=1

[γls(X2)ηl(X1)ηl(ν) + φηl(X2)

− h(ANl
X2, ν) + γls(X2)ηl(ν)]ηl(X1) (4.8)
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for any X1, X2 ∈ Γ(TM).

Proof. Based on (4.3), we get

X2h(X1, ν) = X2h(X1, ν) +X2

[
r∑

l=1

ηl(X1)ηl(η)

]
. (4.9)

If we put (2.4) and (2.5) in (4.9), we find

X2h(X1, ν) = h(∇X2X1, ν) +
r∑

l=1

Bl(X2, X1)ηl(ν) + h(X1, ∇̃X2ν)

+
r∑

l=1

[h(∇X2X1, Nl)− h(ANl
X2, X1)

+
r∑

s=1

γls(X2)ηl(X1)]ηl(ν) +
r∑

l=1

[h(∇̃X2ν,Nl)

− h(ANl
X2, ν) +

r∑
s=1

γls(X2)ηl(ν)]ηl(X1). (4.10)

Handling the truth that the vector field ν is a concircular and (2.7),(2.8)
in (4.10), we get (4.8). □

Theorem 4.6. Let (M,h,S(TM)) be an r−lightlike submanifold con-
taining a concircular vector field ν that satisfies ν = ν⊤. Then S(TM)
is integrable if and only if ν⊤ belongs to Γ(Rad(TM)).

Proof. Assume that ν ∈ Γ(Rad(TM)) and X1, X2 ∈ Γ(S(TM)). In this
circumstance, we find based on (4.10) that

X2h(X1, ν) = h(∇∗
X2

X1, ν)+h(X1, φX2)+

r∑
l=1

Bl(X2, X1)ηl(ν). (4.11)

Changing X1 and X2 roles in (4.11), we immediately get

X1h(X2, ν) = h(∇∗
X2

X1, ν)+h(X2, φX1)+
r∑

l=1

Bl(X1, X2)ηl(ν). (4.12)

Subtracting (4.11) and (4.12) side by side, we obtain

h([X2, X1], ν) = X2h(X1, ν)−X1h(X2, ν). (4.13)
Using the fact that ν ∈ Γ(Rad(TM)) and X1, X2 ∈ Γ(S(TM)), we find

h([X2, X1], ν) = 0. (4.14)
In view of (4.14), we see that [X2, X1] ∈ Γ(S(TM)) for each X1, X2 ∈
Γ(S(TM)). This fact required that S(TM) is integrable. □
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Now, we suppose that S(TM) is integrable. For any X1, X2 ∈
Γ(S(TM)), we get from (4.13) that the equality

X2h(X1, ν) = X1h(X2, ν) (4.15)
is satisfied.

Since the equation (4.15) is satisfied for any X1, X2 ∈ Γ(S(TM)), we
can choose X2 = λX1, where λ is a smooth function. Placing this fact
in (4.15), we find

λX1h(X1, ν) = X1h(λX1, ν),

which shows that λ is a constant function or ν ∈ Γ(Rad(TM)). Since
λ should not be a constant function for each writing X2 = λX1 in
Γ(S(TM)), we achieve that ν ∈ Γ(Rad(TM)). This completes the prov-
ing.

Theorem 4.7. Let (M,h,S(TM)) be an r−lightlike submanifold involv-
ing a concircular vector field ν = ν⊤. If (M,h,S(TM)) is a Ricci soliton
having the potential vector field ν, then ν lies on Γ(Rad(TM)).

Proof. If we consider (3.12), we see that R(0,2) is symmetric. There-
fore, if (M,h, S(TM)) is a Ricci soliton, then from Theorem 2.1, we
obtain that S(TM) is integrable. Considering Theorem 4.6, the proof is
straightforward. □
Proposition 4.8. Let (M,h,S(TM)) be an r−lightlike submanifold in-
volving a concircular vector field ν = ν⊤. Then we possess

h(ANk
Y, ν) = Y h(ξk, ν)− φηk(Y )−

r∑
l=1

γkl(Y )ηl(ν) (4.16)

for k ∈ {1, . . . , r}.

Proof. From (4.3) and (4.4), we put

Y h(ξk, ν) = Y

[
r∑

l=1

ηl(ξk)ηl(ν)

]
= Y h̃(ν,Nk)

= h̃(∇̃Y ν,Nk) + h̃(ν, ∇̃Y Nk)

= φηk(Y )− h(ANk
Y, ν) +

r∑
l=1

γklηl(ν),

which is equivalent to (4.16). □
For a special case ν = ξk and ν = ξα, where k, α ∈ {1, . . . , r} and

k ̸= α, we find
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Proposition 4.9. Let (M,h,S(TM)) be an r−lightlike submanifold in-
volving a concircular vector field ν ∈ Γ(Rad(TM)). Then we possess

i) if ν = ξk then γkk = −1.
ii) if ν = ξα then γkα = 0 for k ̸= α.

Example 4.10. Discuss a submanifold in R6
3 stated by

x4 = (x21 + x22)
1
2 , x3 = (x25 + x26)

1
2 , x1, x2, x3, x4 > 0.

Hence, we possess
Rad(TM) = Span {ξ1 = x1∂x1 + x2∂x2 + x4∂x4,

ξ2 = x3∂x3 + x5∂x5 + x6∂x6} ,
S(TM) = Span {X1 = x4∂x1 + x1∂x4, X2 = x3∂x5 + x5∂x3} ,

ltr(TM) = Span{N1 =
1

2x22
(x1∂x1 − x2∂x2 + x3∂x3),

N2 =
1

2x25
(x3∂x3 − x5∂x5 + x6∂x6)},

where {∂x1, ∂x2, ∂x3, ∂x4, ∂x5, ∂x6} is the standard frame field on R6
3.

For this reason, (M,h,S(TM)) is a coisotropic lightlike submanifold and
we obtain

∇̃X1ξ1 = X1, ∇̃X1ξ2 = 0, ∇̃X2ξ1 = 0, ∇̃X2ξ2 = X2,

∇̃ξ1ξ1 = ξ1, ∇̃ξ1ξ2 = ∇̃ξ2ξ1 = 0, ∇̃ξ2ξ2 = ξ2,

∇̃ξ1N1 = N1, ∇̃ξ1N2 = 0, ∇̃ξ2N1 = 0, ∇̃ξ2N2 = N2.

By a straightforward computation, we find R(0,2)(X,Y ) = 0. If we
consider v = φ(ξ1 + ξ2), where φ is a smooth function and v = vT ,
then we see that (M,h,S(TM)) is a Ricci soliton having the potential
vector field v such that λ = 1. Thus, the submanifold is an example of
shrinking Ricci soliton.

We pay attention that the submanifold given in Example 4.10 holds
the claim of Theorem 4.7.
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