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ABSTRACT. In this paper, we introduce the complex (anti com-
plex) fuzzy topological space (X,T) with complex (anti complex)
gradation of openness under T-norm (C-conorm), which X is itself
a T-complex (C-anti complex) fuzzy subset of a nonempty set M.
We show that the set of all T-complex gradations of openness on X
is a semicomplete lattice. Some example such as T-complex fuzzy
subspace of AR™, the exterior algebra on R™ are given.
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1. INTRODUCTION

Ramot et al. [24] introduced the notion of a complex fuzzy set (CFS)
as an extension of a fuzzy set defined by Zadeh [30] which its range
extends from a closed interval [0, 1] to a circle of radius one in a com-
plex plane. The ability of the complex fuzzy set to represent two-
dimensional phenomena makes it superior for fuzzy information pro-
cessing and intuition which is common in time-periodic phenomena.
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Complex fuzzy sets, classes and their logic play an important role in
applications such as periodicity event prediction and advanced control
systems. To learn_more about structures and applications of complex
fuzzy sets, see [, 2, B, 8, 9, 10, 11, 17, 23, 25, 26, B3]. Complex fuzzy
set is used in signals and systems because it behaves like the Fourier
transform in certain cases. Zeeshan and khan [18] developed a new al-
gorithm using complex fuzzy sets for applications in signals and systems
by which reference signals are identified from a large number of signals
detected by a digital receiver. They used the inverse discrete Fourier
transform of a complex fuzzy set for the input signals and a reference
signal. Therefore, a method is provided to measure the exact values of
two signals by which they can identify the reference signal. See also two
works [16, B2].

In this paper, we define complex fuzzy subspace of a k-vector space
V, under T-norm and anti complex fuzzy subspace of a k-vector space
V, under C-conorm. Some example such as T-complex fuzzy subspace
of AR the exterior algebra on R" are given. Then we investigate var-
ious operations between T-complex fuzzy sets and present a numerical
example for each of them. Also we define image and inverse image of a
T-complex fuzzy subspace under a function.

Since Chang [5] defined fuzzy topology, various concepts of it were
defined such as [6, [7, 12, 19, 20, 21, 27, 28, 29]. In 1985, Shostak [27]
introduced a concept of the gradation of openness of fuzzy subsets of a
nonempty set. Also many authers investigated graded fuzzy topological
spaces such as [0, [, 12, 20, 21, 29].

The author introduced_and discussed properties of a kind of fuzzy
topological structure in [22]. Considering the importance and appli-
cation of the complex fuzzy sets, we study about this topic. In this
paper, we define complex (anti complex) fuzzy topological space (X, ¥)
with complex (anti complex) gradation of openness under T-norm (C-
conorm) which X is itself a T-complex (C-anti complex) fuzzy subset
of a nonempty set M. We define spiral T-norm of a sequence in [0, 1]
and spiral minimum of a sequence in [0, 27| and then by using them, we
prove that the set of all T-complex gradations of openness (Mz(X), <)
on X, is a semicomplete lattice

Definition 1.1. [24] Let M be a nonempty set. A complex fuzzy set
A on M is an object having the form A = {(x, ua(x))|x € X}, where
ua denotes the degree of membership function that assigns each ele-
ment z € M, a complex number pa(x) lies within the unit circle in
the complex plane. We shall assume that p4(x) will be represented by
ra(z)ea® wherei=+/—1,and 74 : M — [0,1] and w4 : M — [0, 27].
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The term r4(z) is said to be phase term and w4 (x) is said to be ampli-
tude term. Note that by setting w(z) = 0, we turn back to the traditional
fuzzy subset.

Let p, = r,e*1 and pu, = r,e¥2 be two complex numbers lie within
the unit circle in the complex plane. By u, < p,, we mean r, < r, and
w, < w,.

Three constant complex fuzzy sets 1, 0 and ¢ are defined by

p () =7 (z)e™1®), r(x) =1, w(z) =2m, Yo e M

ps () = 7“6(56)ewc3(m)7 r(z) =0, w,(z) =0, Ve e M

0

3 2

p(x) = ()" r(z) = 0, w () = g Ve M

Definition 1.2. [13] A T-norm T is a function T : [0, 1] x [0, 1] — [0, 1]
having the following four properties:

(T1) T(x,1) = x (neutral element),

(T2) T(z,y) < T(x,z) if y < z (monotonicity),

2) T(
(T3) T(x,y) = (y,:):) (commutativity),
(T4) T(z,T(y,2)) =T(T(z,y),2) (associativity)

for all z,y,z € [0, 1].
We say that T is idempotent if for all z € [0,1], T'(z,z) = .

Example 1.3. [13]

(1) Standard intersection T-norm Ty,ipn(z,y) = min{z,y}
(2) Bounded sum T-norm Tj(z,y) = maz{0,z +y — 1}
(3) algebraic product T-norm Ty (z,y) = zy

Definition 1.4. A C-conorm C is a function C : [0, 1] x [0,1] — [0, 1]
having the following four properties:

(C1) C(x,0) = x (neutral element),

(C2) C(z,y) < C(z,2) if y < z (monotonicity),

(C3) C(zx,y) = C(y,z) (commutativity),

(C4) C(x,C(y,2)) = C(C(x,y), 2) (associativity)

for all z,y, z € [0, 1].

We say that the C-conorm C' is idempotent if Vx € [0,1], C(z,z) = =.

Example 1.5. (1) Standard union C-conorm Cpeq(z,y) = max{z,y}
(2) Bounded sum C-conorm Cy(z,y) = maz{l,z + y}
(3) Algebraic product C-conorm Cy(z,y) =z +y — xy
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Lemma 1.6. Consider a T-norm T and a C-conorm C (briefly (T, C)-
norm). Then for all x,y,z,w € [0,1] we have

T(z,y) <z Ay,

C(z,y) >z Vy,
T(T(:):,y),T(z,w)) = T(T(:J:, z),T(y,w)),
C(C(x,y),C(z,w)) = C(C’(:U,z),C(y, w)),

2. MAIN RESULT

In this section after some definitions and theorems, we define (anti)
complex gradation of openness under T-norm (C-conorm) and then
we introduce T-complex (C-anti complex) fuzzy topological space with
(anti) complex gradation of openness. Also we define the concept of
the spiral T-norm of a countable subset {z;|i € N} of [0, 1] and using
it we prove that the set of all T-complex gradations of openness on X
(M<(X), <) is a semicomplete lattice

Definition 2.1. Let V be a k-vector space. A complex fuzzy subset
B = {(z,p,(x))|z € X} of V is called a complex fuzzy subspace under
T-norm if pu,,(z) = r, ()5 @) such that

re(12+Ay) = T(ry(2),m5 (), ws (e +Ay) = min (w, (2),w, ()
for any z,y € V and v, € k. Then we can write briefly B is a T-
complex fuzzy subspace of V or B € TCF(V).

Example 2.2. Let E = AR™ be an exterior algebra on R with
anticommutative generators {&1, ..., &n}. Hence &2 =0, and & A& =
=& N forall 1 <4,5 <m. Then each { € E has the form

¢ = >, G A ANG, o ER
1<i <...<ip<m
We define complex fuzzy subset B of ¥ by B =1, e
r(&) =1,  wy(&)=t, i €l0,1], t;€l0,2n]
forall 1 <4,7 <m and
r, (&) = sup {T(...T(T(riysris),Tig)s - - -, Ti) } (2.1)

1<iy < .. <ip<m
wy(é) = sup { min ( c.min(min(t;,, iy ), tig), - - - ,tik.) } (2.2)
1<i1 <. <ig<m
We show that B is a T-complex fuzzy subspace of E:
For each &, n € E and v, A € k, we have

n= Z lemjl STRARERNARS B le.“jl eR

1<j1<..<ji<m
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T(TB (5)7 g (77)) = T<Sup1§i1<...<z’k§m {T( ce T(T(rh ) Ti2)7 7“7;3), cee rik) }a

sup1§j1<m<jlgm {T( e T(T(le,?”h), ’I”j3), e ,Tjk) }>

< SUP1 <y <...<ip,<m {T( e 'T(T(riuriz)a 7"1'3), Tt 7rik) }’
\/ Sup1§j1<...<lem {T( e T(T(T’jl,T’jQ),T’j3), e ,Tjk)}

=rz(y &+ An),
Similarly we can prove
max (wy (€),w, (n) <wy (v E+A ).

Definition 2.3. Let V be a k-vector space. An Anti complex fuzzy
subset B = {(x,u,(z))|xr € X} of V is called an anti complex fuzzy

subspace under C-conorm if i, (x)) = 7, (z)e™s®),

rp(7e £ Ay) < Oy (@), (1)), wp(ye + Ay) < max (w, (2),w, (4))

for any z,y € V and v, A € k. Then we can write briefly B is a C-anti
complex fuzzy subspace of V or B € CACF (V).

Example 2.4. Let £ = AR? be an exterior algebra on R™ with anti-
commutative generators {&, &}. Hence £ =0, €3 =0, and & A& =
—&1 A &. Then each € € E has the form

E=a, & +a,o+ta,NE, 0#a,a,0, ER
We define anti complex fuzzy subset G of E by G = r_ e™“c,
ro (&) =ri, we(&)=t, ri€l0,1], t; €l0,2n]
for i=1,2and r, ({1 A\ &) = C(r1,12), wq (&1 AE) = max(t1,t2). Also
r¢(§) = max{ry,ro, C(r1,r2)} = C(r1,72)

wg, (&) = max{ty, to, max(t1,t2)} = max(t1,t2).

We show that G is a C-anti complex fuzzy subspace of E:
For each &, n € F and ~, A € k, we have

77:61 §1+52 §2+/312 §1A§27 O#BlaﬁgaﬁmeR

Y&+ An = (7041 + )‘61) &+ (va, + /\/81) §2 + ('70412 +ABy,) &1 A &a.
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C(rg(€),ra(m) = C(C(r1,m2),C(r1,m2))
Z C(Tl,T’Q)\/C(Tl,Tz)
= C(Tl,Tg)

= TG (7 § + )\ /)7)7
Similarly we can prove

max (w (§), we (n) = we(y £+ A m).

Definition 2.5. Let A = {(z,p,(x))} and B = {(z,p4(z))} be two
complex fuzzy subsets of a nonempty set M. We define T-complex
fuzzy subset AN B by p,., () =7, (x)e“ans @)

TanB () = T(TA (SU)»rB (x))v Wang (7) = min (WA (x)ﬂ*’s (w))

and T-complex fuzzy subset AU B by u, () =7, ,(x)e®aus®)

AUB
raop(@) =C(r (@), r,(2), w, p(@) =max (w,(z),w,(z)).
Example 2.6. Let M = {x,z2,23} and
A = {(z1,0.5¢01T), (25,0.6¢™), (x3,0.8¢"-™)}
and
B = {(x1,0.3ei0'6”), (x2,0,5ei27f)’ ($3’0'96i0.67T)}

be two complex fuzzy subsets of M. Then AN B and AU B are defined
by:
AN B = {(21,0.3¢°7), (29,0.5¢™), (x3,0.8¢0™)}

AU B = {(21,0.5¢"57), (29,0.6e™7), (x3,0.9¢7)}

Definition 2.7. Let A = {(z,u,(x))} and B = {(z,uy(x))} be two
complex fuzzy subsets of a k-vector space V. Then T-complex fuzzy
subsets A + B and v.A of V for each v € k, are defined by:

)

Hayp (l‘) =Tasn (x)eiwAJ’B(m ,

_ SUPgz—q {T Ta (a)7 g (b) } Zf r=a+b
Tavn(?) = { 0 " ( ) elsewhere

w (.’E) = SUPz=a+b {mln (wA (a)7 Wg (b))} Zf Tr=a-+ b7
" 0 elsewhere
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forallz € X, and p_,(z) = 7a%A(Jy)ez‘ww,(an),

ra(3z)  if v #0
roale) =91 if y=0, z=0
0 ify=0,x#0
1 ; 0
w. (@) :{ BUA(V:E) i@fff?:#&

for all z € X. Further if AN B =0, then A + B is said to be the direct
sum and denoted by A& B.

Example 2.8. Let V = {v|v = cje; + cae2} where e; = (1,0), ex =
(0,1) and ¢1,c2 € R. Consider T-norm T}y, Let

A = {(0, 060),(0161, 0.86”)7 (coea, 0.2ei2“), (cre1 + coeq, 0.26”)}
and
B = {(0, 0¢%), (c1e1, 0.6e"5™), (caea, 0.4¢T™), (cre1+coe, 0.4¢7057)}

be two complex fuzzy subsets of V. Then T-complex fuzzy subsets A+ B
and v.A of V for each v € k, are defined by:

A+ B ={(0, 0e°), (cre1, 0e™), (caea, 00), (cre1 + cpez, 0.4€05T)},
and
v.A ={(0, 0", (cre1, 0.8¢™), (caea, 0.2¢"7), (creq + coea, 0.2¢™)}
when v # 0 and
v.A = {(0, 1%, (cre1, 0€), (coea, 0e), (cre1 + coeq, 0e0)}
when v = 0. We compute pa4p(cre1 + c2ez) and other cases are obvios:
Let c1e1 + coea = (are1 + ages) + (byeq + beez). Then
T(rA(alel + ageq), 15 (brer + b2€2)) = Tmin(0.2, 0.4) = 0.2

T(TA(clel), T‘B(CQEQ)) = Tmin(0.8, 0.4) = 0.4
Hence r,., , = max(0.2, 0.4) = 0.4. Also

min (w, (a1e1 + azez), wy(bier + baez)) = min(w, 0.57) = 0.5

min (w, (c1e1), wy(c2e2)) = min(m, 0.77) = 0.77

Hence w,, , = max(0.57, 0.77) = 0.57.

Theorem 2.9. i) Let A = {(z,p,(z))} and B = {(z,p,(z))} be
two T-complex fuzzy subspaces of V. Then AN B = {(z,pu,.5(2))},
A+ B ={(z,pi0,5)} and v.A = {(z,p, (7))} for each v € k, are
also T-complex fuzzy subspaces of V.

ii) Let A= {(z,p,(z))} and B = {(z,uy(x))} be two C-anti complex
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fuzzy subspaces of V. Then AUB = {(x, p,,,(x))} is a C-anti complex
fuzzy subspace of V.

Proof. We prove (ii) and (¢) is similar.

Favs (v + Ay) = C(r,(ve + Ny), 7 (v + M)
< (400 Coaary )
= C( C(rA(x)7rB(x))?C(TA(y)7rB(y))>

= C( T'yus (IL‘), TauB (y))
waup (Y2 + Ay) = max (w, (v + Ay),wp (Y2 + Ay))

< max (maX (wWa(@), 0, (), max (wy (), wg (y)))

= max <max (wA (7),wy ($))7maX (WA (Y),wy (y))>

= max (WAUB (1:)7 Waus (y)> -

Definition 2.10. Let B = {(z, u,(z))} be a complex fuzzy subset of
a group G. Then B is called a complex fuzzy subgroup of G, under
T-norm (an anti complex fuzzy subgroup of G under C-conorm), if it
satisfies two following conditions:

i) 1y (2y) > T(r,(2).ry (1)), wy(ay) > min (w, (), wp (x)).
ry(2y) < O(ry(2),ry(2)),  wy(zy) < max (w, (z),w, <x>)>,

i) rp(a) 2 rp(2), wy(z™h) > wy(2)
for any =,y € G.
Example 2.11. Let G = {e, a, b, ¢} be the Klein 4-group. Every element

is its own inverse, a® = b®> = ¢?> = e and the product is defined by
ab=c, ac=0b, bc = a. Let

A ={(e, 0.5¢"7), (a, 0.5¢"27), (b, 0.6¢"%7), (c, 0.7¢"27)}
B = {(e, 0.64¢*™), (a, 0.4¢'™), (b, 0.5¢"*7), (¢, 0.6e12™)}

be two complex fuzzy subsets of GG. Consider algebraic product T-norm
Tp(z,y) = zy and algebraic product C-conorm C(z,y) = = +y — xy.
Then A is a complex fuzzy subgroup of G under T-norm and B is an
anti complex fuzzy subgroup of G under C-conorm.

Definition 2.12. Let f be a mapping from a nonempty set M to a
nonempty set M'. Let A = {(z,p,(x))} and B = {(z,uy(z))} be
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complex fuzzy subsets of M and M’ respectively. Then the inverse
image of B under f, is a complex fuzzy subset f~![B] defined by:

w ()
Mffl[B] (.’IJ) - Tffl[B] (.’B)e f 1[B] ? rffl[B] (x) = TB (f(x))’

W, (@) = 0, (F(@))

for all z € V and the image of A under f is a complex fuzzy subset
flA] = {(x7lu’f[A] (z))} defined by: Hyra) (y) = Uy (y)emf[A] (y))

s {r @ e i)} if ye fOM)
T () = { 0 if v F(M)

910 (0) {S“p fw @l ze W)} if ye ()

0 if y¢ f(M)
for all y € M’

Theorem 2.13. Let f be a linear mapping from the k-vector space V
to the k-vector space V.

i) If B={(z,pug(x))} is a T-complex (C-anti complex) fuzzy subspace
of V, then f~1[B] is a T-complex (C-anti complex) fuzzy subspace of V.
i) If A= {(z,p,(x))} is a T-complex fuzzy subspace of V, then f[A]
is a T-complex fuzzy subspace of V.

Proof. i) Let B be a T-complex fuzzy subspace of V. For each x,z € V
and 7,0 € k, we have

T(r @)1y (2) = T(rp (F(2), 75(f(2)))
<y (v (@) + 0 (2)),
=1y (f(yz +82)),
=7, (7 +62)
Similarly we can prove
min (wffl[B] (@), W,y (2) >w o1 (VE + 02).

Hence f~![B] is a complex fuzzy subspace of V.
Now if B be a C-anti complex fuzzy subspace of V, then for each z,z € V
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and v, 90 € k, we have
C(Tf—l[B] (x)7rf—1[B] (Z)) = C(’I”B(f(l’)), g (f(z)))

> 1y (7f(2) +6£(2)),

rs (f(72 +62)),

= Tf—l[B] (’ny‘ + 62)
Similarly we can prove
max (wFl[B] (x), Wi () > W i (yx + 02).

Hence f~![B] is a C-anti complex fuzzy subspace of V.

i) Let A be a T-complex fuzzy subspace of V. To prove that f[A] is
a T-complex fuzzy subspace of V', we show that for each y,w € V'’ and
v,6 € k, we have

T(r iy (Y), 7y (W) =70 (vy + Sw).
1) If y,w € f(V), then we have

T(r (), 7y (w)) = T(sup {r,(z)| z € f~H ()}, sup {r,(2)| z € 1 (w)})
> sup {T'(r,(2),7,(2)) |z € fHy), 2 € FH(w)}
> sup {r, (yo +0z)| x € fH(y), 2z € f~H(w)}
> 14 (VY + Sw).

2) Ifye f(V)and w ¢ f(V), we have
T(rpn (), 7y () = T (sup {r, ()| z € f~(y)}, 0)
> sup{T'(r,(z),0)| 2 € [ (y)} =0
> 0=r,,(yy+ow).
3) Ify,w ¢ f(V), we have
T (7)o (W) =T(0, 0) =0>0=r,, (vy+ ow).
Similarly we can show that

min (wf[A] (y)a WA (w)) 2 Weia) (’Yy + (5U})
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Theorem 2.14. Let f : V — V' be a linear mapping between the k-

vector spaces. Then for any T-complex fuzzy subspace A = {(x,p,(z))}
and D = {(x,pn,(x))} of V and all X € k, we have

1) f[A+ D] = flA] + f[D],
2) fIAA] = AfIA]

Proof. 1) Let w € V'. We want to show that a = b where a =7, , (w)
Lo (w). Suppose first that w ¢ Imf. Then a = 0. Also if
z,y € V/ with x +y = w, then at least one of the z,y is not in Imf and
thus 7., (z) A 7, (y) = 0. So we have

T(r,u(x), 7,5 (y)) = 0. Hence b =0 = a.

Assume next that w € Imf. Given € > 0, there exists z € V with
f(z) = w such that 7, ,(2) > a — . Then there exist z,y € V with
x +y = z, such that T(r,(z),7,(y)) > a —e. Since f(z)+ f(y) = w,
we have

and b:rf[A

b= supy—y o {T(rf[A] (u), T o) (U))}
> T (r 0 (F(2)),7 (F(1)))

>T(r (), (1))

>a—¢€

Since € > 0 was arbitrary, we get b > a. On the other hand given £ > 0,
there exist u,,u, with v, +u, = w such that

b—e < T(rf[A] (w))s 7 (u2))

Taking ¢ < b (if b = 0 then a = 0 and we have nothing to prove),
we have that u,,u, € Imf. Therefore, there exist x1,z2 in V with
u, = f(x1), u, = f(x2) such that

b—e <T(r,(z1),7,(x2)).

Since f(x1 + x2) = w, we get a > b — ¢ and hence a > b, because € > 0

was arbitrary. So a = b. Similarly we can prove that Wiiarp) = WA sio)-
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2) Let weV'c=r,,  (v) and d =1,
¢ =d=0. Assume that w € Imf. If A # 0,

c=sup {r,,(z)| f(z)=w}
= sup {TA(§JU)| f(z) =w}
=sup {r,(y)| f(Ay) = w}

=sup {r,(y)| Mf(y) =w}

s (W) I w ¢ Imf. Then

=T\ (w) = d.

Next suppose that A = 0. If w # 0, then c=0 and d =r,, ,,(w) = 0.
If w =0, we have

c = sup {r,,(z)| f(z) =0}
= sup {1] f(z) =0}
=sup {r,(y)|y €V}

= T4 (0) = d.
In a similar manner, we can show that w ] = Wagial and this completes
the proof. O

Definition 2.15. Let X = {(z,p,(z))|z € X} be a complex fuzzy
subset of M. We denote the set of all complex fuzzy subsets of M which
are less or equal to X (called complex fuzzy subsets of X) by S4. If 7
is a collection of complex fuzzy subsets of X, that satisfies the following
conditions:

1) X, ¢per,

2) {Aitier €7 = ‘U]Ai €T,

(2

3) ABeT = AﬂeBET,

then (X, 7) is called a complex fuzzy topological space (Cfts).

Example 2.16. Let M = R" and X = 1. Let B(a,r,b,¢) = {(=, Epamne)|T €
X} be a complex fuzzy subset of M that Psarbie) equals to 0 outside

or on the sphere B(a,r) and equals to the function be’ on M which
b: B(a,r) —[0,1], ¢: B(a,r) — [0, 27] are two arbitrary functions. We
call the fuzzy topology induced by

Be, = {B(a,r,b,c),a € R", r e RY, b: B(a,r) — [0,1],c: B(a,r) — [0, 27]}
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the complex fuzzy Euclidean topology of dimension n (denoted by 7, ).

Definition 2.17. Let ¥ : Slﬂ\(/[ — S, be a mapping, lies within the
unit circle in the complex plane and be represented by

T(A) =1 (A=A VA = {(x, 1, (z))|z € X} € S'Y, where

re ST = 10,1] and w, : SYY — [0, 2] satisfy:

(i) T‘I(X) = T‘z(o) =1, w‘z(X> = wz(o) = 2m,
(i) VA = {(z, pa(z))lx € X}, B = {(z,up(2))|lzr € X} € S'¥

re(ANB) = T(re(A),r5(B)),  w;(ANB) = (ws(4) A
WK(B))v

(i) V{4, = {(@, 11, (@)l € X}, j € J} € CLY
Ti(UjeJ 4;) > /\i,jeJT(sz(Ai)ar (Aj))a
wS(UjEJAj) > inf{ Wz(Aj)vj € J}’

Then ¥ is called complex gradation of openness under T-norm and
(X,%T) is called a T-complex fuzzy topological space with T-complex
gradation of openness (T'C'G-fts).

Example 2.18. Let M = R” and X = 1. As two useful examples, we
define Toy, : Sl% — I by:
1(B) B e

Cn?

Ten(B) = { 0(B) elsewhere.

and ‘ICz'nf : Slg(/[ — 1 by: ‘ICinf(B) =T (B)einCinf (B)’

= ' Tcinf
1 B= 0,
Tcmf(B): inf{rB(x) cx e M} O#BGTCH,
0 elsewhere,
27 i B = 6’
w‘fcmf(B): inf{wB(:r):xeM} 0#BerT,,
0 elsewhere,

Obviously both are complex gradation of openness under T-norm
Trmin. In general if ¥ be any complex gradation of openness under 7T-
norm T on 1,,, such that supp® = 7, then we call (1,,, Tcyp) the
T-complex fuzzy Euclidean topological space with complex gradation of
openness.
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Definition 2.19. Let % : Slé\(/l — S, be a mapping, lies within
the unit circle in the complex plane and be represented by T(A) =
re(A)e®sA) VA = {(z,p,(x))|lz € X} € SYB, where 7, : S'¥ —
[0,1] and w, : S*¥ — [0, 27] satisfy:

(1) e (X) =7 (0) = 0, w(X) =wi(0) = 7,
(it) YA = {(z, p1,(@)|z € X}, B ={(x,p,(2))|w € X} € S'¥ |
re(ANB) < C(rs(A),m:(B)),  ws(ANB) < max(ws(4),ws(B)),
(iii) V{A; = {(z,p,, (@))|w € X}, j € J} € CIY,
TT(U]’GJ 4;) < \/i,jeJ C(Tz(Ai)v Ts(Aj))v
ws (Ujes A4j) < sup{ we(45),5 € J}.
Then ¥ is called anti complex gradation of openness under C-conorm,

and (X, %) is called a C-anti complex fuzzy topological space with anti
complex gradation of openness (CACG-fts).

Example 2.20. Let M = R” and X = 1. We define Tacw, : Slé\(/l =1
by:
i(B) B e

= Cn)
Tacn(B) = { 0(B) elsewhere.
and Tacins @ SYY — I, by: Tacsup(B) = riAcSup(B)einAcsu” (B)’
r (B) = sup{r (r):x € M} 0#Ber,,
FACsup 0 elsewhere,
3 B =0,
0 elsewhere,

Obviously both are anti complex gradation of openness under C-
conorm Cpae- In general if € be any anti complex gradation of open-
ness under C-conorm C' on 1,,, such that supp® = 7., then we call
(140, Tacn) the C-anti complex fuzzy Euclidean topological space with
complex gradation of openness.

Theorem 2.21. Let T' be idempotent and (X,T) be a T-complex fuzzy
topological space. For any r,s € [0,1], we define

Tos={Aec L¥ :r(A) >r, w(A) > s}. Then (X,T,s) is a complex
fuzzy topologiacal space.
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Proof. Since Dom% = S 1% for all A € supp¥, we have A is less than or
equal to X. Hence suppA C suppX. Also we have

i) r.(0) =7 (X)=1>r, w(0) =w(X)=2r > s. Hence
¢, X €%

ii) For any A, B € %, ,, using the condition (ii) of Definition 2.8
and (72) we have

TS(A N B) > T(Tg(A),TS(B)) > T(Tv T) =
we (AN B) > min (w,(A),w,(B)) > min(s,s) = s.

Thus AN B € %, .

iii) For all family {A; = (uAj,l/Aj), j € J} CCIY, we have

re(lJ4) > N\ T(re(A),re(45) > N\ T(rr)) =7

Jj€J 1,j€J i,J€J
wi(U Aj) > inf{ w (4;),j € J} > s.
jeJ
Hence |J A4; € T, .
Jj€J
Therefore, (X, %, ;) is a complex fuzzy topological space. O

Definition 2.22. Let T be a T-norm and {z;|i € N} be a countable
subset of [0, 1]. Define

To({zi}) =21, T3({xi}) = T(1, 22)
Té’)({xl}) =T(T(x1,x2),x3), Té)({xl}) = T(T(T(ajl,xg),$3),x4)
Té({xl}) =T(...T(T(x1,22),23), ..., k)
Then we define
T3 () = lim Th({a:})
called spiral T-norm of {z;}.

Lemma 2.23. LetT be a T-norm. Then the definition of spiral T-norm
of a countable subset {x;|i € N} of [0,1], is well defined. Also we have

Proof. Using (T'1) and (72), we have

T§({zi}) < T(1,1) = 21 = Tg({w:})
To({xi}) = T(T(x1,22), w3) < T(T(x1,22),1) = T(w1,w2) = T ({z:})
By contradiction on k, we can prove that {Té({xl})} is a decreasing

sequence in [0,1]. Since we assumed that the lattis [0, 1] is complete,
limy_ 00 TC];)({J,‘Z}) exists. Becouse of (T'4), the associativity of T, this
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definition is independent of the ordering of the elements of this subset.
Hence definition of spiral T-norm of {x;} is well defined. O

Definition 2.24. Let {z;|i € N} be a countable subset of [0, 27r]. Define

v = i i}) = min(x,x
Hél)ﬂ({xz}) = 21, %n({:vl}) = (x1,22)

Hél)n({wz}) = min(min(z1, 22), x3),

4
m@l}n({xz}) = min ( min(min(z1, 22), 23), 24)
mén({xl}) = min (... min(min(z1, 22),23), ..., 2))

Then we define i

min({z;}) = lim min({z;})
called spiral minimum of {x;}.
Lemma 2.25. The definition of spiral minimum of a countable subset
{zi|i € N} of [0,27], is well defined. Also we have

Proof. Since [0, 2] is a complete lattis, setting T' = Ty, = min, we can
prove this lemma similar to the proof of Lemma 2.22. O
Definition 2.26. Let L be a lattice. If any countable subset {x; | i €

J C N} of L, has an infimum in L, then L is called a semicomplete
lattice.

Theorem 2.27. Assume that X is a complex fuzzy subset of M and T,C
are T-norm and C-conorm on [0, 1] respectively. Let Mz(X) be the set
of all T-complex gradations of openness on X. We write T3 < %y
if o, (A) < ro (4), we (A) < w, (A)  forall A e S Then
(M<(X), <), is a semicomplete lattice.

Proof. Tt is clear that < between functions from S'% to [0,1], is an
equivalence relation. Hence (M (X), <) is a partialy orderd set. Define

re, (0) =7 (X) =1, w, (0) = we (X) = 2m,

(A) =0, ,w, (A)=0 VAeCIy —{0,X},

(A =1, w (4 =2r VAeL¥.

Then Ty and T are two T-complex gradation of openness on X. Since
Py (A) S 7o(A) S re (A), wy, (A) < wi(A) Swy (4) VA€ S,

T‘Io

r
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we have Ty, T are respectively 0,1 in the lattice set Mz (X).

We show that every countble subset {T; | j € N} of Mg - (X) has an
infimum in it.

Define T by T(A) = ro(A)es@, r (4) = TF({r; (4)}) and
wg (A) = ming ({w; (A)}). Since for each i € N

(X) =Tq (0) =1, We (X) :ws(o) =2,

i i i i
we have

T(re (X),re, (X)) =T(1,1) =1
T(T(re, (X), e, (X)),7s, (X)) =T(1,1) = 1,
min (w, (X),ws, (X)) = min(27,27) = 27

min (min(w,, (X),w (X)), we, (X)) = min(2n, 27) = 27,

W,

By contradiction on k, we can show TCé‘)({ﬂIi (X)}) =1and mrlilrlé“@({c%i (X)}) =
0 for each k € N. Therefore, 7 (X) = 1 and w_(X) = 27. Similarly we

can show 7_(0) = 1 and w,(0) = 0.

Also for each A,B el LAX/I , we have

Té({’r‘Ti (ANB)}) = T(T(r‘zl (AN B)), e (AN B))),r(ZS (AN B)>

> (7T, ()., (). T () (B ) T, ()75, ()

1(1 (702, ()72, (). T (B, (B) ) T (A (21 )
=1 (1(T0 ), (A0, () T (T, (B, (B, ()

=T8O (DT (B)) ).

By contradiction on k, we can show for each k € N we have

TE({re (AN B)}) > T(Tg)({r@ (A)}), Th({re <B>}>) |
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Therefore,

T(ANB) =Tg({r: (AN B)})

= limy o0 T ({rs, (AN B)})
> g T T (e (AT (BD), )ty (321)

> (T3 ((re, (D). T (=, (D)D)

=T(rs(4),r:(B)),
Similarly we can prove that w (AN B) > min (w, (A), w, (B)).

Y E

For any arbitrary family {4y, k € K} C IL¥, we have

r‘Ij( U Ag) 2 /\ T(rzj (Ak)ﬂ"zj (Al))

keK kleK

for each j € N. Hence

T3((r2, Urex A0D = T (T(re, Uere A0, Usek A0) -, s A1)
> (7 Anger T (407 (A0). Agere T (0. (4)) )
Aier T, (40).72, (40)
> Nuser (T (T, (40172, (40), T (A0) 7, (40) )
(o, ()., (4)
~ Nuier (T (T, (Ao, (40). T, (7, (40) )
(o, () ()

= Nuier (T (T (Ao, (40). o (40)),
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T <T(r¢1 (A1), 7, (A1), 7, (Az))>

= Nier T( T80, (40D T3 0 (40 )

By contradiction on k, we can show for each k € N we have
Tt (J A = A (780 (400 T (7= (40D
J kleK

Therefore,

T(U; 45) = Tg ({r<, (U; 45)})

= limg e T ({re, (U; 4)))

>t A T( T80, (40D T (1, (40D
— v 1 e T(Tg;({rgi (AP T (e, <Al>}>)

- /\k,ZEKT(TgHrTi<Ak>}>,Tg<{rgi<Az>}>)

= Nkser T(rs(Ar), s (AD).

Similarly we can prove that

wI(U Aj) > /\ min (wT(Ai)\/wz(Aj)).

jes ij€J
Hence T € Mz (X). Therefore, this lattis is semicomplete. O

3. CONCLUSION

In this paper, we define (anti) complex fuzzy subspaces of a k-vector
space V', under T-norm (C-conorm). Then we discuss various operations
between T-complex fuzzy sets and also the image and inverse image of a
T-complex fuzzy subspace under a function. We introduce complex (anti
complex) fuzzy topological space (X,¥) with complex (anti complex)
gradation of openness under T-norm (C-conorm) which X is itself a T-
complex (C-anti complex) fuzzy subset of a nonempty set M. Finally
we define spiral T-norm of a sequence in [0, 1] and spiral minimum of
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a sequence in [0,27] and then using them, we prove that the set of all
T-complex gradations of openness (Mz(X), <) on X, is a semicomplete
lattice

In the continuation of our research, the question arises, how can this
model be extended to complex fuzzy topological manifolds or fuzzy vec-
tor bundles?
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