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Figure 1. A Fibonacci cube and its double

1. Introduction

In [30] it was observed that the binary strings of length n + 1 without
zigzags, i.e. without 010 and 101 as factors, can be reduced to the Fi-
bonacci strings, i.e. binary strings without two consecutive 1’s, of length
n. The set of Fibonacci strings can be endowed with a graph structure
saying that two strings are adjacent when they differ exactly in one po-
sition. The graphs obtained in this way are called Fibonacci cubes [21]
and have been studied in several recent papers. One interesting such
graph structure is the one induced by the graph structure of Fibonacci
strings, that is the one obtained defining the adjacency saying that two
binary strings without zigzags are adjacent if and only if the correspond-
ing Fibonacci strings are adjacent as vertices of the Fibonacci cube. The
resulting graph can be built up by taking two distinct copies of the Fi-
bonacci cube Γn and joining every vertex v in one component to every
vertex w′ in the other component corresponding to a vertex w adjacent
to v in the first component. See Figure 1 for an illustration. This is
a general construction that can be performed on every simple graph.
E. Munarini and et al. in [31] called double graphs all the graphs that
can be obtained in such a way and studied their extensive properties in
detail.

In this paper, we present explicit formulas for some topological indices
on double graphs. In the next section, we give necessary definitions
and propositions for the reader’s convenience, but we refer the reader
to [31] for a more thorough exposition. In section 3 first, we recall a few
topological indices and then in five subsections, we prove new formulas
for these indices.
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2. Definitions and preliminaries

In this paper, we will consider only finite simple graphs (i.e. without
loops and multiple edges). As usual, V (G) and E(G) denote the set
of vertices and edges of G, respectively, and adj denotes the adjacency
relation of G. For a graph G, the degree of a vertex u is the number of
edges incident to v denoted by dG(u). If |E(G)| = m, then [19]:∑

u∈V (G)

dG(u) = 2m. (2.1)

For all definitions not given here see [6, 19, 22].
The direct product of two graphs G and H is the graph G ×H with

V (G ×H) = V (G) × V (H) and with adjacency defined by (v1, w1) adj
(v2, w2) if and only if v1 adj v2 in G and w1 adj w2 in H.

The total graph Tn on n vertices is the graph associated with the
total relation (where every vertex is adjacent to every vertex). It can be
obtained from the complete graph Kn by adding a loop to every vertex.

The double of a simple graph G is defined as the graph D[G] = G×T2.
Since the direct product of a simple graph with any graph is always a
simple graph, it follows that the double of a simple graph is still a simple
graph. See Figure 2 for some examples.

In D[G] we have (v, h) adj (w, k) if and only if v adj w in G. Then,
if V (T2) = {0, 1}, we have that G0 = {(v, 0) | v ∈ V (G)} and G1 =
{(v, 1) | v ∈ V (G)} are two subgraphs of D[G] both isomorphic to G
such that G0 ∩ G1 = ∅ and G0 ∪ G1 is a spanning subgraph of D[G].
Moreover, we have an edge between (v, 0) and (w, 1), and similarly we
have an edge between (v, 1) and (w, 0) whenever v adj w in G. We will
call {G0, G1} the canonical decomposition of D[G].

From the above observations, it follows that if G has n vertices and
m edges then D[G] has 2n vertices and 4m edges. In particular,

dD[G](v, k) = 2dG(v). (2.2)
The lexicographic product (or composition) of two graphs G and H is
the graph G ◦ H with V (G) × V (H) as vertex set and with adjacency
defined by (v1, w1) adj (v2, w2) if and only if v1 = v2 and w1 adj w2 in H
or v1 adj v2 in G. In other words, the graph G◦H can be obtained from
G substituting to each vertex v of G a copy Hv of H and joining every
vertex of Hv with every vertex of Hw whenever v and w are adjacent in
G [22].
Example 2.1. A composition of Cn and K2 is called a closed fence. We
have:

D[Cn ◦K2] = Cn ◦ D[K2] = Cn ◦K2,2

We state the following three results which will be used in the sequel.
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Figure 2. (a) a path P4 and its double (b) a cycle C4

and its double

Lemma 2.2. [31, Lemma 1] For any graph G we have G×Tn
∼= G◦Nn,

where Nn is the graph on n vertices without edges.
Proposition 2.3. [31, Proposition 2] For any graph G on n vertices,
D[G] ∼= G ◦N2 and D[G] is n-partite.
Proposition 2.4. [31, Proposition 5] For any graph G ̸= K1, G is
connected if and only if D[G] is connected.
Proposition 2.5. For any graph G1 and G2 the following properties
hold:
1. D[G1 ×G2] = G1 ×D[G2] = D[G1]×G2,
2. D[G1 ◦G2] = G1 ◦ D[G2].

Let G1 and G2 be two graphs. The sum G1 +G2 of G1 and G2 is the
disjoint union of the two graphs. The complete sum (or join) G1⊞G2 of
G1 and G2 is the graph obtained from G1 +G2 by joining every vertex
of G1 to every vertex of G2. We will use the following proposition in the
last section.
Proposition 2.6. [31, Proposition 10] For any graph G1 and G2 the
following properties hold:
1. D[G1 +G2] = D[G1] +D[G2],
2. D[G1 ⊞G2] = D[G1]⊞D[G2].

3. Main Results

In this section, we will compute some topological indices for double
graphs. A topological index is a numerical quantity related to a graph
that is invariant under graph automorphisms. As usual, the distance
between the vertices u and v of G is denoted by dG(u, v) and it is de-
fined as the length of a shortest path connecting them. Thus distance
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(shortest-path) between two vertices (u, x) and (v, y) of D[G], where
u, v ∈ V (G) and x, y ∈ V (T2) = {0, 1}, is given by

dD[G]((u, x), (v, y)) =

{
2, if u = v
dG(u, v), if u ̸= v

(3.1)

Now, we recall some topological indices and then obtain the explicit
formulas for these indices on double graphs.

3.1. Topological index with respect to the distance between
vertices. The Wiener index W (G) is the first distance-based topologi-
cal index defined as the sum of all distances between vertices of G, [36]
i.e.

W (G) =
∑

{u,v}⊆V (G)

dG(u, v). (3.2)

The name Wiener index or Wiener number for the quantity defined in
Equation (3.2) is usual in chemical literature, since Harold Wiener [36],
in 1947, seemed to be the first to consider it. In chemical language, the
Wiener index is equal to the sum of all shortest carbon-carbon bond
paths in a molecule. Wiener himself used the name path number, but
denoted his quantity by w. Wiener’s original definition was slightly dif-
ferent - yet equivalent - to (3.2). The definition of the Wiener index in
terms of distances between vertices of a graph, such as in Equation (3.2),
was first given by Hosoya [20]. For more information on the Wiener in-
dex and its applications, we encourage the reader to consult papers by
Dobrynin and co-authors [9, 10] and references therein.

Next, we start with the following result.

Proposition 3.1. For any connected graph G on n vertices we have:
W (D[G]) = 4W (G) + 2n

Proof. The claim is obtained by formulas (3.1) and a direct computa-
tion as

W (D[G]) =
∑

(u,x) ̸=(v,y)

dD[G]((u, x), (v, y))

=
∑
u̸=v
x=y

dD[G]((u, x), (v, y)) +
∑
u̸=v
x ̸=y

dD[G]((u, x), (v, y))

+
∑
u=v

dD[G]((u, x), (v, y))

= 2
∑
u̸=v

dG(u, v) + 2
∑
u̸=v

dG(u, v) + 2n

= 4W (G) + 2n.

□
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The Harary index of a graph G, denoted by H(G), has been introduced
independently by Plavšić et al. [32] and by Ivanciuc et al. [23] in 1993.
It has been named in honor of Professor Frank Harary on the occasion
of his 70th birthday. This index H(G), a parallel to the Wiener index, is
reasonably well-correlated with many physical and chemical properties
of organic compounds, and chemists are hence interested in computing
it for a variety of classes of graphs. The Harary index is defined by:

H(G) =
∑

{u,v}⊆V (G)

1

dG(u, v)
(3.3)

where the summation goes over all unordered pairs of vertices of G and
dG(u, v) denotes the distance between the two vertices u and v in the
graph G [37].

Proposition 3.2. If H(G) is the Harary index of a connected graph G
with n vertices, then

H(D[G]) = 4H(G) +
n

2

Proof. According to the definition of Harary index of the graph G and
from formula (3.1), we have:

H(D[G]) =
∑

(u,x)̸=(v,y)

1

dD[G]((u, x), (v, y))

=
∑
u̸=v

1

dD[G]((u, x), (v, y))
+

∑
u=v

1

dD[G]((u, x), (v, y))

= 4
∑
u̸=v

1

dG(u, v)
+

∑
u=v∈V (G)

1

2

= 4H(G) + n
2

□

3.2. Topological index with respect to degrees of vertices. The
first and second Zagreb indices of graph G were originally defined as

M1(G) =
∑

u∈V (G)

d2G(u) (3.4)

and
M2(G) =

∑
uv=e∈E(G)

dG(u)dG(v), (3.5)

respectively. The first Zagreb index of G can be also expressed as a sum
over edges of G, i.e., M1(G) =

∑
uv=e∈E(G)

(dG(u) + dG(v)). We encour-

age the reader to consult [18, 26] and references therein for historical
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background, computational techniques, and mathematical properties of
Zagreb indices.

Proposition 3.3. Let D[G] be the double graph of a graph G. Then
M1(D[G]) = 8M1(G)

Proof. First of all, we follow by M1(G) =
∑

u∈V (G)

d2G(u):

M1(D[G]) =
∑

(u,x)∈V (D[G])

(dD[G](u, x))
2

=
∑

(u,x)∈V (D[G])

(2dG(u))
2

= 4
∑

(u,x)∈V (D[G])

d2G(u)

= 8
∑

u∈V (G)

d2G(u) = 8M1(G).

□
For the second Zagreb index of the double graph G, we have:

Proposition 3.4. Let D[G] be the double graph of a graph G. Then
M2(D[G]) = 16M2(G)

Proof. Similar to the first Zagreb index we have

M2(D[G]) =
∑

(u,x)(v,y)=e′∈E(D[G])

dD[G](u, x)dD[G](v, y)

=
∑

e′∈E(D[G])

(2dG(u).2dG(v))

= 4
∑

e′∈E(D[G])

dG(u).dG(v)

= 4.4
∑

e=uv∈E(G)

dG(u).dG(v)

= 16M2(G).

□
The sum of weights over all edges of G, which is called the Randić

index or molecular connectivity index or simply connectivity index of G
and is denoted by R(G), has been closely correlated with many chemical
properties [8] and found to parallel the boiling point, Kovats constants,
and a calculated surface [33]. In addition, the Randić index appears
to predict the boiling points of alkanes more closely, and only it takes
into account the bonding or adjacency degree among carbons in alkanes.
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Note that according to different applications, different weights may be
assigned to the edges. Hence, we indicate that the weight of each edge
e = uv is 1√

dG(u)dG(v)
. Accordingly, this index is defined as:

R(G) =
∑

e=uv∈E(G)

1√
dG(u)dG(v)

(3.6)

Proposition 3.5. For a graph G, we have:

R(D[G]) = 2R(G)

Proof.

R(D[G]) =
∑

e′=(u,x)(v,y)∈E(D[G])

1√
dD[G](u, x)dD[G](v, y)

=
∑

e′∈E(D[G])

1√
2dG(u).2dG(v)

= 1
2

∑
e′∈E(D[G])

1√
dG(u)dG(v)

= 1
2 .4

∑
e=uv∈E(G)

1√
dG(u)dG(v)

= 2R(G). □

The atom-bond connectivity index is a valuable predictive index in the
study of the heat of formation in alkanes [12, 13]. The mathematical
properties of this index and its new version were reported in [7, 8, 16, 15].
It is defined as:

ABC(G) =
∑

e=uv∈E(G)

√
dG(u) + dG(v)− 2

dG(u)dG(v)
(3.7)

where, dG(u) is the degree of u, etc.
If no ambiguity is possible, the subscripts G and D[G] may be omitted.

Proposition 3.6. Let D[G] be the double of graph G. Then:

ABC(D[G]) = 2
√
2

∑
e=uv∈E(G)

√
d(u) + d(v)− 1

d(u)d(v)
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Proof. By formula (2.2) we have

ABC(D[G]) =
∑

e′=(u,x)(v,y)∈E(D[G])

√
d(u, x) + d(v, y)− 2

d(u, x)d(v, y)

=
∑

e′∈E(D[G])

√
2d(u) + 2d(v)− 2

2d(u).2d(v)

=
√
2
2

∑
e′∈E(D[G])

√
d(u) + d(v)− 1

d(u)d(v)

= 4.
√
2
2

∑
uv∈E(G)

√
d(u) + d(v)− 1

d(u)d(v)

= 2
√
2

∑
e=uv∈E(G)

√
d(u) + d(v)− 1

d(u)d(v)
.

□

Let G be a graph and e = uv be an edge of G. The geometric-
arithmetic (GA) index is defined as [35]:

GA = GA(G) =
∑

e=uv∈E(G)

2
√
d(u)d(v)

d(u) + d(v)
(3.8)

Proposition 3.7. Let D[G] be the double of graph G. For the GA index
of D[G], we have:

GA(D[G]) = 4GA(G)

Proof. Similar to the ABC index one can write

GA(D[G]) =
∑

(u,x)(v,y)e′∈E(D[G])

2
√

d(u, x)d(v, y)

d(u, x) + d(v, y)

=
∑

e′∈E(D[G])

2
√
2d(u).2d(v)

2d(u) + 2d(v)

=
∑

e′∈E(D[G])

2
√
d(u)d(v)

d(u) + d(v)

= 4
∑

e=uv∈E(G)

2
√

d(u)d(v)

d(u) + d(v)

= 4GA(G).

□
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3.3. Topological index with respect to degrees and distances.
Schultz in [34] introduced a graph-theoretical descriptor for characteriz-
ing alkanes by an integer, namely the Schultz index, defined as [5]

S(G) =
∑

{u,v}⊆V (G)

(dG(u) + dG(v))dG(u, v).

Also, Klavz̆ar and Gutman defined the modified Schultz index of graph
G as follows [27]

S∗(G) =
∑

{u,v}⊆V (G)

dG(u)dG(v)dG(u, v).

Regarding to Shultz index we have:

Proposition 3.8. If G is a connected graph with |E(G)| = m, then

S(D[G]) = 8S(G) + 16m

Proof. According to the definition of the Schultz index of G and from
formulas (3.1) and (2.1), we have:

S(D[G]) =
∑

(u,x),(v,y)∈V (D[G])

[dD[G](u, x) + dD[G](v, y)]dD[G]((u, x), (v, y))

=
∑
u̸=v

(2dG(u) + 2dG(v))dG(u, v) +
∑
u=v

[4dG(u)] · 2

= 2
∑
u̸=v

[dG(u) + dG(v)]dG(u, v) + 8
∑

u∈V (G)

dG(u)

= 4.2
∑

u,v∈V (G)

(dG(u) + dG(v))dG(u, v) + 8.2m

= 8S(G) + 16m.

□

Proposition 3.9. Let G be a connected graph and let S∗(G) and M1(G)
be the modified Schultz index and the first Zagreb index of G, respectively.
Then:

S∗(D[G]) = 16S∗(G) + 8M1(G)



On the Topological Indices on Double Graphs 433

Proof.

S∗(D[G]) =
∑

(u,x),(v,y)∈V (D[G])

dD[G](u, x).dD[G](v, y).dD[G]((u, x), (v, y))

=
∑
u̸=v

2dG(u).2dG(v).dG(u, v) +
∑
u=v

2dG(u).2dG(u).2

= 4
∑
u̸=v

dG(u).dG(v).dG(u, v) + 8
∑

u∈V (G)

d2G(u)

= 4.4
∑

u,v∈V (G)

dG(u).dG(v).dG(u, v) + 8M1(G)

= 16S∗(G) + 8M1(G).

□

3.4. Szeged, PI, and GA2 topological indices on double graphs.
Suppose e = uv is an edge of a connected graph G. Let Nn(e) be the
vertices of G that are closer to u than to v and let Nv(e) be those vertices
which are closer to v than to u. More formally,

Nu(e) = {w ∈ V (G) : dG(w, u) < dG(w, v)} (3.9)

and
Nv(e) = {w ∈ V (G) : dG(w, v) < dG(w, u)}. (3.10)

Let nu(e) = |Nu(e)| and nv(e) = |Nv(e)|. Then the Szeged index of a
graph G, denoted by Sz(G), is defined as

Sz(G) =
∑

e=uv∈E(G)

nu(e)nv(e). (3.11)

Notice that vertices equidistant from both ends of the edge e = uv
are not counted. This topological index is a mathematically elegant
topological index defined by Ivan Gutman [17].

Suppose now that e′ = (u, h)(v, k) is an arbitrary edge in E(D[G]),
and e = uv is the corresponding edge in G. Then it is straightforward
to see that

n(u,h)(e
′) = 2nu(e). (3.12)

With this introduction, we have the following result:

Proposition 3.10. If D[G] is the double graph of G, then

Sz(D[G]) = 16Sz(G).
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Proof. According to the definition of the Szeged index and from formula
(3.12), we have:

Sz(D[G]) =
∑

(u,h)(v,k)=e′∈E(D[G])

n(u,h)(e
′)n(v,k)(e

′)

=
∑

e′∈E(D[G])

2nu(e).2nv(e)

= 4
∑

e′∈E(D[G])

nu(e)nv(e)

= 4.4
∑

e∈E(G)

nu(e)nv(e)

= 16Sz(G).

Here, note that in the second equality above, the subscript e = uv is
the corresponding edge in G with respect to the edge e′ = (u, h)(v, k) in
D[G]. □

The Padmakar-Ivan (PI) index of a graph G is defined as

PI(G) =
∑

uv=e∈E(G)

(nu(e) + nv(e)). (3.13)

In this definition, similar to the Szeged index Sz(G) of G, edges equidis-
tant from the two ends of the edge e = uv are not counted. The PI index
is very simple to calculate and has disseminating power similar to that of
the Wiener and Szeged indices. Khadikar and Karmarkar [24, 25] inves-
tigated the chemical applications of the PI index. They showed that the
proposed PI index correlates highly with W and Sz as well as with the
physicochemical properties and biological activities of a large number of
diverse and complex compounds. We encourage the readers to consult
papers [1, 2, 3, 4] for further studies on the mathematical properties of
the PI index and its applications in chemistry and nanoscience.

Proposition 3.11. If G is a connected graph and D[G] is the double
graph of G, then

PI(D[G]) = 8PI(G).
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Proof. Applying the formula (3.12) and using a similar method as in
proposition (3.10), we have:

PI(D[G]) =
∑

(u,h)(v,k)=e′∈E(D[G])

(n(u,h)(e
′) + n(v,k)(e

′))

=
∑

e′∈E(D[G])

(2nu(e) + 2nv(e))

= 2.4
∑

e∈E(G)

(nu(e) + nv(e))

= 8PI(G).

□

Following [14] the second geometric–arithmetic index of a connected
graph G is defined as follows:

GA2 = GA2(G) =
∑

e=uv∈E(G)

2
√

nu(e).nv(e)

nu(e) + nv(e)
(3.14)

where, as we mentioned in the introduction of the Szeged index, nu(e)
is the number of vertices of G lying closer to u than v, and nv(e) is
defined analogously. Using a similar proof as we did for the Szeged index
in Proposition (3.10) and applying formula (3.12) we get the following
formula for the GA2 index of the double graph:

GA2(D[G]) = 4GA2(G).

3.5. Eccentric connectivity index on double graph. Let G be a
connected graph. The eccentricity, ϵ(u) of a vertex u ∈ V (G) is the
maximum distance between u and any other vertex in G.
The eccentric connectivity index of G is defined as [29]:

ξc(G) =
∑

u∈V (G)

ϵ(u)d(u)

A vertex v ∈ V (G) is well–connected in G if v is adjacent to every other
vertex of G. Obviously, the eccentricity of a well–connected vertex is
equal to 1. The number of well–connected vertices of G is denoted by
w(G) [11].

It is clear from the definition that if u ∈ V (G) and a ∈ V (T2) = {0, 1}
then, the eccentricity of the vertex (u, a) of the double graph of G is given
by:

ϵ(u, a) =

{
2, if ϵ(u) = 1
ϵ(u), if ϵ(u) > 1.

(3.15)
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Proposition 3.12. Let G be a connected graph with |V (G)| = n and
w(G) the number of well-connected vertices of G. Then

ξc(D[G]) = 4ξc(G) + 4w(G)(n− 1)

Proof. The claim follows by Eq. (3.15)

ξc(D[G]) =
∑

(u,x)∈V (D[G])

ϵ(u, x)d(u, x)

=
∑

(u,x)∈V (D[G]),
ϵ(u) ̸=1

ϵ(u, x)d(u, x) +
∑

(u,x)∈V (D[G]),
ϵ(u)=1

ϵ(u, x)d(u, x)

=
∑

(u,x)∈V (D[G]),
ϵ(u) ̸=1

ϵ(u).2d(u) +
∑

(u,x)∈V (D[G]),
ϵ(u)=1

2.2d(u)

= 4
∑

u∈V (G)
ϵ(u) ̸=1

ϵ(u)d(u) + 8
∑

u∈V (G)
ϵ(u)=1

d(u)

= 4ξc(G) + 4w(G)(n− 1).

□

The total eccentricity of a given graph G is the sum of eccentricities
of all vertices of G and is denoted by ζ(G). For a k-regular graph G we
have ξc(G) = kζ(G) [11].

For two connected graphs G1 and G2, by the definition, it is obvious
that G1 × G2 and G1 + G2 are unconnected graphs. Thus we can just
compute the eccentric connectivity indices of D[G1◦G2] and D[G1⊞G2].

Proposition 3.13. Let G1 and G2 be two graphs. Then

ϵD[G1◦G2](u1, u2) =

{
2, ϵG1(u1) = 1,
ϵG1(u1), ϵG1(u1) ≥ 2.

Next, to state our last two results we need to recall the following (see
Theorem 3.10 and Corollary 3.14 of [11]).

Proposition 3.14.

ξc(G1[G2]) = w(G1)w(G2)(1−n1n2)+w(G1)(n
2
2(n1−1)+2m2)+n2

2ξ
c(G1)+2m2ζ(G1).

Proposition 3.15. If there are no well-connected vertices in G1 and
G2, then

ξc(G1 +G2) = 4(m1 +m2 + n1n2) = 4|E(G1 +G2)|.

Now we have
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Proposition 3.16. For two connected graphs G1 and G2, let ni =
|V (Gi)| and mi = |E(Gi)|, for i = 1, 2, w(G1) and ζ(G1) are the num-
ber of well-connected vertices and total eccentricity of the graph G1,
respectively. Then
ξc(D[G1 ◦G2]) = w(G1)(4n

2
2(n1 − 1) + 8m2) + 4n2ξ

c(G1) + 8m2ζ(G1).

Proof. Suppose n
′
i = |V (D[Gi])| and m

′
i = |E(D[Gi])|, we have n′

i =
2ni, m

′
i = 4mi for i = 1, 2. Since in the double graph, we have no vertex

of degree n′
i − 1, hence w(D[G2]) = 0. Therefore by Proposition (2.5)

and Proposition ( 3.14) we have
ξc(D[G1 ◦G2]) = ξc(G1 ◦ D[G2])

= w(G1)w(D[G2])(1− n1n
′
2) + w(G1)(n

′
2
2
(n1 − 1) + 2m

′
2)

+ n
′
2
2
ξc(G1) + 2m

′
2ζ(G1)

= w(G1)(4n
2
2(n1 − 1) + 8m2) + 4n2

2ξ
c(G1) + 8m2ζ(G1)

□

Finally, we close the article with the following result.

Proposition 3.17. Let G1 and G2 be two graphs. Then
ξc(D[G1 ⊞G2]) = 16|E(G1 ⊞G2)|.

Proof. We apply the notation in proof of the previous Proposition.
According to the Proposition (2.6) we have

ξc(D[G1 ⊞G2]) = ξc(D[G1]⊞D[G2]).

As double graphs have no well-connected vertices, by Proposition (3.15),
one gets

ξc(D[G1]⊞D[G2]) = 4(m′
1 +m′

2 + n′
1 · n′

2)
= 4(4m1 + 4m2 + 2n1.2n2)
= 16|E(G1 ⊞G2)|.

The proof now is complete. □
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