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Abstract. In this paper, the local stability of the endemic equilib-
rium and existence of a Hopf bifurcation in a Susceptible-Exposed-
Infected-Recovered (SEIR) delayed mathematical model for COVID-
19 pandemic are investigated. By using time-delay as a bifurcation
parameter, the associated characteristic equation is analyzed to re-
veal dynamics of the model. Finally, numerical simulations are
performed with suitable parameters choice to illustrate the theoret-
ical results of the model.
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1. Introduction

Coronavirus disease 2019 (COVID-19) is an infectious disease that can
cause illnesses range from the common cold to much more severe ill-
nesses like SARS and MERS [3]. This type of diseases which has an
enormous impact on the world population and economy, emerged as a
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sudden pandemic disease within human population and has become a
worldwide emergency [20, 4, 8]. Many scientists and researchers have
combined efforts in order to develop several approaches for understand-
ing the COVID-19 transmission dynamics and find out the effective con-
trol ways for preventing the virus spreads [4, 3]. Mathematical model-
ing is recognized as an essential tool for understanding the transmission
dynamics of HIV/AIDS as well as COVID-19 pandemic. Since the last
decades, the direct implementation of a mathematical model in epidemi-
ology has proven to be helpful in further understanding the dynamics
of infectious diseases and the corresponding control problems [1, 4, 14].
Therefore, mathematical models play a vital role in analyzing the mech-
anism of spread and control of infectious diseases such as COVID-19 in
the human population [21, 7].

Several epidemic models, with various characteristics, have been de-
scribed and investigated in the literature. Most of these models are
based on the SIR and SEIR framework and its simple variations [18, 13].
Amongst the various diseases models, Susceptible-Exposed-Infectious-
Removed (SEIR) mathematical epidemic model has been a widely used
and accepted model for distinguishing the outbreak of the COVID-19
epidemic in different regions of the world [22, 5]. Indeed, the SEIR
model is a widely utilized model which can show the progressions of in-
dividuals between four different states: Susceptible (S) (an individual is
Susceptible to catch the disease and hence the population is not resistant
to illness), Exposed (E) (an individual or population fraction is infected
with the virus but does not transmit to others, because the disease is
in the incubation period), Infectious (I) (an individual is Infective, this
means that one who has got the disease and is able to infect others),
and Recovered (R) (an individual has Recovered from infection and is
immune from further infection). Therefore, in the generic SEIR model,
an individual is able to only move from compartment S to E, from com-
partment E to I, and then from compartment I to R [15, 12, 5].
There is another important factor, namely, time-delay which its intro-
duction to mathematical epidemic models has been studied in order to
better understand and describe the transmission dynamics of infectious
diseases [26]. Moreover, time delay is ubiquitous in most biological sys-
tems like predator–prey models and epidemiological models. In fact, in-
clusion of delays in epidemic models makes them more realistic and can
reflect the real dynamical behaviors of models that depend also on the
past history of systems [1, 19]. Time-delay, which happens usually due
to system process and information flow in a particular part of dynami-
cal systems, is considered as a natural element of the dynamic process
of economics, biology, epidemiology, ecology, mechanics and physiology



Modeling and dynamical analysis of a COVID-19 epidemic model with time-delay 363

[10, 16].
Recently, time-delayed differential equations have been utilized in

modeling the spread of COVID-19. It was used to describe the char-
acteristics of COVID-19, such as incubation and latent period, recovery
time, diagnosis time, and immune response [2]. For instance, Gao et al.
[9] formulated an SEIR epidemic model with two time-delays and pulse
vaccination for studying the control of spread and transmission of an
infectious disease. Tipsri and Chinviriyasit [17] investigated the effect
of time-delay on the stability of bifurcating periodic solutions and di-
rection of Hopf bifurcation of an SEIR model with nonlinear incidence.
Cakan, in [6] proposed an SEIR model representing the latent period of
COVID-19 as a time-delay parameter. The model investigates the ca-
pacity of health care by assuming the variability of recovery and death
rates due to COVID-19. Radha and Balamuralitharan [15] considered
the time-delay for the immune system to respond to the transmission
dynamics of COVID-19. Yang and Zhang [23] described the propagation
dynamics of COVID-19 using the SEIQR model with two time-delays.
They considered the delay in time for an exposed individual to convert to
an infected individual. They also incorporated time-delay in the model
recovery for exposed, infected, and quarantined individuals.
Moreover, Lu et al. [11] presented an SIQR model with a time-delay
from infection to recovery. The influence of the time-delay from infec-
tion to recovery was discussed in detail. According to their conclusions,
when the time-delay from infection to isolation be smaller, the COVID-
19 epidemic is better controlled.

Motivated by the early research and since the stability and bifurca-
tion have great significance to epidemic models, and time-delay also has
a considerable influence on the virus spread and its control, thus, we
attempt to explore the effect of time-delay on the dynamics of COVID-
19 epidemic model and analyze the stability and Hopf bifurcation phe-
nomena. Hence in this work, we consider a system of ODE which are
formulated in [3] and has the following form:

Ṡ(t) = η + ρR(t)− αS(t)I(t)− δS(t)− µS(t),

Ė(t) = αS(t)I(t)− βE(t)− δE(t)− µE(t),

İ(t) = βE(t)− γI(t)− δI(t)− µI(t),

Ṙ(t) = γI(t)− ρR(t)− δR(t)− µR(t),

(1.1)

where λ(t) = I(t) shows the force of infection and the initial conditions
are considered as follows:

S(0) > 0, E(0) > 0, I(0) > 0, R(0) > 0.
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By following [24, 25] and incorporating of time-delay in (1.1), we formu-
late and introduce the following COVID-19 epidemic model:

Ṡ(t) = η + ρR(t)− αS(t)I(t)− a1S(t),

Ė(t) = αS(t)I(t)− a2E(t),

İ(t) = βE(t)− γI(t− τ)− a3I(t),

Ṙ(t) = γI(t− τ)− a4R(t),

(1.2)

where a1 = a3 = δ + µ, a2 = β + a1, a4 = ρ + a1 and the time-delay
τ represents the duration from infection to recovery process. The total
population size is set as N , i.e, S(t) + E(t) + I(t) + R(t) = N and
hypotheses of the model with description of model parameters which
are shown in Table 1 can be found in [3].

Table 1. Description of the model parameters.
Parameter Description
η Constant influx of new susceptible. With this rate new suscep-

tible class will Recruited and will enter into susceptible class
α Infection rate or Contact rate or effective contact rate. With

this rate covid-19 transfer from compartment S to E
β Latency transfer rate. With this rate exposed class moves from

compartment E to compartment I
γ Recovery rate or removal rate. With this rate infected class

moves from compartment E to R
ρ Loss immunity (re-infection rate). With this rate recovered

class moves from compartment R to S
δ Death rate due to infection of COVID-19. With this rate all

class of compartment suffer due to the diseases
µ Natural death rate. With this rate all class of Compartment

suffer natural death rate.

The main objective of this paper includes exploring the effect of time-
delay in the COVID-19 epidemic model by analyzing the stability of the
model and the existence of Hopf bifurcation. The rest of the paper is
organized as follows. In Section 3, we focus on the theoretical results,
i.e, stability and Hopf bifurcation phenomena by analyzing of the roots
of characteristic equation of the delayed model. We also analyze the
existence and stability of the endemic equilibrium point and the exis-
tence of Hopf bifurcation. We further calculate the critical time-delay
from infection to recuperation and analyze the dynamic properties of
the considered time-delayed model. In Section 4, we proceed to present
the results of some numerical simulations to verify the correctness of the
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discussed theoretical analysis. Finally, a brief conclusion is performed
in Section 5.

Figure 1. State transition diagram of the pandemic
model (1.2).

2. Positivity and boundedness properties of the model

To study the positivity and boundedness phenomena for the solution
of system (1.2), we prove if S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, the
solution S∗(t), E∗(t), I∗(t), R∗(t) for system (1.2) is positive when τ = 0.
It is not an easy task to prove that the solution of time-delay system (1.2)
is positive when τ > 0. However, according to our numerical simulation,
we can obtain that when system (1.2) is stable, the solution of system
(1.2) is always positive, which is not contradictory to the positivity of
the solution to system (1.2). Now we present the following theorem for
τ = 0.
Theorem 2.1. If S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, the solution
S∗(t), E∗(t), I∗(t), R∗(t) of the time-delayed model (1.2) is nonnegative
and bounded when τ > 0.
Proof. Here we first prove that S∗(t) ≥ 0 when t ≥ 0 based on the
initial condition of time-delayed model (1.2). We suppose that S∗(t) is
not always nonnegative for t ≥ 0 and make t1 to represent the first time
that S∗(t1) = 0 and S′(t1) < 0. Based on the first equation of time-
delayed model (1.2), we can get S′(t1) = η > 0. The two conclusions
we obtain are contradictory. Hence, S∗(t) ≥ 0 when t > 0. In similar
way, E∗(t) ≥ 0, I∗(t) ≥ 0, R∗(t) ≥ 0 when t > 0. This implies that when
t > 0, the solution of system (1.2) is positive. Since N(t) = S(t)+E(t)+
I(t), R(t), where N(t) represent the total size of population at time t.
N ′(t) = η− (δ+µ)

(
S(t)+ I(t)

)
− a1(E(t)−R(t)). Then, we can obtain

lim supt→∞N(t) = η
δ+µ . Hence, the solution S∗(t), E∗(t), I∗(t), R∗(t) of

the delayed system (1.2) is bounded when t > 0. □



366 Abdul Hussain Surosh, Reza Khoshsiar Ghaziani, Javad Alidousti

3. Stability and Hopf bifurcation analysis

In this section, we analyze the local stability of positive or endemic
equilibrium point and the existence of Hopf bifurcation. It is not difficult
to verify under the condition

(H1)


αβ > 0,

γ + a3 > 0,

a1a2(γ + a3) > αβη,

a2a4(γ + a3) < γβρ,

the delayed model (1.2) has a unique positive equilibrium point
E⋆(S∗, E∗, I∗, R∗),

where

S∗ =
(γ + a3)a2

αβ
, E∗ = −

a4
(
− a1(γ + a3)a2 + αβη

)
(γ + a3)

αβ
(
− a4(γ + a3)a2 + ρβγ

) ,

I∗ = −
a4
(
− a1(γ + a3)a2 + αβη

)
α
(
− a4(γ + a3)a2 + ρβγ

) , R∗ = −
(
− a1(γ + a3)a2 + αβη

)
γ

α
(
− a4(γ + a3)a2 + ρβγ

) .
In order to transfer the equilibrium point to the origin and to linearize
the delayed system around it, we use the linear transformation V1(t) =
S(t)− S∗, V2(t) = E(t)−E∗, V3(t) = I(t)− I∗ and V4(t) = R(t)−R∗.
Then, by applying the Taylor series expansion at E⋆ around the origin,
we obtain

Ṡ(t) = (−a1 + αI∗)V1(t)− αS∗V3(t) + ρV4(t)− αV1(t)V3(t),

Ė(t) = αI∗V1(t)− a2V2(t) + αS∗V3(t) + αV1(t)V3(t),

İ(t) = βV2(t)− γV3(t− τ)− a3V3(t),

Ṙ(t) = γV3(t− τ)− a4V4(t),

(3.1)

where its linear part can be written as
dV

dt
= G1V (t) +G2V (t− τ), (3.2)

in which

V (t) =


V1(t)
V2(t)
V3(t)
V4(t)

 , G1 =


−a1 − αI∗ 0 −αS∗ ρ

αI∗ −a2 αS∗ 0
0 β −a3 0
0 0 0 −a4

 ,

G2 =


0 0 0 0
0 0 0 0
0 0 −γe−λτ 0
0 0 γe−λτ 0

 .
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Let
m3 = αI∗ + a1 + a2 + a3 + a4,

m2 = a4(αI
∗ + a1 + a2 + a3) + (αI∗ + a1 + a3)a2 + (a3I

∗ − βS∗)α

+ a1a3,

m1 = a4
[
(αI∗ + a1 + a3)a2 + (a3I

∗ − βS∗)α+ a1a3
]
+ (αI∗ + a1)a2a3

− a1αβS
∗,

m0 = a4
(
a2a3(αI

∗ + a1)− αβS∗)
)
, h3 = γ, h2 = γ(αI∗ + a1 + a2 + a4),

h1 = γ
[
(αI∗ + a1 + a2)a4 + (αI∗ + a1)a2

]
,

h0 = γ
[
a2(αI

∗ + a1)a4 + αβρI∗
]
.

Then the characteristic equation of the linearized system can be obtained
as

∆(λ, τ) = Q1(λ) +Q2(λ)e
−λτ = 0, (3.3)

where
Q1(λ) = λ4 +m3λ

3 +m2λ
2 +m1λ+m0,

Q2(λ) = h3λ
3 + h2λ

2 + h1λ+ h0.

When τ = 0, the characteristic polynomial (3.3) becomes
λ4 + (m3 + h3)λ

3 + (m2 + h2)λ
2 + (m1 + h1)λ+m0 + h0 = 0. (3.4)

By the helps of Routh-Hurwitz criterion, we can find out the sufficient
conditions which states that all the roots (3.4) have negative real parts.
These conditions have the following form:

(H2)



∆1 = m3 + h3 > 0,

∆2 =

∣∣∣∣∣ m3 + h3 1

m1 + h1 m2 + h2

∣∣∣∣∣ > 0,

∆3 =

∣∣∣∣∣∣∣
m3 + h3 1 0

m1 + h1 m2 + h2 m3 + h3

0 m0 + h0 m1 + h1

∣∣∣∣∣∣∣ > 0,

∆4 =

∣∣∣∣∣∣∣∣∣
m3 + h3 1 0 0

m1 + h1 m2 + h2 m3 + h3 1

0 m0 + h0 m1 + h1 m2 + h2

0 0 0 m0 + h0

∣∣∣∣∣∣∣∣∣ > 0.

Then the following result can be concluded.

Lemma 3.1. If the condition (H2) holds, then the positive endemic
equilibrium point E⋆ is locally asymptotically stable in the absence of
time-delay.
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We now discuss the case of positive delay, i.e, τ > 0. Let λ = iω (ω >
0) be a root of (3.3), then by substituting it into (3.3) and and separating
the real and imaginary parts, we can obtain{

(h1ω − h3ω
3) sin(ωτ) + (h0 − h2ω

2) cos(ωτ) = −ω4 +m2ω
2 −m0,

(h1ω − h3ω
3) cos(ωτ)− (h0 − h2ω

2) sin(ωτ) = m3ω
3 −m1ω.

(3.5)
By (3.5), the following equation can be acquired:

ω8 +G13ω
6 +G12ω

4 +G11ω
2 +G10 = 0, (3.6)

where
G13 = m2

3 − h23 − 2m2, G12 = m2
2 − h22 − 2m1m3 + 2h1h3 + 2m0,

G11 = m2
1 − h21 − 2m2m0 + 2h2h0, G10 = m2

0 + h20.

Suppose that ξ = ω2. Then (3.6) takes the form
P (ξ) = ξ4 +G13ξ

3 +G12ξ
2 +G11ξ +G10 = 0. (3.7)

Lemma 3.2. For the distribution of roots of (3.7), we set

r1 =
1

2
G12 −

3

16
G2

13, r2 =
1

32
G3

13 −
1

8
G13G12 +G11,

Ω1 = (
r2
2
)2 + (

r1
3
)3, Ω2 =

−1 + i
√
3

2

y1 =
3

√
−r2

2
+
√

Ω1 +
3

√
−r2

2
−
√

Ω1,

y2 =
3

√
−r2

2
+
√

Ω1Ω2 +
3

√
−r2

2
−
√
Ω1Ω2

2,

y3 =
3

√
−r2

2
+
√

Ω1Ω2
2 +

3

√
−r2

2
−
√
Ω1Ω2, ξi = yi −

3G13

4
, (i = 1, 2, 3).

Then for (3.7), we have:
(i) If G10 < 0, then (3.7) has at least one positive root.

(ii) If G10 ≥ 0 and Ω1 ≥ 0, then (3.7) has positive roots if and only
if ξ1 > 0 and P (ξ1) < 0.

(iii) If G10 ≥ 0 and Ω1 < 0, then (3.7) has positive roots if and only
if there exists at least one ξ∗ ∈ (ξ1, ξ2, ξ3), such that ξ∗ > 0 and
P (ξ∗) ≤ 0.

By using of (3.2), we can get the corresponding threshold value τk > 0
as follows:

τk =
1

ω

[
arccos

(A3ω
6 +A2ω

4 +A1ω
2 +A0

B3ω6 +B2ω4 +B1ω2 +B0

)
+ 2kπ

]
, (k = 0, 1, 2, · · · ),

(3.8)
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where

A3 = h2 −m3h3, A2 = m3h1 −m2h2 −m1h3 − h0,

A1 = m2h0 −m1h1 +m0h2, A0 = −m0h0, B3 = h23, B2 = h22 − 2h1h3,

B1 = h21 − 2h2h0, B0 = h20.

Hence, the corresponding bifurcation point can be defined as

τ0 = min{τk}.

To verify the transversality condition for occurence of a Hopf bifurcation,
let λ(τ) = φ1(τ) + iω(τ) be a root of (3.3). Then φ1(τk) = 0 and
ω(τk) = ω0 when τ = τk.
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Figure 2. The phase portrait of model (1.2) in the ab-
sence of time-delay.

Lemma 3.3. Assume that P ′(ξk) ̸= 0, (k = 1, 2, 3). Then

d
(
Reλ(τk)

)
dτ

̸= 0 and sign

[
d
(
Reλ(τk)

)
dτ

]
= sign

[
P ′(ξk)

]
.

Proof. It is obvious that when τ > τk, then there exists at least one
eigenvalue with positive real part. By differentiating the two sides of
Eq. (3.3) with respect to τ , we can obtain[
4λ3 + 3m3λ

2 + 2m2λ+m1 +
(
3h3λ

2 + 2h2λ+ h1
)
e−λτ −

(
h3λ

3 + h2λ
2

+ h1λ+ h0
)
τe−λτ

]
dλ

dτ
=
(
h3λ

3 + h2λ
2 + h1λ+ h0

)
λe−λτ .



370 Abdul Hussain Surosh, Reza Khoshsiar Ghaziani, Javad Alidousti

This gives(
dλ

dτ

)−1

=

(
3h3λ

2 + 2h2λ+ h1
)
e−λτ − (h3λ

3 + h2λ
2 + h1λ+ h0)τe

−λτ

λ(h3λ3 + h2λ2 + h1λ+ h0)e−λτ

+

(
4λ3 + 3m3λ

2 + 2m2λ+m1

)
λ(h3λ3 + h2λ2 + h1λ+ h0)e−λτ

=
3h3λ

2 + 2h2λ+ h1 +
(
4λ3 + 3m3λ

2 + 2m2λ+m1

)
eλτ

λ(h3λ3 + h2λ2 + h1λ+ h0)
− τ

λ
.

Then it implies that

sign
[
dRe(λ)

dτ

]
τ=τ0,λ=iω0

= sign
{
Re

(
dλ

dτ

)−1
}

τ=τ0,λ=iω0

= sign
{
Re

[
3h3λ

2 + 2h2λ+ h1
λ(h3λ3 + h2λ2 + h1λ+ h0)

+

(
4λ3 + 3m3λ

2 + 2m2λ+m1

)
eλτ

λ(h3λ3 + h2λ2 + h1λ+ h0)
− τ

λ

]}
τ=τ0,λ=iω0

= sign
{
Re

[ (
3h3ω

2
0 + 2h2iω0 + h1

)
(h3iω3

0 + h2ω2
0 + h1iω0 + h0)iω0

+
(4iω3

0 + 3m3ω
2
0 + 2m2iω0 +m1)

(
cos(ω0τ0) + i sin(ω0τ0)

)
(h3iω3

0 + h2ω2
0 + h1iω0 + h0)iω0

]}

= sign
{

1

Π

[
4ω6

0 + 3
(
m2

3 − h23 − 2m2

)
ω4
0 + 2(m2

2 − h22 + 2h1h3

− 2m1m3 + 2m0

)
ω2
0 +m2

1 − h21 + 2h0h2 − 2m0m2

]}

= sign
{ 1

Π

(
4ξ3 + 3G13ξ

2 + 2G12ξ +G11

)}
= sign

{ 1

Π

(
P ′(ξ)

)}
,

where Π = h23ω
6
0 + (h22 − 2h1h3)ω

4
0 + (h21 − 2h0h2)ω

2
0 + h20. It follows

from the hypothesis (H3) that P ′(ξ) ̸= 0. Therefore the transversality
condition

d
(
Re(λ)

)
dτ

∣∣∣∣∣
τ=τ0,λ=iω0

̸= 0,

is satisfied which shows a Hopf bifurcation occurs at τ = τ0. This
completes the proof. □
Hence, we now have the following conclusions.
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Theorem 3.4. Suppose that conditions (H1) and (H2) are satisfied.
Then we have the following results:

(i) If 0 ≤ τ < τ0, then the endemic equilibrium E⋆(S∗, E∗, I∗, R∗)
of delayed model (1.2) is locally asymptotically stable. When
τ > τ0, the equilibrium point E⋆ becomes unstable.

(ii) When system (1.2) satisfies the transversality condition of lemma
3.3, the delayed model (1.2) undergoes a Hopf bifurcation at the
positive equilibrium E⋆ when time-delay τ = τk, where τk is
defined by (3.8).
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Figure 3. Effect of time-delay on the dynamics of de-
layed epidemic model (1.2).

4. Numerical simulations

In this section, some numerical simulations are conducted to demon-
strate the pandemic dynamics of COVID-19, and to verify the theoretical
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analysis of previous section. We consider a set of parameter values as in
Table 2.

Table 2. Set of values for the original system’s parameters.

Parameter η α β γ ρ δ µ

Value 0.62 0.25 0.95 1.42 0.012 0.03 0.018

0 100 200 300 400 500
5.7

5.8

5.9

6

6.1

6.2

6.3

6.4

6.5
Time evolution plot

Time

S
(t

),
R

(t
)

 

 
S
R

(a) τ = 1.2872 > τ0 = 1.287

0 100 200 300 400 500
0

1

2

3

4

5

6

7
Time evolution plot

Time

P
o

p
u

la
tio

n
s

 

 
S
E
I
R

(b) τ = 1.2872 > τ0 = 1.287

5.9

6

6.1

6.2

6.3

6.4

0.35

0.4

0.45

0.5
5.5

6

6.5

 

S(t)E(t) 

R
(t

)

τ=1.2872

(c) τ = 1.2872 > τ0 = 1.287

5.95 6 6.05 6.1 6.15 6.2 6.25 6.3 6.35 6.4
5.7

5.8

5.9

6

6.1

6.2

6.3

6.4
2D view of phase plane

S(t)

R
(t

)

 

 
τ=1.2872

(d) τ = 1.2872 > τ0 = 1.287

Figure 4. Time series and phase portraits of delayed
epidemic model (1.2).

According to the parameters’ values of Table 2, the positive equilib-
rium point E⋆(S∗, E∗, I∗, R∗) is calculated as

E⋆(6.16869, 0.39781, 0.25744, 6.09272).

When τ = 0, the positive equilibrium point E⋆ is asymptotically stable
(see Figure 2). For τ > 0, we can obtain ω0 = 0.40521 and τ0 =
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1.287. Thus, when τ = 1.265 ∈ [0, τ0), the delayed system (1.2) has
stable dynamics as are illustrated by Figure 3 and Figures 5(a) and
5(c). However, once the time-delay exceeds the threshold value, i.e,
τ = 1.2872 > τ0 = 1.287, E⋆ loses its stability and due to[
d
(
Reλ(τ)

)
dτ

]−1

τ=τ0

≈ 1.24123 > 0,

[
d
(
Reλ(τ)

)
dτ

]
τ=τ0

≈ 0.45665 > 0,

a Hopf bifurcation occurs (see Figure 4 and Figures 5(b) and 5(d)).
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Figure 5. Various projection of the phase portraits of
delayed epidemic model (1.2).

5. Conclusion

In this paper a SEIR delayed mathematical model describing the dy-
namics of COVID-19 is formulated and the effect of the time-delay on
the dynamics of the model is investigated. It is found that existence
of delay in the model leads to a local Hopf bifurcation and the model



374 Abdul Hussain Surosh, Reza Khoshsiar Ghaziani, Javad Alidousti

becomes unstable under some certain conditions. The obtained results
show that when the delay parameter is suitable and small, the endemic
equilibrium is asymptotically stable. In this case, the propagation of
coronavirus can be predicted and controlled. However, when the time-
delay τ exceeds its critical value. Then the endemic equilibrium losses
its stability and a Hopf bifurcation occurs which implies that the disease
will be out of control.
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