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Abstract. In this paper, the local stability of the endemic equilibrium
and existence of a Hopf bifurcation in a Susceptible-Exposed-Infected-
Recovered (SEIR) delayed mathematical model for COVID-19 pandemic
are investigated. By using time-delay as a bifurcation parameter, the
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eters choice to illustrate the theoretical results of the model.
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1. Introduction

Coronavirus disease 2019 (COVID-19) is an infectious disease that can cause
illnesses range from the common cold to much more severe illnesses like SARS
and MERS [3]. This type of diseases which has an enormous impact on the
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world population and economy, emerged as a sudden pandemic disease within
human population and has become a worldwide emergency [20, 4, 8]. Many
scientists and researchers have combined efforts in order to develop several
approaches for understanding the COVID-19 transmission dynamics and find
out the effective control ways for preventing the virus spreads [4, 3]. Math-
ematical modeling is recognized as an essential tool for understanding the
transmission dynamics of HIV/AIDS as well as COVID-19 pandemic. Since
the last decades, the direct implementation of a mathematical model in epi-
demiology has proven to be helpful in further understanding the dynamics of
infectious diseases and the corresponding control problems [1, 4, 14]. There-
fore, mathematical models play a vital role in analyzing the mechanism of
spread and control of infectious diseases such as COVID-19 in the human
population [21, 7].

Several epidemic models, with various characteristics, have been described
and investigated in the literature. Most of these models are based on the SIR
and SEIR framework and its simple variations [18, 13]. Amongst the various
diseases models, Susceptible-Exposed-Infectious-Removed (SEIR) mathemati-
cal epidemic model has been a widely used and accepted model for distinguish-
ing the outbreak of the COVID-19 epidemic in different regions of the world
[22, 5]. Indeed, the SEIR model is a widely utilized model which can show
the progressions of individuals between four different states: Susceptible (S)
(an individual is Susceptible to catch the disease and hence the population is
not resistant to illness), Exposed (E) (an individual or population fraction is
infected with the virus but does not transmit to others, because the disease is
in the incubation period), Infectious (I) (an individual is Infective, this means
that one who has got the disease and is able to infect others), and Recovered
(R) (an individual has Recovered from infection and is immune from further
infection). Therefore, in the generic SEIR model, an individual is able to only
move from compartment S to E, from compartment E to I, and then from
compartment I to R [15, 12, 5].
There is another important factor, namely, time-delay which its introduction
to mathematical epidemic models has been studied in order to better under-
stand and describe the transmission dynamics of infectious diseases [26]. More-
over, time delay is ubiquitous in most biological systems like predator–prey
models and epidemiological models. In fact, inclusion of delays in epidemic
models makes them more realistic and can reflect the real dynamical behaviors
of models that depend also on the past history of systems [1, 19]. Time-delay,
which happens usually due to system process and information flow in a par-
ticular part of dynamical systems, is considered as a natural element of the
dynamic process of economics, biology, epidemiology, ecology, mechanics and
physiology [10, 16].
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Recently, time-delayed differential equations have been utilized in model-
ing the spread of COVID-19. It was used to describe the characteristics of
COVID-19, such as incubation and latent period, recovery time, diagnosis
time, and immune response [2]. For instance, Gao et al. [9] formulated an
SEIR epidemic model with two time-delays and pulse vaccination for study-
ing the control of spread and transmission of an infectious disease. Tipsri and
Chinviriyasit [17] investigated the effect of time-delay on the stability of bifur-
cating periodic solutions and direction of Hopf bifurcation of an SEIR model
with nonlinear incidence. Cakan, in [6] proposed an SEIR model representing
the latent period of COVID-19 as a time-delay parameter. The model inves-
tigates the capacity of health care by assuming the variability of recovery and
death rates due to COVID-19. Radha and Balamuralitharan [15] considered
the time-delay for the immune system to respond to the transmission dynam-
ics of COVID-19. Yang and Zhang [23] described the propagation dynamics of
COVID-19 using the SEIQR model with two time-delays. They considered the
delay in time for an exposed individual to convert to an infected individual.
They also incorporated time-delay in the model recovery for exposed, infected,
and quarantined individuals.
Moreover, Lu et al. [11] presented an SIQR model with a time-delay from in-
fection to recovery. The influence of the time-delay from infection to recovery
was discussed in detail. According to their conclusions, when the time-delay
from infection to isolation be smaller, the COVID-19 epidemic is better con-
trolled.

Motivated by the early research and since the stability and bifurcation have
great significance to epidemic models, and time-delay also has a considerable
influence on the virus spread and its control, thus, we attempt to explore the
effect of time-delay on the dynamics of COVID-19 epidemic model and ana-
lyze the stability and Hopf bifurcation phenomena. Hence in this work, we
consider a system of ODE which are formulated in [3] and has the following
form:


Ṡ(t) = η + ρR(t)− αS(t)I(t)− δS(t)− µS(t),

Ė(t) = αS(t)I(t)− βE(t)− δE(t)− µE(t),

İ(t) = βE(t)− γI(t)− δI(t)− µI(t),

Ṙ(t) = γI(t)− ρR(t)− δR(t)− µR(t),

(1.1)

where λ(t) = I(t) shows the force of infection and the initial conditions are
considered as follows:

S(0) > 0, E(0) > 0, I(0) > 0, R(0) > 0.
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By following [24, 25] and incorporating of time-delay in (1.1), we formulate
and introduce the following COVID-19 epidemic model:

Ṡ(t) = η + ρR(t)− αS(t)I(t)− a1S(t),

Ė(t) = αS(t)I(t)− a2E(t),

İ(t) = βE(t)− γI(t− τ)− a3I(t),

Ṙ(t) = γI(t− τ)− a4R(t),

(1.2)

where a1 = a3 = δ+µ, a2 = β+a1, a4 = ρ+a1 and the time-delay τ represents
the duration from infection to recovery process. The total population size is
set as N , i.e, S(t)+E(t)+ I(t)+R(t) = N and hypotheses of the model with
description of model parameters which are shown in Table 1 can be found in
[3].

Table 1. Description of the model parameters.
Parameter Description
η Constant influx of new susceptible. With this rate new suscep-

tible class will Recruited and will enter into susceptible class
α Infection rate or Contact rate or effective contact rate. With

this rate covid-19 transfer from compartment S to E
β Latency transfer rate. With this rate exposed class moves from

compartment E to compartment I
γ Recovery rate or removal rate. With this rate infected class

moves from compartment E to R
ρ Loss immunity (re-infection rate). With this rate recovered

class moves from compartment R to S
δ Death rate due to infection of COVID-19. With this rate all

class of compartment suffer due to the diseases
µ Natural death rate. With this rate all class of Compartment

suffer natural death rate.

The main objective of this paper includes exploring the effect of time-delay
in the COVID-19 epidemic model by analyzing the stability of the model
and the existence of Hopf bifurcation. The rest of the paper is organized as
follows. In Section 3, we focus on the theoretical results, i.e, stability and Hopf
bifurcation phenomena by analyzing of the roots of characteristic equation of
the delayed model. We also analyze the existence and stability of the endemic
equilibrium point and the existence of Hopf bifurcation. We further calculate
the critical time-delay from infection to recuperation and analyze the dynamic
properties of the considered time-delayed model. In Section 4, we proceed to
present the results of some numerical simulations to verify the correctness of
the discussed theoretical analysis. Finally, a brief conclusion is performed in
Section 5.



Modeling and dynamical analysis of a COVID-19 epidemic model with time-delay 367

Figure 1. State transition diagram of the pandemic model (1.2).

2. Positivity and boundedness properties of the model

To study the positivity and boundedness phenomena for the solution of
system (1.2), we prove if S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, the solution
S∗(t), E∗(t), I∗(t), R∗(t) for system (1.2) is positive when τ = 0. It is not an
easy task to prove that the solution of time-delay system (1.2) is positive when
τ > 0. However, according to our numerical simulation, we can obtain that
when system (1.2) is stable, the solution of system (1.2) is always positive,
which is not contradictory to the positivity of the solution to system (1.2).
Now we present the following theorem for τ = 0.

Theorem 2.1. If S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, the solution
S∗(t), E∗(t), I∗(t), R∗(t) of the time-delayed model (1.2) is nonnegative and
bounded when τ > 0.

Proof. Here we first prove that S∗(t) ≥ 0 when t ≥ 0 based on the initial
condition of time-delayed model (1.2). We suppose that S∗(t) is not always
nonnegative for t ≥ 0 and make t1 to represent the first time that S∗(t1) = 0
and S′(t1) < 0. Based on the first equation of time-delayed model (1.2), we
can get S′(t1) = η > 0. The two conclusions we obtain are contradictory.
Hence, S∗(t) ≥ 0 when t > 0. In similar way, E∗(t) ≥ 0, I∗(t) ≥ 0, R∗(t) ≥ 0
when t > 0. This implies that when t > 0, the solution of system (1.2) is
positive. Since N(t) = S(t)+E(t)+ I(t), R(t), where N(t) represent the total
size of population at time t. N ′(t) = η − (δ + µ)

(
S(t) + I(t)

)
− a1(E(t) −

R(t)). Then, we can obtain lim supt→∞N(t) = η
δ+µ . Hence, the solution

S∗(t), E∗(t), I∗(t), R∗(t) of the delayed system (1.2) is bounded when t > 0.
□

3. Stability and Hopf bifurcation analysis

In this section, we analyze the local stability of positive or endemic equilib-
rium point and the existence of Hopf bifurcation. It is not difficult to verify
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under the condition

(H1)


αβ > 0,

γ + a3 > 0,

a1a2(γ + a3) > αβη,

a2a4(γ + a3) < γβρ,

the delayed model (1.2) has a unique positive equilibrium point

E⋆(S∗, E∗, I∗, R∗),

where

S∗ =
(γ + a3)a2

αβ
, E∗ = −

a4
(
− a1(γ + a3)a2 + αβη

)
(γ + a3)

αβ
(
− a4(γ + a3)a2 + ρβγ

) ,

I∗ = −
a4
(
− a1(γ + a3)a2 + αβη

)
α
(
− a4(γ + a3)a2 + ρβγ

) , R∗ = −
(
− a1(γ + a3)a2 + αβη

)
γ

α
(
− a4(γ + a3)a2 + ρβγ

) .
In order to transfer the equilibrium point to the origin and to linearize the
delayed system around it, we use the linear transformation V1(t) = S(t) −
S∗, V2(t) = E(t) − E∗, V3(t) = I(t) − I∗ and V4(t) = R(t) − R∗. Then, by
applying the Taylor series expansion at E⋆ around the origin, we obtain

Ṡ(t) = (−a1 + αI∗)V1(t)− αS∗V3(t) + ρV4(t)− αV1(t)V3(t),

Ė(t) = αI∗V1(t)− a2V2(t) + αS∗V3(t) + αV1(t)V3(t),

İ(t) = βV2(t)− γV3(t− τ)− a3V3(t),

Ṙ(t) = γV3(t− τ)− a4V4(t),

(3.1)

where its linear part can be written as

dV

dt
= G1V (t) +G2V (t− τ), (3.2)

in which

V (t) =


V1(t)
V2(t)
V3(t)
V4(t)

 , G1 =


−a1 − αI∗ 0 −αS∗ ρ

αI∗ −a2 αS∗ 0
0 β −a3 0
0 0 0 −a4

 ,

G2 =


0 0 0 0
0 0 0 0
0 0 −γe−λτ 0
0 0 γe−λτ 0

 .
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Let
m3 = αI∗ + a1 + a2 + a3 + a4,

m2 = a4(αI
∗ + a1 + a2 + a3) + (αI∗ + a1 + a3)a2 + (a3I

∗ − βS∗)α

+ a1a3,

m1 = a4
[
(αI∗ + a1 + a3)a2 + (a3I

∗ − βS∗)α+ a1a3
]
+ (αI∗ + a1)a2a3

− a1αβS
∗,

m0 = a4
(
a2a3(αI

∗ + a1)− αβS∗)
)
, h3 = γ, h2 = γ(αI∗ + a1 + a2 + a4),

h1 = γ
[
(αI∗ + a1 + a2)a4 + (αI∗ + a1)a2

]
,

h0 = γ
[
a2(αI

∗ + a1)a4 + αβρI∗
]
.

Then the characteristic equation of the linearized system can be obtained as

∆(λ, τ) = Q1(λ) +Q2(λ)e
−λτ = 0, (3.3)

where

Q1(λ) = λ4 +m3λ
3 +m2λ

2 +m1λ+m0,

Q2(λ) = h3λ
3 + h2λ

2 + h1λ+ h0.

When τ = 0, the characteristic polynomial (3.3) becomes

λ4 + (m3 + h3)λ
3 + (m2 + h2)λ

2 + (m1 + h1)λ+m0 + h0 = 0. (3.4)

By the helps of Routh-Hurwitz criterion, we can find out the sufficient con-
ditions which states that all the roots (3.4) have negative real parts. These
conditions have the following form:

(H2)



∆1 = m3 + h3 > 0,

∆2 =

∣∣∣∣∣ m3 + h3 1

m1 + h1 m2 + h2

∣∣∣∣∣ > 0,

∆3 =

∣∣∣∣∣∣∣
m3 + h3 1 0

m1 + h1 m2 + h2 m3 + h3

0 m0 + h0 m1 + h1

∣∣∣∣∣∣∣ > 0,

∆4 =

∣∣∣∣∣∣∣∣∣
m3 + h3 1 0 0

m1 + h1 m2 + h2 m3 + h3 1

0 m0 + h0 m1 + h1 m2 + h2

0 0 0 m0 + h0

∣∣∣∣∣∣∣∣∣ > 0.

Then the following result can be concluded.

Lemma 3.1. If the condition (H2) holds, then the positive endemic equilibrium
point E⋆ is locally asymptotically stable in the absence of time-delay.
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We now discuss the case of positive delay, i.e, τ > 0. Let λ = iω (ω > 0) be
a root of (3.3), then by substituting it into (3.3) and and separating the real
and imaginary parts, we can obtain{

(h1ω − h3ω
3) sin(ωτ) + (h0 − h2ω

2) cos(ωτ) = −ω4 +m2ω
2 −m0,

(h1ω − h3ω
3) cos(ωτ)− (h0 − h2ω

2) sin(ωτ) = m3ω
3 −m1ω.

(3.5)

By (3.5), the following equation can be acquired:

ω8 +G13ω
6 +G12ω

4 +G11ω
2 +G10 = 0, (3.6)

where
G13 = m2

3 − h23 − 2m2, G12 = m2
2 − h22 − 2m1m3 + 2h1h3 + 2m0,

G11 = m2
1 − h21 − 2m2m0 + 2h2h0, G10 = m2

0 + h20.

Suppose that ξ = ω2. Then (3.6) takes the form

P (ξ) = ξ4 +G13ξ
3 +G12ξ

2 +G11ξ +G10 = 0. (3.7)

Lemma 3.2. For the distribution of roots of (3.7), we set

r1 =
1

2
G12 −

3

16
G2

13, r2 =
1

32
G3

13 −
1

8
G13G12 +G11,

Ω1 = (
r2
2
)2 + (

r1
3
)3, Ω2 =

−1 + i
√
3

2

y1 =
3

√
−r2

2
+
√
Ω1 +

3

√
−r2

2
−
√

Ω1,

y2 =
3

√
−r2

2
+
√
Ω1Ω2 +

3

√
−r2

2
−
√
Ω1Ω2

2,

y3 =
3

√
−r2

2
+
√
Ω1Ω2

2 +
3

√
−r2

2
−
√
Ω1Ω2, ξi = yi −

3G13

4
, (i = 1, 2, 3).

Then for (3.7), we have:
(i) If G10 < 0, then (3.7) has at least one positive root.

(ii) If G10 ≥ 0 and Ω1 ≥ 0, then (3.7) has positive roots if and only if
ξ1 > 0 and P (ξ1) < 0.

(iii) If G10 ≥ 0 and Ω1 < 0, then (3.7) has positive roots if and only if there
exists at least one ξ∗ ∈ (ξ1, ξ2, ξ3), such that ξ∗ > 0 and P (ξ∗) ≤ 0.

By using of (3.2), we can get the corresponding threshold value τk > 0 as
follows:

τk =
1

ω

[
arccos

(A3ω
6 +A2ω

4 +A1ω
2 +A0

B3ω6 +B2ω4 +B1ω2 +B0

)
+ 2kπ

]
, (k = 0, 1, 2, · · · ),

(3.8)
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where

A3 = h2 −m3h3, A2 = m3h1 −m2h2 −m1h3 − h0,

A1 = m2h0 −m1h1 +m0h2, A0 = −m0h0, B3 = h23, B2 = h22 − 2h1h3,

B1 = h21 − 2h2h0, B0 = h20.

Hence, the corresponding bifurcation point can be defined as

τ0 = min{τk}.

To verify the transversality condition for occurence of a Hopf bifurcation, let
λ(τ) = φ1(τ) + iω(τ) be a root of (3.3). Then φ1(τk) = 0 and ω(τk) = ω0

when τ = τk.
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Figure 2. The phase portrait of model (1.2) in the absence of
time-delay.

Lemma 3.3. Assume that P ′(ξk) ̸= 0, (k = 1, 2, 3). Then

d
(
Reλ(τk)

)
dτ

̸= 0 and sign

[
d
(
Reλ(τk)

)
dτ

]
= sign

[
P ′(ξk)

]
.

Proof. It is obvious that when τ > τk, then there exists at least one eigenvalue
with positive real part. By differentiating the two sides of Eq. (3.3) with
respect to τ , we can obtain[
4λ3 + 3m3λ

2 + 2m2λ+m1 +
(
3h3λ

2 + 2h2λ+ h1
)
e−λτ −

(
h3λ

3 + h2λ
2

+ h1λ+ h0
)
τe−λτ

]
dλ

dτ
=
(
h3λ

3 + h2λ
2 + h1λ+ h0

)
λe−λτ .
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This gives(
dλ

dτ

)−1

=

(
3h3λ

2 + 2h2λ+ h1
)
e−λτ − (h3λ

3 + h2λ
2 + h1λ+ h0)τe

−λτ

λ(h3λ3 + h2λ2 + h1λ+ h0)e−λτ

+

(
4λ3 + 3m3λ

2 + 2m2λ+m1

)
λ(h3λ3 + h2λ2 + h1λ+ h0)e−λτ

=
3h3λ

2 + 2h2λ+ h1 +
(
4λ3 + 3m3λ

2 + 2m2λ+m1

)
eλτ

λ(h3λ3 + h2λ2 + h1λ+ h0)
− τ

λ
.

Then it implies that

sign
[
dRe(λ)

dτ

]
τ=τ0,λ=iω0

= sign
{
Re

(
dλ

dτ

)−1
}

τ=τ0,λ=iω0

= sign
{
Re

[
3h3λ

2 + 2h2λ+ h1
λ(h3λ3 + h2λ2 + h1λ+ h0)

+

(
4λ3 + 3m3λ

2 + 2m2λ+m1

)
eλτ

λ(h3λ3 + h2λ2 + h1λ+ h0)
− τ

λ

]}
τ=τ0,λ=iω0

= sign
{
Re

[ (
3h3ω

2
0 + 2h2iω0 + h1

)
(h3iω3

0 + h2ω2
0 + h1iω0 + h0)iω0

+
(4iω3

0 + 3m3ω
2
0 + 2m2iω0 +m1)

(
cos(ω0τ0) + i sin(ω0τ0)

)
(h3iω3

0 + h2ω2
0 + h1iω0 + h0)iω0

]}

= sign
{

1

Π

[
4ω6

0 + 3
(
m2

3 − h23 − 2m2

)
ω4
0 + 2(m2

2 − h22 + 2h1h3

− 2m1m3 + 2m0

)
ω2
0 +m2

1 − h21 + 2h0h2 − 2m0m2

]}

= sign
{ 1

Π

(
4ξ3 + 3G13ξ

2 + 2G12ξ +G11

)}
= sign

{ 1

Π

(
P ′(ξ)

)}
,

where Π = h23ω
6
0 + (h22 − 2h1h3)ω

4
0 + (h21 − 2h0h2)ω

2
0 + h20. It follows from the

hypothesis (H3) that P ′(ξ) ̸= 0. Therefore the transversality condition

d
(
Re(λ)

)
dτ

∣∣∣∣∣
τ=τ0,λ=iω0

̸= 0,

is satisfied which shows a Hopf bifurcation occurs at τ = τ0. This completes
the proof. □

Hence, we now have the following conclusions.
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Theorem 3.4. Suppose that conditions (H1) and (H2) are satisfied. Then
we have the following results:

(i) If 0 ≤ τ < τ0, then the endemic equilibrium E⋆(S∗, E∗, I∗, R∗) of
delayed model (1.2) is locally asymptotically stable. When τ > τ0, the
equilibrium point E⋆ becomes unstable.

(ii) When system (1.2) satisfies the transversality condition of lemma 3.3,
the delayed model (1.2) undergoes a Hopf bifurcation at the positive
equilibrium E⋆ when time-delay τ = τk, where τk is defined by (3.8).

0 100 200 300 400 500
5.7

5.8

5.9

6

6.1

6.2

6.3

6.4

6.5
Time evolution plot

Time

S
(t

),
R

(t
)

 

 
S
R

(a) τ = 1.265 < τ0 = 1.287

0 100 200 300 400 500
0

1

2

3

4

5

6

7
Time evolution plot

Time

P
o

p
u

la
tio

n
s

 

 
S
E
I
R

(b) τ = 1.265 < τ0 = 1.287

6

6.1

6.2

6.3

6.4

6.5

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46
5.5

6

6.5

 

S(t)E(t) 

R
(t

)

τ=1.265

(c) τ = 1.265 < τ0 = 1.287

6 6.05 6.1 6.15 6.2 6.25 6.3 6.35
5.7

5.75

5.8

5.85

5.9

5.95

6

6.05

6.1

6.15

6.2
2D view of phase plane

S(t)

R
(t

)

 

 
τ=1.265

(d) τ = 1.265 < τ0 = 1.287

Figure 3. Effect of time-delay on the dynamics of delayed
epidemic model (1.2).

4. Numerical simulations

In this section, some numerical simulations are conducted to demonstrate
the pandemic dynamics of COVID-19, and to verify the theoretical analysis of
previous section. We consider a set of parameter values as in Table 2.
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Table 2. Set of values for the original system’s parameters.

Parameter η α β γ ρ δ µ

Value 0.62 0.25 0.95 1.42 0.012 0.03 0.018
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Figure 4. Time series and phase portraits of delayed epidemic
model (1.2).

According to the parameters’ values of Table 2, the positive equilibrium
point E⋆(S∗, E∗, I∗, R∗) is calculated as

E⋆(6.16869, 0.39781, 0.25744, 6.09272).

When τ = 0, the positive equilibrium point E⋆ is asymptotically stable (see
Figure 2). For τ > 0, we can obtain ω0 = 0.40521 and τ0 = 1.287. Thus,
when τ = 1.265 ∈ [0, τ0), the delayed system (1.2) has stable dynamics as are
illustrated by Figure 3 and Figures 5(a) and 5(c). However, once the time-
delay exceeds the threshold value, i.e, τ = 1.2872 > τ0 = 1.287, E⋆ loses its
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stability and due to[
d
(
Reλ(τ)

)
dτ

]−1

τ=τ0

≈ 1.24123 > 0,

[
d
(
Reλ(τ)

)
dτ

]
τ=τ0

≈ 0.45665 > 0,

a Hopf bifurcation occurs (see Figure 4 and Figures 5(b) and 5(d)).
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Figure 5. Various projection of the phase portraits of delayed
epidemic model (1.2).

5. Conclusion

In this paper a SEIR delayed mathematical model describing the dynamics
of COVID-19 is formulated and the effect of the time-delay on the dynamics
of the model is investigated. It is found that existence of delay in the model
leads to a local Hopf bifurcation and the model becomes unstable under some
certain conditions. The obtained results show that when the delay param-
eter is suitable and small, the endemic equilibrium is asymptotically stable.
In this case, the propagation of coronavirus can be predicted and controlled.



376 Abdul Hussain Surosh, Reza Khoshsiar Ghaziani, Javad Alidousti

However, when the time-delay τ exceeds its critical value. Then the endemic
equilibrium losses its stability and a Hopf bifurcation occurs which implies
that the disease will be out of control.
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