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Abstract. The main purpose of this paper is to develop and anal-
yse a fractional SIQR epidemic model with Caputo-Fabrizio deriv-
ative. It is shown that the model to have a disease-free and an
endemic equilibrium point. Some conditions are derived for the ex-
istence and stability of these equilibrium points. Finally, three-step
fractional Adams-Bashforth method applied to the model and some
numerical simulations are illustrate the results.
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1. Introduction

Since the outbreak of the Covid-19 pandemic, many scientists and
authors have focused on studying mathematical epidemic models, as
seen in [3, 17, 21]. These models are essential for better understand-
ing disease transmission patterns and evaluating control strategies. The
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classical SIR model introduced by Kermack and McKendrick [11]. After-
wards, it has been extended by many authors to include extra equations
for vaccination, recovery, quarantine, etc. Quarantine is an effective
method for preventing the spread of disease in the community, espe-
cially for infectious people. Therefore, some researchers have introduced
a new compartment called Quarantine in the SIR model, resulting in
an SIQR model, as described in [17, 24]. It is a mathematical model
that divides a population into four compartments: susceptible (S), in-
fected (I), quarantined (Q), and recovered (R). The model assumes that
a susceptible person can become infected through contact with an in-
fected person, and that an infected person can be quarantined before
showing symptoms of the disease. This model is particularly suited for
diseases where individuals who are infected can be quarantined before
eventually recovering, preventing them from spreading the disease fur-
ther, such as tuberculosis, flu, Covid [8, 16]. The SIQR model has
gained significant attention from researchers and public health officials
in recent years, especially during the COVID-19 pandemic, as it helps
to better understand the dynamics of disease transmission and evaluate
control strategies [1, 13].

In recent years, many researchers have found that fractional models
with fractional calculus, such as Riemann-Liouville, Caputo, Caputo-
Fabrizio, Jumarie, Atangana-Baleanu, etc., describe natural phenomena
better than the classic integer-order counterparts with ordinary time
derivatives [5, 7, 10, 23]. For instance, authors in [20] investigated a
fractional order model with vaccine efficacy and waning immunity to
understand the dynamics of coronavirus infection. DarAssi et al. [6]
studied the competition between two banking systems, rural and com-
mercial, in Indonesia based on Caputo’s parametric fractional derivative.
Asma et al. [2] investigated a simple SVIR type of model to investigate
the coronavirus’s dynamics in Saudi Arabia with the recent cases of the
coronavirus. The Caputo-Fabrizio fractional derivative is a modifi-
cation of the Caputo fractional derivative, which is commonly used in
fractional calculus. It has been shown to have some advantages over the
Caputo derivative in certain applications, particularly in solving frac-
tional differential equations numerically. One of the main benefits of
the Caputo-Fabrizio fractional derivative is that it can better approxi-
mate the initial conditions of a fractional differential equation, partic-
ularly when the initial conditions are non-smooth or discontinuous [4].
This is because the Caputo-Fabrizio derivative is defined in terms of an
exponential function, which provides a smoothing effect that helps to
regularize the initial conditions.
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Figure 1. Diagram of the SIQR model (3.1). Variables
and parameters will be presented in Section 3.

In [12, 15, 21], Caputo-Fabrizio fractional derivative have been used to
study the epidemic diseases. Here, we present our SIQR epidemic model
as a system of fractional differential equations with Caputo-Fabrizio de-
rivative. In this article, we assume that a person can be quarantined as
soon as they are diagnosed with the disease, before the symptoms ap-
pear. To reflect this, we add a new parameter, q0, representing the rate of
quarantine for new patients immediately after infection. The compart-
mental relations of the model are shown in Figure 1. We demonstrate
that the value of q0 plays a crucial role in combating the spread of the
disease.

The paper is structured as follows: Section 2, presents some definitions
and basic concepts. Section 3 introduces the SIQR model and presents
some dynamical analysis. Indeed, we study the stability of equilibria and
we prove that the forward bifurcation occurs in the system. In section
4, the existence of solution for our model is obtained. In 5, we apply the
three-steps Adam-Bashforth numerical technique to obtain numerical
solutions of our model. The paper concludes with some results and
graphical representations. Finally, the paper ends with the conclusions
section.

2. Preliminaries

Caputo and Fabrizio in [4] defined the new definition of fractional
derivative without any singularity in its kernel as follows.
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Definition 2.1. [4] Let 0 < α < 1. If a ∈ (−∞, x), the Caputo-Fabrizio
fractional derivative of a function f(x) ∈ H1(a, b), b > a is defined as

CFDα
xf(x) =

M(α)

1− α

∫ x

a
f ′(s) exp(−α(x− s)

1− α
)ds, (2.1)

where M(a) is the normalization function such that M(0) = M(1) = 1.
Its fractional integral related to derivative (2.1) is defined as

CF Iαxf(x) =
1− α

M(α)
f(x) +

α

M(α)

∫ x

a
f(t)dt. (2.2)

Consider the following fractional-order linear system
CFDα

xx(t) = Ax(t), (2.3)
where, 0 < α ≤ 1, x(t) ∈ Rn and A ∈ Rn × Rn.

Definition 2.2. [12] The characteristic equation of system (2.3) is
P (λ) = det{λ(I − (1− α)A)− αA}. (2.4)

Theorem 2.3. [12] If matrix (I − (1 − α)A) is invertible, then system
(2.3) is asymptotically stable if and only if the real parts of the roots to
the characteristic equation (2.4) are negative.

Theorem 2.4. [12] The system (2.3) is asymptotically stable if eigen-
values λ of matrix A satisfy one of the following conditions:

(a) ∥λ∥ ≥ 1
1−α , λ ̸= 1

1−α ;
(b) Re(λ) > 1

1−α ;
(c) Re(λ) < 0;
(d) |Im(λ)| > 1

2(1−α) .

Lemma 2.5. The Laplace transform of the Caputo-Fabrizio derivative
of order 0 ≤ α < 1 is given by

L{CFDα
xf(x)} =

sL{f(x)} − f(0)

s+ α(1− s)
. (2.5)

Definition 2.6. [9] A continuous function g : [0,+∞) → [0,+∞) is said
to belong to class K if it is strictly increasing and g(0) = 0.

Theorem 2.7. [9] Consider the system described by the equation
CFDα

xy(x) = f(y(x)), (2.6)
where y = 0 is an equilibrium point. Suppose there exists a class K
function V (y) that is continuously differentiable and defined in a neigh-
borhood U ⊂ Rn of the origin, satisfying the following conditions:

(1) V (0) = 0 and V (y) > 0 for all y ∈ U\{0};
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(2) CFDα
xy(x) ≤ 0 for all y ∈ U\{0}.

Then the equilibrium point y = 0 is locally stable. Moreover, if these
two conditions hold globally over Rn, then y = 0 is globally stable.

Lemma 2.8. [9] Let u(t) ∈ [0,∞) be a continuously differentiable func-
tion and u∗ > 0. Then, for any time t ≥ t0, we have

CFDα
t

(
u(t)− u∗ − u∗ ln(

u(t)

u∗
)
≤

(
1− u∗

u(t)

)
CFDα

t u(t).

3. The SIQR model and its dynamics

We introduce an epidemic model which in this model the total pop-
ulation is divided into four classes at any time t ≥ 0: the susceptible
individuals (S), the infected individuals (I), the quarantine individuals
(Q) and the recovered individuals (R). Moreover, we introduce our model
as a system of fractional differential equations with Caputo-Fabrizio de-
rivative as:

CFDα
t S = Λ− βSI − µS,

CFDα
t I = (1− q0)βSI − (q + ε+ µ)I,

CFDα
t Q = qI + q0βSI − (γ + µ)Q, (3.1)

CFDα
t R = εI + γQ− µR.

In model (3.1), all parameters are positive and describe in Table 1.

Table 1. Parameters of the SIQR model (3.1).

Parameters Discription
Λ The recruitment rate of susceptibles
β Transmission coefficient
q0 Per capita rate of quarantine of the new patients
µ Natural mortality rate
q Quarantine rate
ε Recovered rate after infected
γ Recovered rate of quarantined patients

Here, we study the dynamics of the model. For this reason, first
we calculate the equilibrium points of the model. By some calcula-
tion, we obtain two equilibrium points, namely, a disease-free equi-
librium (DFE) E0 = (Λµ , 0, 0, 0) and an endemic equilibrium point,
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E∗ = (S∗, I∗, Q∗, R∗), as

S∗ =
Λ

µR0
, I∗ =

µ

β
(R0 − 1),

Q∗ =
(R0 − 1)(q0ε+ q0µ+ q)

µβ(µ+ γ)(1− q0)
,

R∗ =
(R0 − 1)[γ(ε+ q0µ+ q) + εµ(1− q0)]

β(µ+ γ)(1− q0)
,

where, R0 =
βΛ(1−q0)
µ(q+µ+ε) is the basic reproduction number.

Theorem 3.1. The disease free equilibrium E0 always exists and it is
locally asymptotically stable if R0 < 1 and it is unstable if R0 > 1.
The endemic equilibrium E1 exists and locally asymptotically stable if
R0 > 1.

Proof. The Jacobian matrix of the system (3.1) is given by:

J(S, I,Q,R) =


−β I − µ −β S 0 0

(1− q0)β I (1− q0 )β S − q − µ− ε 0 0

β I q0 β q0 S + q −γ − µ 0

0 ε γ −µ

 .

(3.2)

By simple calculation we can find the eigenvalues at E0 are −µ,−µ,−(µ+
γ) and (q + µ + ε)(R0 − 1). Therefore, E0 is asymptotically stable if
R0 < 1 and unstable if R0 > 1.

At E∗, the eigenvalues are λ1 = −µ, λ2 = −(µ+γ) and the two others
are roots of the following equation

λ2 + (µR0)λ+ (q + µ+ ε)(R0 − 1) = 0. (3.3)

Hence, λ3 + λ4 = −µR0 < 0 and λ3λ4 = (q + µ + ε)(R0 − 1) > 0, and
E∗ is stable for R0 > 1. □

In the following two theorems, we will explore the global dynamics of
equilibria. Since the first three equations of system (3.1) are independent
of the last one, therefore, we can disregard the fourth equation and focus
on the equivalent 3-dimensional system, which will make it easier to
analyze the system’s properties.

Theorem 3.2. When R0 < 1, the DFE is globally asymptotically stable.
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Proof. To demonstrate the global stability of the model at the DFE
when R0 < 1, we consider the Lyapunov function V (I) = I. Therefore,

CFDα
t V =(1− q0)βSI − (q + ε+ µ)I

=(1− q0)βS0I − (q + ε+ µ)I − (1− q0)β(S0 − S)I

=(q + ε+ µ)(R0 − 1)I − (1− q0)β(
Λ

µ
− S)I.

Clearly, we observe that CFDα
t V ≤ 0, leading to the conclusion. □

Theorem 3.3. When R0 > 1, the endemic equilibrium E∗ is globally
asymptotically stable.

Proof. Suppose R0 > 1, and take following Lyapunov function

V (S, I,Q) = S∗Θ(
S

S∗ ) +
1

1− q0
I∗Θ(

I

I∗
), (3.4)

where, Θ(y) = y − 1 − ln(y), for y > 0. It is clear that Θ attains its
global minimum at y = 1 and Θ(1) = 0. This implies Θ(y) ≥ 0 for all
y ≥ 0. Hence, V (S, I,Q) ≥ 0 and V (S∗, I∗, Q∗) = 0.

By applying Lemma 2.8 , we get

CFDα
t V (S, I,Q) ≤

(
1− S∗

S

)
CFDα

t S +
1

1− q0

(
1− I∗

I

)
CFDα

t I. (3.5)

Using endemic condition Λ = (βI∗ + µ))S∗, q+ ε+ µ = (1− q0)βS
∗, we

obtain(
1− S∗

S

)
CFDα

t S =
(
1− S∗

S

)(
Λ− βSI − µS

)
=
(
1− S∗

S

)(
(βI∗ + µ))S∗ − βSI − µS

)
=βS∗I∗

(
1− S∗

S

)(
1− SI

S∗I∗
)
+ µS∗(1− S∗

S

)(
1− S

S∗
)

=βS∗I∗
(
1− S∗

S
+

I

I∗
− SI

S∗I∗
)
+ µS∗(2− S∗

S
− S

S∗
)
,

and
1

1− q0

(
1− I∗

I

)
CFDα

t I =
(
1− I∗

I

)(
βSI − (q + ε+ µ)

(1− q0)
I
)

=
(
1− I∗

I

)(
βSI − βS∗I

)
=βS∗I∗

(
1− S

S∗ − I

I∗
+

SI

S∗I∗
)
.
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Figure 2. Qualitative diagrams for the forward bifurca-
tion. Solid line shows the stability and dashed line shows
the instability.

Hence,

CFDα
t V (S, I,Q) ≤

(
βS∗I∗ + µS∗)(2− S∗

S
− S

S∗
)

=− βI∗ + µ

S
(S − S∗)2.

This means CFDα
t V (S, I,Q) ≤ 0, for R0 > 1, and based on Theorem

2.7, the endemic equilibrium is globally asymptotically stable. □

In the last part of this section, we investigate the forward bifurcation
in the our model. A forward bifurcation in an epidemic model occurs
when a small change in a parameter of the model causes a qualitative
change in the behavior of the system. In the context of an epidemic
model, this means that a small change in a parameter can cause the
epidemic to either die out or become an ongoing, endemic infection.
Before the bifurcation point, the only stable equilibrium is the disease-
free equilibrium (DFE), meaning that the infection cannot establish itself
in the population. After the bifurcation point, there are two equilibria:
the unstable disease-free equilibrium and an stable endemic equilibrium,
where the infection persists indefinitely in the population (see Fig. 2).
The forward bifurcation is an important concept in epidemiology because
it helps us understand how changes in the transmission rate, such as
interventions or behavior changes, can affect the long-term outcome of
an epidemic. If the transmission rate is below the bifurcation threshold,
then the epidemic will die out on its own. If it is above the bifurcation
threshold, then the epidemic will become an ongoing, endemic infection
[14, 19]. Therefore, straightforward result is obtained from Theorem 3.1.

Theorem 3.4. The fractional system (3.1) has a forward bifurcation at
R0 = 1.
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4. Existence of solutions

In this section, we establish the existence of the SIQR model (3.1) by
utilizing the fixed point hypothesis. First, consider system (3.1) with
non-negative initial values

S(0) = S0 ≥ 0, I(0) = I0 ≥ 0, Q(0) = Q0 ≥ 0, R(0) = R0 ≥ 0. (4.1)

Let (Ω, ∥.∥) be a Banach space and T a self-map on Ω. Let also un+1 =
F (T, un) be some recurrent procedure, such as Picard’s iterations se-
quence. Assume Fix(T), be the set of fixed points of T and Fix(T) ̸= ∅.
Moreover, limn→∞ un = u∗ ∈ Fix(T). Furthermore, let {vn} ⊂ Ω and
define εn = ∥vn+1 − F (T, un)∥. If limn→∞ εn = 0, implies limn→∞ yn =
u∗, then the recurrent procedure un+1 = F (T, un) is called to be T -stable
[18, 22].

Applying the Laplace transform on both sides of (3.1) and using initial
values (4.1), we obtain

sL{S(t)} − S(0)

s+ α(1− s)
= L{Λ− βSI − µS},

sL{I(t)} − I(0)

s+ α(1− s)
= L{(1− q0)βSI − (q + ε+ µ)I},

sL{Q(t)} −Q(0)

s+ α(1− s)
= L{qI + q0βSI − (γ + µ)Q},

sL{R(t)} −R(0)

s+ α(1− s)
= L{εI + γQ− µR}.

Therefore, we get

L{S(t)} =
S0

s
+

(
s+ α(1− s)

s

)
L{Λ− βSI − µS},

L{I(t)} =
I0
s

+

(
s+ α(1− s)

s

)
L{(1− q0)βSI − (q + ε+ µ)I},

L{Q(t)} =
Q0

s
+

(
s+ α(1− s)

s

)
L{qI + q0βSI − (γ + µ)Q},

L{R(t)} =
R0

s
+

(
s+ α(1− s)

s

)
L{εI + γQ− µR}.
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Now, using inverse Laplace transform implies that

S(t) = S0 + L−1

{(
s+ α(1− s)

s

)
L{Λ− βSI − µS}

}
,

I(t) = I0 + L−1

{(
s+ α(1− s)

s

)
L{(1− q0)βSI − (q + ε+ µ)I}

}
,

Q(t) = Q0 + L−1

{(
s+ α(1− s)

s

)
L{qI + q0βSI − (γ + µ)Q}

}
,

R(t) = R0 + L−1

{(
s+ α(1− s)

s

)
L{εI + γQ− µR}

}
.

Based on the above process, we can define the following recurrent for-
mula

Sj+1(t) = S0 + L−1

{(
s+ α(1− s)

s

)
L{Λ− βSjIj − µSj}

}
,

Ij+1(t) = I0 + L−1

{(
s+ α(1− s)

s

)
L{(1− q0)βSjIj − (q + ε+ µ)Ij}

}
,

Qj+1(t) = Q0 + L−1

{(
s+ α(1− s)

s

)
L{qIj + q0βSjIj − (γ + µ)Qj}

}
,

Rj+1(t) = R0 + L−1

{(
s+ α(1− s)

s

)
L{εIj + γQj − µRj}

}
, (4.2)

for j = 0, 1, 2, · · · . Now, we define vector uj = (Sj , Ij , Qj , Rj)
T and

F (u) =


f1
f2
f3
f4

 (u) =


Λ− βSjIj − µSj

(1− q0)βSjIj − (q + ε+ µ)Ij
qIj + q0βSjIj − (γ + µ)Qj

εIj + γQj − µRj

 . (4.3)

Hence, the self map T, define by

T(uj) =


T1

T2

T3

T4

 (uj) = u0 + L−1

{(
s+ α(1− s)

s

)
LF (uj)

}
. (4.4)

Since the SIQR model present population in the real world, then S(t),
I(t), Q(t) and R(t) are non-negative and bounded. Therefore, there
exist positive constants ζi, i = 1, 2, 3, 4 such that for all t

∥S(t)∥ ≤ ζ1, ∥I(t)∥ ≤ ζ2, ∥Q(t)∥ ≤ ζ3, ∥R(t)∥ ≤ ζ4. (4.5)

We also define
∥u∥ = max{∥S∥, ∥I∥, ∥Q∥, ∥R∥}.
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Considering equations (4.4) and (4.5), for i, j ∈ N, we have

∥T1(uj)− T1(ui)∥ ≤L−1

{(
s+ α(1− s)

s

)
L{−βSjIj − µSj + βSiIi − µSi}

}
≤L−1

{(
s+ α(1− s)

s

)
L{(βζ2 − µ)∥Sj − Si∥}

}
≤Φ(α)(βζ2 − µ)∥uj − ui∥,

where, Φ(α) = L−1{L
(
s+α(1−s)

s

)
}. With similar calculation, one can

obtain

∥T2(uj)− T2(ui)∥ ≤ Φ(α)(βζ1(1− q0)− (q + µ+ ε))∥uj − ui∥,
∥T3(uj)− T3(ui)∥ ≤ Φ(α)(q + q0βζ1 − (γ + µ))∥uj − ui∥,
∥T4(uj)− T4(ui)∥ ≤ Φ(α)(ε+ γ − µ)∥uj − ui∥,

Here, we can summarize above results in the following theorem.

Theorem 4.1. If the following conditions hold
(C1) Φ(α)(βζ2 − µ) < 1;
(C2) Φ(α)(βζ1(1− q0)− (q + µ+ ε)) < 1;
(C3) Φ(α)(q + q0βζ1 − (γ + µ)) < 1;
(C4) Φ(α)(ε+ γ − µ) < 1;

then recurrent procedure (4.2) is T -stable and system (3.1) with initial
conditions (4.1) has a unique solution.

5. Numerical solutions

In this section, we first present the three-step fractional Adams-Bashforth
method and then apply it to our model. First, Consider the Caputo–
Fabrizio fractional differential equation

CFDα
t u(t) = f(t, u(t)), 0 < α ≤ 1. (5.1)

Applying the following fractional integral (2.2) to both sides of (5.1)
implies

u(t)− u(0) =CF Iαt
(
f
(
t, u(t)

))
=

(1− α)

M(α)
f
(
t, u(t)

)
+

α

M(α)

∫ t

0
f
(
s, u(s)

)
ds.

Now, we discritize the above equation on [0, T ] with step size h and
approximate function f(t, u) by Lagrange interpolating polynomial of
degree two, we obtain following formula



Analysis of a fractional SIQR model with Caputo-Fabrizio derivative 417

0 500 1000 1500

t

0

1

2

3

4

5

6

S(t)
I(t)
Q(t)
R(t)

0 100 200 300 400 500 600 700 800 900 1000

t

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

I(t)

(a) The DFE E0 is stable for q0 = 0.65.
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(b) The endemic equilibrium E∗ is stable for q0 = 0.25.

Figure 3. Solution of system (3.1) for fractional order
α = 0.95 and Λ = 0.0382, β = 0.25177, µ = 0.0073, q =
0.6, ε = 0.01, γ = 0.05.

uk+1 = uk +
1

M(α)

[
(1− α) +

23hα

12

]
f(tk, uk)

− 1

M(α)

[
(1− α) +

4

3
hα

]
f(tk−1, uk−1) +

5hα

12M(α)
f(tk−2, uk−2),

(5.2)

where uk = u(tk). For details and obtaining the truncation error of
formula (5.2), see [15].

In this section, by using the numerical methods, we obtain some re-
sults. Indeed, we are present three scenarios.
Case 1.
Here, we simulate the solution of system (3.1) for fractional order α =
0.95. Moreover, we choose some values for parameters as Λ = 0.0382, β =
0.25177, µ = 0.0073, q = 0.6, ε = 0.01, γ = 0.05. As we mentioned in Ta-
ble 1, q0 is per capita rate of quarantine of the new patients. Therefore,
this parameters show the power of quarantine in the model. Here, by
varying some different values of q0, the behaviour of the model will be
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Figure 4. Stability of endemic equilibrium for fractional
orders α = 1, 0.95, 0.9, 0.8, 0.7 and parameters values
q0 = 0.25,Λ = 0.0382, β = 0.25177, µ = 0.0073, q =
0.6, ε = 0.01, γ = 0.05.

obtained. First, let q0 = 0.65, therefore R0 = 0.7470 and system (3.1)
has stable DFE E0 = (5.2329, 0, 0, 0). In this case, system has no any
endemic equilibrium. See figure 3 (a).



Analysis of a fractional SIQR model with Caputo-Fabrizio derivative 419

0 5 10 15 20 25 30 35

t

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

I(
t)

=1
=0.95
=0.9
=0.8
=0.7

(a)

0 20 40 60 80 100 120 140 160 180 200

t

0.5

1

1.5

2

2.5

3

3.5

4

4.5

S
(t

)

=1
=0.95
=0.9
=0.8
=0.7

(b)

Figure 5. Stability of DFE for fractional orders α =
1, 0.95, 0.9, 0.8, 0.7 and parameters values q0 = 0.65,Λ =
0.0382, β = 0.25177, µ = 0.0073, q = 0.6, ε = 0.01, γ =
0.05.

Second, by choosing q0 = 0.25, we have R0 = 1.6007 and system
(3.1) has unstable DFE E0 = (5.2329, 0, 0, 0) and stable endemic E∗ =
(3.2681, 0.0175, 0.2457, 1.7015). See figure 3 (b).

Figure 3, shows that by controlling rate of quarantine q0 (for new
patient) we can control the disease. In the other words, we can find a
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critical value qc0 = 1− µ(q+µ+ε)
Λβ as a threshold. Indeed, q0 < qc0, implies

R0 > 1 and the disease spreads in the community, and for q0 > qc0,
implies R0 < 1, then the disease will be eradicated. For the above
values of parameters we have qc0 = 0.5315. Figure 3 verifies this subject.

As a final result, we can find the threshold for quarantine rate qc0 in
each community (if we have other parameters), which for values greater
than the qc0, the disease will be decrease and finally will be eradicated.
Case 2.
In this case, we fix parameters Λ = 0.0382, β = 0.25177, µ = 0.0073, q =
0.6, ε = 0.01, γ = 0.05 and illustrate the solutions for different values of
fractional orders. Corresponding to the Case 1, we choose two values
for q0.

By choosing q0 = 0.25, system (3.1) has an stable equilibrium. Fig.
4, shows the stability of endemic equilibrium for fractional orders α =
1, 0.95, 0.9, 0.8, 0.7. One can see that when the value of α decreases,
solutions of system (3.1) converge to the endemic equilibrium. But the
peak of the disease occurs later and with a lower amount. Similarly, this
happens for subsequent peaks until the disease converges to the endemic
point.

Choosing q0 = 0.65, system (3.1) has an stable disease-free equilib-
rium. Fig. 5, shows the stability of DFE for fractional orders α =
1, 0.95, 0.9, 0.8, 0.7. In this situation, when the value of α decreases,
solutions of system (3.1) converge slowly to the DFE.
Case 3.
In this situation, we illustrate the bifurcation diagram of system (3.1)
with respect to basic reproduction number R0. Fig. 6 shows that before
R0 = 1, the system has only stable DFE and for values R0 > 1, an stable
endemic equilibrium appears and the DFE becomes unstable. Therefore,
the forward bifurcation occurs in R0 = 1.

6. Conclusions

In this study, a new fractional SIQR model was proposed to inves-
tigate the dynamics of epidemics. The Caputo-Fabrizio derivative was
utilized to analyze the model, with a focus on the role of quarantining
newly infected individuals. The model assumes that patients could be
quarantined immediately after diagnosis, before displaying symptoms,
and the rate of quarantine for new patients was represented by a new
parameter, q0. Equilibria were calculated, and their dynamics were an-
alyzed, revealing a forward bifurcation phenomenon. The existence of a
solution was examined using an analytical method, and a three-step frac-
tional Adams-Bashforth method was developed to solve fractional sys-
tems with Caputo-Fabrizio derivatives. The proposed numerical method
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Figure 6. The forward bifurcation occurs in R0 = 1.

was employed to obtain the model’s solution, and the quarantine thresh-
old, qc0, was determined for each community. When qc0 is above a certain
value, the disease gradually declines and is eventually eliminated.
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