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Abstract. In this paper we deal with the existence of weak solu-
tion for a p(t)-Kirchhoff-type problem of the following form


−
(
α− β

∫
Γ

1
p(t)

|∆ϑ|p(t) dt
)
∆(|∆ϑ|p(t)−2∆ϑ) =

λ|ϑ|p(t)−2ϑ+ g(t, ϑ) in Γ,
ϑ = ∆ϑ = 0 on ∂Γ.

Using the Mountain Pass Theoem, we establish conditions ensuring
the existence result.
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1. Introduction

In this paper we study the following problem
−
(
α− β

∫
Γ

1
p(t) |∆ϑ|p(t) dt

)
∆(|∆ϑ|p(t)−2∆ϑ) =

λ|ϑ|p(t)−2u+ g(t, ϑ) in Γ,
ϑ = ∆ϑ = 0 on ∂Γ.

(1.1)
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where Γ ⊂ RN , N ≥ 2 is a bounded smooth domain with smooth
boundary ∂Γ, p(t) ∈ C(Γ), α, β > 0 are constants, g is a continuous
function, λ is a real parameter. We impose these conditions on the
nonlinearity g(t, s) ∈ C(Γ,R):

(g1) The the Carathéodory function g : Γ × R → R satisfies the
subcritical growth condition, i.e. there exists a constant c1 ≥ 0
so that

|g(t, s)| ≤ c1(1 + |s|q(t)−1),

for all (t, s) ∈ Γ× R where q(t) ∈ C+(Γ) and q(t) < p∗k(t).
(g2) g(x, s) = o(|s|p(t)−2s) as s → 0 uniformly with respect to t ∈ Γ.

(g3) There exist M > 0 and θ ∈
(
p+,

2(p−)2

p+

)
so that 0 < θG(t, s) ≤

sg(t, s), for all |s| ≥ M and t ∈ Γ where G(t, s) =
∫ s
0 g(t, τ) dτ .

Nonlocal p(t)-biharmonic elliptic problems are an interesting area of
nonlinear analysis, connecting many different mathematical fields such
as partial differential equations (PDEs), functional analysis and the cal-
culus of variations. By utilizing both nonlocal operators and space
for variables in the exponent of equations, these problems are exten-
sions of classical biharmonic equation. The applications of nonlocal
p(t)-biharmonic operators are vast and impactful, addressing complex
problems across multiple disciplines. Numerous papers have been pub-
lished, focusing on various aspects such as existence and multiplicity of
solutions, qualitative properties, and applications of these problems in
different contexts, (see [1, 2, 3, 8, 9]).

We concentrate on a new Kirchhoff problem related to the p(t)-biharmonic
operator, that is, the form with a nonlocal coefficient (α−β

∫
Γ

1
p(t) |∆ϑ|p(t) dt).

Its background is derived from nagative Young’s modulus, when the
atoms are separated into two pieces instead of being compressed, lead-
ing to a negative strain.
As we know, the eigenvalues of p(t)-biharmonic problem with Navier-
boundary conditions{

∆(|∆ϑ|p(t)−2∆ϑ) = λ|ϑ|p(t)−2ϑ in Γ,
ϑ = ∆ϑ = 0 on ∂Γ.

were studied in [3], and the first eigenvalue is determined by the following
Rayleigh quotient

λ1 = inf
X\{0}

∫
Γ

1
p(t) |∆ϑ|p(t) dt∫

Γ
1

p(t) |ϑ|p(t) dt
(1.2)

where X = W 2,p(t)(Γ)
⋂
W

1,p(t)
0 (Γ). Moreover, under some special con-

ditions, λ1 is positive.
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The authors in [11] for the first time, studied this form of the Kirchhoff-
type problem{

−
(
a− b

∫
Γ |∇u|2 dx

)
∆u = λ|u|p−2u in Γ,

u = 0 on ∂Γ,

with 2 < p < 2∗ := (2N)/(N − 2), and they obtained the existence
of solutions by using the mountain pass theorem. Furthermore, some
interesting results have been obtained for this kind of Kirchhoff-type
problem. We refer the readers to [1, 10, 13] and the references therein.

Now, we state our main result:

Theorem 1.1. Assume that the function q ∈ C(Γ) satisfies

1 < p− < p(t) < p+ < 2p− < q− < q(t) < p∗k(t) :=
Np(t)

N − kp(t)

and 2p− < θ.

(1.3)

Then considering conditions (g1)-(g3), for all λ ∈ R, problem (1.1)
admits a nontrivial weak solution.

2. Notations and preliminaries

Let Γ be a bounded domain of RN , denote
C+(Γ) = {p(t); p(x) ∈ C(Γ), p(t) > 1, ∀t ∈ Γ},
p+ = max{p(t); t ∈ Γ}, p− = min{p(t); t ∈ Γ};

Lp(t)(Γ) = {ϑ : Γ → R measurable and
∫
Γ
|ϑ(t)|p(t) dt < ∞},

with the norm |ϑ|Lp(t)(Γ) = |ϑ|p(t) = inf

{
µ > 0;

∫
Γ

∣∣∣ϑ(t)µ

∣∣∣p(t) dx ≤ 1

}
.

Proposition 2.1 (See [6]). The space (Lp(t)(Γ), | · |p(t)) is separable,
uniformly convex, reflexive and its conjugate space is Lq(t)(Γ) where q(t)
is the conjugate function of p(t), i.e., 1

p(t)+
1

q(t) = 1, for all t ∈ Γ. For ϑ ∈

Lp(t)(Γ) and υ ∈ Lq(t)(Γ), we have
∣∣∫

Γ ϑυ dt
∣∣ ≤ (

1
p− + 1

q−

)
|ϑ|p(t)|υ|q(t) ≤

2|ϑ|p(t)|υ|q(t).

The Sobolev space with variable exponent W k,p(t)(Γ) is defined as
follows: W k,p(t)(Γ) = {ϑ ∈ Lp(t)(Γ) : Dαϑ ∈ Lp(t)(Γ), |α| ≤ k}, where
Dαϑ = ∂|α|

∂x
α1
1 ∂t

α2
2 ...∂t

αN
N

ϑ, with α = (α1, . . . , αN ) is a multi-index and

|α| =
∑N

i=1 αi. The space W k,p(t)(Γ) equipped with the norm ∥ϑ∥k,p(t) =∑
|α|≤k |Dαϑ|p(t), also becomes a separable and reflexive Banach space.

For more details, we refer the reader to [5, 6].
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Proposition 2.2 (See [6]). For p, r ∈ C+(Γ) such that r(t) ≤ p∗k(t) for
all t ∈ Γ, there is a continuous embedding W k,p(t)(Γ) ↪→ Lr(t)(Γ). If we
replace ≤ with <, the embedding is compact.

We denote by W
k,p(t)
0 (Γ) the closure of C∞

0 (Γ) in W k,p(t)(Γ). Note
that the weak solutions of problem (1.1) are considered in the generalized
Sobolev space X = W 2,p(t)(Γ) ∩ W

1,p(t)
0 (Γ) equipped with the norm

∥ϑ∥ = inf

{
µ > 0 :

∫
Γ

∣∣∣∆ϑ(t)
µ

∣∣∣p(t) dx ≤ 1

}
.

Remark 2.3. According to [12], the norm ∥ · ∥2,p(t) is equivalent to the
norm |∆ · |p(t) in the space X. Consequently, the norms ∥ · ∥2,p(t), ∥ · ∥
and |∆ · |p(t) are equivalent.

We consider the functional ρ(ϑ) =
∫
Γ |∆ϑ|p(t) dt and give the following

fundamental proposition.

Proposition 2.4 (See [4]). For ϑ ∈ X and ϑn ⊂ X, we have
(1) ∥ϑ∥ < 1 (respectively= 1;> 1) ⇐⇒ ρ(ϑ) < 1 (respectively= 1;>

1);
(2) if ∥ϑ∥ > 1, then ∥ϑ∥p− ≤ ρ(ϑ) ≤ ∥ϑ∥p+;
(3) if ∥ϑ∥ < 1, then ∥ϑ∥p+ ≤ ρ(ϑ) ≤ ∥ϑ∥p−;
(4) ∥ϑn∥ → 0 (respectively → ∞) ⇐⇒ ρ(ϑn) → 0(respectively →

∞).

Let us define the functional

K(ϑ) =

∫
Γ

1

p(t)
|∆ϑ|p(t) dx.

It is well known that K is well defined, even and C1 in X. Moreover,
the operator L = K′ : X → X∗ defined as

⟨L(ϑ), υ⟩ =
∫
Γ
|∆ϑ|p(t)−2∆ϑ∆υ dt

for all ϑ, υ ∈ X satisfies the following assertions.

Proposition 2.5 (See El Amrouss et al. [4]). The derivative operator
L has the following properties:

(1) L is continuous, bounded and strictly monotone;
(2) L is a mapping of (S+)-type, namely: ϑn ⇀ ϑ and lim supn→+∞ L(ϑn)(ϑn−

ϑ) ≤ 0, implies ϑn → ϑ;
(3) L is a homeomorphism.
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3. Proof of the main result

Definition 3.1. We say that ϑ ∈ X is a weak solution of problem (1.1),
if

(α− β

∫
Γ

1

p(t)
|∆ϑ|p(t) dt)

∫
Γ
|∆ϑ|p(t)−2∆ϑ∆ϕdt− λ

∫
Γ
|ϑ|p(t)−2ϑϕdt =∫

Γ
g(t, ϑ)ϕdt,

for any ϕ ∈ X.

The problem (1.1) has a variational form with the energy functional
J : X → R, defined as follows:

J(ϑ) = α

∫
Γ

1

p(t)
|∆ϑ|p(t) dt− β

2

(∫
Γ

1

p(t)
|∆ϑ|p(t) dt

)2

− λ

∫
Γ

1

p(t)
|ϑ|p(t) dt−

∫
Γ
G(t, ϑ) dt, (3.1)

for all ϑ ∈ X. Moreover, the functional J is well defind and of class
C1 in X. Furthermore, we have

⟨J ′(ϑ), ϕ⟩ = (α− β

∫
Γ

1

p(t)
|∆ϑ|p(t) dt)

∫
Γ
|∆ϑ|p(t)−2∆ϑ∆ϕdt

− λ

∫
Γ
|ϑ|p(t)−2ϑϕdt−

∫
Γ
g(t, ϑ)ϕdt, (3.2)

for every ϕ ∈ X. Hence, we can observe that the critical points of J are
weak solutions of problem (1.1).

3.1. Compactness condition.

Definition 3.2. Let (X, ∥ · ∥) be a Banach space and J ∈ C1(X). We
say that J satisfies the Palais-Smale condition at level c ((PS)c in short),
if any sequence {un} ⊂ X satisfying

J(ϑn) → c and J ′(ϑn) → 0 in X∗ as n → ∞, (3.3)

has a convergent subsequence.

Lemma 3.3. Assume that (g1)- (g3) hold. Then the functional J sat-

isfies the (PS)c condition, where c <
α2

2β
.

Proof. We proceed in two steps.
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Step1. We prove that {ϑn} is bounded in X. Let {ϑn} ⊂ X be a (PS)c

sequence such that c <
α2

2β
.

• For λ > 0. Arguing by contradiction, we assume that, passing
eventually to a subsequence, still denote by {ϑn}, we have ∥ϑn∥ → +∞
as n → +∞. Using (3.3) and (g3), for n large enough, we can write

C + ∥ϑn∥ ≥ θJ(ϑn)− ⟨J ′(ϑn), ϑn⟩

≥ θ
(
α

∫
Γ

1

p(t)
|∆ϑn|p(t) dt−

β

2

(∫
Γ

1

p(t)
|∆ϑn|p(t) dt

)2

− λ

∫
Γ

1

p(t)
|ϑn|p(t) dt−

∫
Γ
G(t, ϑn) dt

)
−
([

α− β

∫
Γ

1

p(t)
|∆ϑn|p(t) dx

] ∫
Γ
|∆ϑn|p(t) dt− λ

∫
Γ
|ϑn|p(t) dt

−
∫
Γ
g(t, ϑn)ϑn dt

)
≥ α(

θ

p+
− 1)

∫
Γ
|∆ϑn|p(t) dt+

β(
−θ

2(p−)2
+

1

p+
)
(∫

Γ
|∆ϑn|p(t) dt

)2
− λ(

θ

p−
− 1)

∫
Γ
|ϑn|p(t) dt− C|Γ|,

where |Γ| =
∫
Γ dt. Therefore, we deduce that

C + ∥ϑn∥+ λ(
θ

p−
− 1)∥ϑn∥p

+ ≥ α( θ
p+

− 1)∥ϑn∥p
−
+ β( −θ

2(p−)2
+ 1

p+
)∥ϑn∥2p

−

−C|Γ|.

Dividing the above inequality by ∥ϑn∥p
+ , taking into account (1.3)

holds and passing to the limit as n → +∞, we obtain a contradiction.
It follows that {ϑn} is bounded in X.

• For λ ≤ 0. From (3.3) and (g3), for n large enough, we have

C + ∥ϑn∥ ≥ α(
θ

p+
− 1)∥ϑn∥p

−
+ β(

−θ

2(p−)2
+

1

p+
)∥ϑn∥2p

− − C|Γ|.

It follows from (1.3) that {ϑn} is bounded in X.
Step2. Now, we will prove that {ϑn} has a convergent subsequence in
X. Up to a subsequence, for some ϑ ∈ X we have
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ϑn ⇀ ϑ, in X;

ϑn → ϑ, in Lp(t)(Γ);

ϑn → ϑ, in Lq(t)(Γ);
ϑn(t) → ϑ(t), a.e. in Γ.

By Hölder inequality and Proposition 2.2, we obtain∣∣∣ ∫
Γ
|ϑn|p(t)−2ϑn(ϑn − ϑ) dt

∣∣∣ ≤ ∫
Γ
|ϑn|p(t)−1|ϑn − ϑ| dt

≤ ∥|ϑn|p(t)−1∥ p(t)
p(t)−1

∥ϑn − ϑ∥p(t)

→ 0, as n → +∞,

and then,

lim
n→+∞

∫
Γ
|ϑn|p(t)−2ϑn(ϑn − ϑ) dt = 0. (3.4)

Now, let ε > 0 be small enough. By assumptions (g1) and (g2), we
have

|g(t, ϑn)| ≤ ε|ϑn|p(t)−1 + c(ε)|ϑn|q(t)−1. (3.5)

Using (3.5), Hölder inequality and Proposition 2.2, we deduce that∣∣∣ ∫
Γ
g(t, ϑn)(ϑn − ϑ) dt

∣∣∣ ≤ ∫
Γ
ε|ϑn|p(t)−1|ϑn − u|

+ c(ε)|ϑn|q(t)−1|ϑn − ϑ| dt

≤ ε∥|ϑn|p(t)−1∥ p(t)
p(t)−1

∥ϑn − ϑ∥p(t)

+ c(ε)∥|ϑn|q(t)−1∥ q(t)
q(t)−1

∥ϑn − ϑ∥q(t)

→ 0, as n → +∞,

and then,

lim
n→+∞

∫
Γ
g(t, ϑn)(ϑn − ϑ) dt = 0. (3.6)

From (3.3), we conclude that

⟨J ′(ϑn), ϑn − ϑ⟩ → 0.
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Therefore

⟨J ′(ϑn), ϑn − ϑ⟩ =
(
α− β

∫
Γ

1

p(t)
|∆ϑn|p(t) dt

)
×

∫
Γ
|∆ϑn|p(t)−2∆ϑn(∆ϑn −∆ϑ) dt

− λ

∫
Γ
|ϑn|p(t)−2ϑn(ϑn − ϑ) dt−

∫
Ω
g(t, ϑn)(ϑn − ϑ) dt

→ 0.

So, considering (3.4) and (3.6), we obtain(
α− β

∫
Γ

1

p(t)
|∆ϑn|p(t) dt

)∫
Γ
|∆ϑn|p(t)−2∆ϑn(∆ϑn −∆ϑ) dt → 0.(3.7)

Similar to the proof of Lemma 3.1 in [7], we can deduce that the
sequence {

α− β

∫
Γ

1

p(t)
|∆ϑn|p(t) dx

}
is bounded

and we have

α− β

∫
Γ

1

p(t)
|∆ϑn|p(t) dx ↛ 0, as n → +∞.

This fact combined with (3.7) implies that∫
Γ
|∆ϑn|p(t)−2∆ϑn(∆ϑn −∆ϑ) dt → 0.

Since L is of (S+) by Proposition 2.5, we obtain ϑn → ϑ in X. The
proof is complete. □

3.2. Proof of Theorem 1.1.

Lemma 3.4. Assume that g satisfies (g1)- (g3) . Then J satisfies the
Mountain Pass geometry, that is,

(i) there exists ρ, δ > 0 such that J(ϑ) ≥ δ > 0, for any ϑ ∈ X with
∥ϑ∥ = ρ.

(ii) there exists e ∈ X with ∥e∥ > ρ such that J (e) < 0.

Proof. First we prove the statement (i).
• Assume λ ≤ 0. Using (g1) and (g3), we can write

|G(t, ϑ)| ≤ ε

p(t)
|ϑ|p(t) + c(ε)

q(t)
. (3.8)
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Let ε = 1
2αλ1, ρ ∈ (0, 1) and u ∈ X be such that ∥ϑ∥ = ρ. By

Propositions 2.2 and 2.4, we have

J(ϑ) = α

∫
Γ

1

p(t)
|∆ϑ|p(t) dt− β

2

(∫
Γ

1

p(t)
|∆ϑ|p(t) dt

)2

− λ

∫
Γ

1

p(t)
|ϑ|p(t) dt−

∫
Γ
G(t, ϑ) dt

≥ α

∫
Γ

1

p(t)
|∆ϑ|p(t) dt− β

2

(∫
Γ

1

p(t)
|∆ϑ|p(t) dt

)2

− ε

∫
Γ

|ϑ|p(t)

p(t)
dt

− c(ε)

∫
Γ

|ϑ|q(t)

q(t)
dt

≥ (α− ε

λ1
)

∫
Γ

1

p(t)
|∆ϑ|p(t) dt− β

2

(∫
Γ

1

p(t)
|∆ϑ|p(t) dt

)2

− Cc(ε)

q−

∫
Γ
|∆ϑ|q(t) dt

≥ 1

p+
(α− ε

λ1
)∥ϑ∥p+ − β

2(p−)2
∥ϑ∥2p− − Cc(ε)

q−
∥ϑ∥q−

≥
( α

2p+
− β

2(p−)2
∥ϑ∥2p−−p+ − Cc(ε)

q−
∥ϑ∥q−−p+

)
∥ϑ∥p+ .

Considering (1.3), we can choose ρ > 0 and then there exists δ > 0 such
that J(ϑ) ≥ δ > 0 for every ϑ ∈ X with ∥ϑ∥ = ρ.

• Assume λ > 0. Let ε > 0 be small enough such that 1
2p+

(α− λ
λ1
) =

ϵ
λ1p−

. Consider ρ ∈ (0, 1) and ϑ ∈ X such that ∥ϑ∥ = ρ. By Propositions
2.2 and 2.4, we deduce that
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J(ϑ) = α

∫
Γ

1

p(t)
|∆ϑ|p(t) dt− β

2

(∫
Γ

1

p(t)
|∆ϑ|p(t) dt

)2

− λ

∫
Γ

1

p(t)
|ϑ|p(t) dt−

∫
Γ
G(t, ϑ) dt

≥ α

∫
Γ

1

p(t)
|∆ϑ|p(t) dt− β

2

(∫
Γ

1

p(t)
|∆ϑ|p(t) dt

)2

− λ

λ1

(∫
Γ

1

p(t)
|∆ϑ|p(t) dx

)
− ε

∫
Γ

|uϑ|p(t)

p(t)
dt− c(ε)

∫
Γ

|ϑ|q(t)

q(t)
dt

≥ (α− λ

λ1
)

∫
Γ

1

p(t)
|∆ϑ|p(t) dt− β

2

(∫
Γ

1

p(t)
|∆ϑ|p(t) dt

)2

− ε

λ1

∫
Γ

1

p(t)
|∆ϑ|p(t) dx− Cc(ε)

q−

∫
Γ
|∆ϑ|q(t) dt

≥
( 1

p+
(α− λ

λ1
)− ε

λ1p−

)
∥ϑ∥p+ − β

2(p−)2
∥ϑ∥2p− − Cc(ε)

q−
∥ϑ∥q−

≥
( 1

2p+
(α− λ

λ1
)− β

2(p−)2
∥ϑ∥2p−−p+ − Cc(ε)

q−
∥ϑ∥q−−p+

)
∥ϑ∥p+ .

Considering (1.3), there exists λ∗ > 0 such that for any λ ∈ (0, λ∗),
there exists δ > 0 such that for any ϑ ∈ X with ∥ϑ∥ = ρ we have
J(ϑ) ≥ δ > 0.

Now, we prove the statement (ii).

By (g3), we know that for all M > 0, there exists CM > 0 so that

G(x, ϑ) ≥ M |ϑ|θ − CM , for all (x, ϑ) ∈ Γ× R. (3.9)

Let ϕ ∈ C∞
0 (Γ), ϕ > 0 and η > 1. Using (3.9), we obtain
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J(ηϕ) = α

∫
Γ

1

p(t)
|η∆ϕ|p(t) dt− β

2

(∫
Γ

1

p(t)
|η∆ϕ|p(t) dt

)2

− λ

∫
Γ

1

p(t)
|ηϕ|p(t) dx−

∫
Γ
G(t, ηϕ) dt

≤ α

∫
Γ

1

p(t)
|η∆ϕ|p(t) dx− β

2

(∫
Γ

1

p(t)
|η∆ϕ|p(t) dt

)2

− λ

∫
Γ

1

p(t)
|ηϕ|p(t) dt−M

∫
Γ
|ηϕ|θ dt+ CM |Γ|

≤ αηp
+

p−

∫
Γ
|∆ϕ|p(t) dt− βη2p

−

2(p+)2

(∫
Γ
|∆ϕ|p(t) dt

)2

− λ

p+
ηp

−
∫
Γ
|ϕ|p(t) dx−Mηθ

∫
Γ
|ϕ|θ dt+ CM |Γ|.

Since θ > 2p− > p+ > p−, we have J(ηϕ) → −∞ as t → +∞.
So, choosing e = ηϕ with η > 1 large enough, we obtain ∥e∥ > ρ and
J(ηϕ) < 0. □

By Lemmas 3.3, 3.4 and the fact that J(0) = 0, J satisfies the Moun-
tain Pass Theorem. Therefore, problem (1.1) has indeed a nontrivial
weak solution.
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