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Abstract. The most important part of the hydrological cycle is precipitation.
The study aimed to forecast rainfall with a time series model. Many studies have
been done, but we want to predict annual rainfall in Kashan. Annual rainfall
of 53 years was collected from Kashan (office of Meteorology) from spring 1967
to winter 2019. We predicted the amount of annual rainfall from 2020 to 2023.
The method of data analysis is that the time series models are fitted to the data
using statistical package for the social science (SPSS) statistical software (also,
we used R and MINITAB software). The average annual rainfall is 133.70mm
with a standard deviation of 49.32mm. The best model is ARIMA(0, 0, 1). In
the selected model, the AIC and BIC are equal to 564.64 and 570.55, respectively.
Our prediction results show a significant drop in rainfall in these four years. Since
Kashan is one of the arid and semi-arid regions, we will face the problem of water
shortage, so water consumption must be saved.
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1. Introduction

Many of the most important applications of time series methods have been to prob-
lems in the environmental sciences. More modern research may focus on whether
warming is present in global temperature measurements or whether pollution levels
may affect daily mortality in a particular country. Precipitation is the foremost
fundamental portion of the hydrology cycle [27]. It is the result of many complex
physical processes that persuade particular features and make its observation com-
plex [2]. The investigation and analysis of precipitation are so necessary for the
prediction of meteorological data [26], and accurate anticipation of rainfall is vital
to better management of water resources, especially in the arid environment [31].

Iran is in the mid-latitude belt of arid and semi-arid areas of the Earth. The
arid and semi-arid regions cover more than 60% of the country. In this agropastoral
transition region, the rains are highly variable in time, space, amount, and dura-
tion, and water is the most critical limiting factor for biological and agricultural
activities. Seasonal changes in rainfall patterns may alter the hydrological cycle
and environmental processes [9] as well as the vegetation and the entire ecosystem
[18, 25].

Being in arid and desert areas has caused the amount of rainfall in some periods
to be lower than the long-time annual average, so that in 13 of the last 23 years, this
situation has occurred in the country. In the Kashan plain, due to the prevailing dry
and semi-arid climate, the plain is prone to drought and floods. The occurrence of
prolonged and intermittent droughts and high climatic fluctuations are the leading
causes of water scarcity, especially surface water resources, which puts additional
pressure on groundwater resources [14].

In the last decades, many techniques have been used as suitable tools for modeling
and forecasting meteorological information, such as precipitation [8, 31, 34]. In these
techniques, time series modeling is an essential technique in simulation, prediction,
and decision making of hydrology cycle components [10, 16, 28, 34]. A time series
is an observation of a variable at discrete time periods (usually equal distances)
that measured and sorted according to time [25]. This technique is used to explain
data using statistical and graphical methods, to select the best statistical models to
explain the data generating process, to predict the future amounts of a series and,
to control a given process [6].

Tularam and Ilahee [36], applied time series analysis for rainfall and temperature
interactions in coastal catchments of Queensland, Australia. They suggested that,
the ARIMA model is appropriate for the prediction of these series. Eni [12], applied
the SARIMA modeling for the forecast of rainfall in Warri town, Nigeria. The
ARIMA(1, 1, 1)(0, 1, 1), 12 models fitted to this series with an AIC value of 281.
Model adequacy checks showed that the model was appropriate. The coefficient
of the fitted model was finalized by the residual tests. Wang et al. [37], used the
improved the ARIMA model to predict the monthly precipitation at the Lanzhou
station in Lanzhou, China. The results showed that the accuracy of the improved



Rainfall forecast of Kashan in Iran using time series models 265

model is significantly higher than the seasonal model. Mahsin [21], used Box-Jenkins
methodology [5] to build a SARIMA model for monthly rainfall data taken for
Dhaka station for the period 1981-2010 with a total of 354 readings. Mirmousavi
et al. [22], studied precipitation behavior in Khoi meteorological stations using
statistical methods. They found that the ARIMA(1, 1, 0) model was the best fitted
to annual precipitation. Based on this model, annual precipitation was predicted at
a 95 percent level by 2016 in this station. During recent decades, several researchers
have developed methods of analyzing stochastic characteristics of rainfall time series
[1, 3, 29, 34, 35].

Figure 1. Spatial location of the selected rainfall station

Many studies have been done, but we want to predict annual rainfall in Kashan.
The objective of this study was modeling and prediction of the annual rainfall data
of Kashan in Iran by stochastic the ARIMA model using Box-Jenkins approach [5]
to predict future rainfall values by the best ARIMA model and identify whether the
annual rainfall had significantly changed during the period 2020 to 2023. Besides,
the ARIMA models, which were found adequate, were used to predict the seasonal
rainfall for the coming four years to help decision-makers to establish priorities in
terms of water demand management.

2. Study area

Kashan territory is found within the northern portion of Isfahan area, Iran, with
geographical longitude: 51.4100°E, and geographical latitude: 33.9850°N (Figure
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1). The Kashan has an zone of 86,082km2. The ponder region features a semi-arid
climate condition. The cruel yearly temperature is almost 28°C, and the yearly
precipitation primarily 116mm. In arrange to plan information for modeling, every
year precipitation information were collected from precipitation stations in Kashan
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territory (Northeast portion of Isfahan, Iran) from 1967 to 2019 (Table 1), redressed
the measurable deformity and after that typicality test information on the residuals
of each fitted show utilizing the Kolmogorov–Smirnov test [17] was done.

Figure 2, shows the trend of rainfall from 1967 to 2019 in Kashan. As you can
see, the data has no trend and has been stationary. Also, the highest amount of
rainfall was in 1979.

Figure 2. Time series plot of original data

3. Statistical analysis

Time series models: Time series is basically a measurement of data taken in
chronological order within a certain time [19]. The purpose of the time series is to
determine the regularity and identify its behavior to predict the future. Time series
analysis and prediction have become a major tool in different applications in mete-
orological and hydrological phenomena, such as rainfall, temperature, evaporation,
flood, drought, etc. The first step in any time series analysis involves a careful exam-
ination of the recorded data plotted over time. This scrutiny often suggests methods
of analysis as well as statistics that will be helpful in summarizing the information
contained in the data. We start by linearly regressing the current value of a time
series on its own past values and the past values of other time series. This modeling
leads to the use of the results of the time domain approach as a forecasting tool,
and for this reason it is particularly popular among economists.

Generally, the models for time series data can have different forms and represent
different non-deterministic processes [23, 33]. Most modeling of time series takes
place based on a linear technique. The AR, MA, and ARMA models have a linear
base [23]. In this research, the ARIMA models based on trial and error were ex-
amined and used to assess these models’ ability in annual rainfall prediction. One



268 Mehdi Shams, Maryam Abdoli, Mark Ghamsary

approach, advocated in the work of Box and Jenkins (1970) [5] develops a systematic
class of models called the ARIMA models to handle time-correlated modeling and
forecasting. The defining characteristic of these models is that they are multiplica-
tive models, which means that the observed data are assumed to be products of the
factors of the differential or difference equation operators that respond to the white
noise input.

The AR (Autoregressive) model: Time series data is related to data that
are not independent and are successive. For example, the value of (t+ 1)th period
depends on the present tth period of the previous, and then for such a series, the
observed sequences X1, X2, ..., Xt are used to fit an AR model. The AR model can
be expressed as (3.1):

Xt = ϕ1Xt−1 + ϕ2Xt−2 + ...ϕpXt−p + Zt (3.1)

where ϕ1, ϕ2, ..., ϕp are model parameters and coefficient and Zt is the random com-
ponent of the data that follows a normal distribution with mean 0 and finite variance
[7]. A random process {Zt}, which is a sequence of uncorrelated variables, is also
called white noise [6].

The MA (Moving Average) model: The MA models are simple covariance
stationary and ergodic models that can use for a wide variety of autocorrelation
patterns [6]. The MA model can be expressed as (3.2):

Xt = θ1Zt−1 + θ2Zt−2 + ...θqZt−q + Zt (3.2)

where θ1, θ2, ...θq are model parameters and coefficient and Zt is the random compo-
nent of the data that follows a normal distribution with mean 0 and finite variance
[7].

The ARMA (Autoregressive Moving Average ) model: The ARMA model
is a synthesis of an AR and a MA model. The ARMA model forms a type of linear
models which are widely applicable and parsimonious in parameterization. The
ARMA(p, q) model can be expressed as (3.3):

Xt = δ +
∑p

i=1
ϕiXt−i +

∑q

j=1
θjZt−j + Zt (3.3)

where δ is the stationary part of the ARMA model, ϕi points out the ith, the AR
coefficient, θj is the jth, the MA coefficient, it shows the error part at time period
t, Xt refers the value of rainfall observed or predicted at time period t and Zt is the
random component of the data that follows a normal distribution with mean 0 and
finite variance [13].

The ARIMA (Autoregressive Integrated Moving Average) models: A
process Xt is said to be ARIMA(p, d, q), if

∇dXt = (1−B)dXt

is ARMA(p, q) as (3.3) where B is a backshift operator defined as BXt = Xt−1 and
extend it to BkXt = Xt−k. The first difference is denoted as ∇Xt = Xt−Xt−1. It is
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clear that ∇Xt = (1−B)Xt. Also differences of order d are defined as ∇d = (1−B)d.
Thus in general, we will write the ARIMA model as

Φ(B)(1−B)dXt = δ +Θ(B)Zt (3.4)

where Φ(B) = 1−
∑p

i=1 ϕiB
i and Θ(B) = 1 +

∑q
j=1 θjB

j [6]. The ARIMA models
are one of the well-known linear models for time series modeling and predicting
[23]. The ARIMA models have been originated from the synthesis of the AR and
MA models. The ARIMA is used to model time series data behavior and to make
predictions [32]. The ARIMA modeling uses correlational methods and could be
used to model arrays that may not be observable in plotted data [15, 23]. In the
ARIMA model, the future amount of a parameter is assumed to be a linear function
of past observations and random errors [4].

The SARIMA (Seasonal Autoregressive Integerated Moving Average)
models: A SARIMA model can be explained as

SARIMA(p, d, q)(P,D,Q)s

where (p, d, q) is the non-seasonal component of the model and (P,D,Q)s is the sea-
sonal component of the model in which p is the order of non-seasonal autoregression,
d is the number of regular differencing, q is the order of non-seasonal MA, P is the
order of seasonal AR, D is the number of seasonal differencing, Q is the order of
seasonal MA, and s is the length of the season [15, 23]. Thus in general, we will
write the ARIMA(p, d, q)(P,D,Q)s model as

ΦP (B
s)Φ(B)∇D

s ∇dXt = δ +ΘQ(B
s)Θ(B)Zt (3.5)

where the operators

ΦP (B
s) = 1−

∑P

i=1
ϕiB

is,

ΘQ(B
s) = 1 +

∑Q

j=1
θjB

js

are the seasonal autoregressive operator and the seasonal moving average operator of
orders P and Q, respectively, with seasonal period s [6]. Also ordinary and seasonal
difference components are represented by ∇d = (1−B)d and ∇D

s = (1−Bs)D.
The BIC (Bayesian information criteria): The BIC or Schwarz information

criterion (SIC), (also the SBC (Schwarz-Bayesian Criteria) and the SBIC (Schwarz-
Bayesian Information Criteria)) is a criterion for model selection among a finite set
of models; the model with the lowest BIC is preferred. It is based, in part, on the
likelihood function, and it is closely related to the AIC. The BIC can be expressed
as (3.6):

BIC = k ln (n) − 2 ln(L̂). (3.6)

L̂ is the maximized value of the likelihood function of the model M , i.e., L̂ =
p(x|θ̂,M), where θ̂ are the parameter value that maximizes the likelihood function;
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x is the observed data; n is the number of data points in x; k is the number of
parameters estimated by the model [30].

The AIC (Akaike information criterion): The AIC were used to evaluate
the performances of models, and model selection. The AIC can be expressed as
(3.7):

AIC(k) = 2k − 2 ln(L̂) (3.7)

where k represents the number of model parameters and L̂ is the same as mentioned
above [6].

Box-Jenkins: The Box-Jenkins approach [5] to time series analysis, forecasting
and control, is a new, powerful but rather complicated procedure which is yet rela-
tively untried. The methods are potentially useful in many types of situations that
involve the building of models for discrete time series and dynamic systems. Finding
appropriate models for time series is a nontrivial task. We will develop a multistep
model-building strategy espoused so well by Box and Jenkins [5]. There are three
main steps in the process, each of which may be used several times [7]:

1. model specification (or identification),
2. model fitting,
3. model diagnostics.
Chi-square Test: Chi-square independent test is a test method to detect the

independence of two or more random variables [17].
Dickey-Fuller Test: The Dickey-Fuller test tests the null hypothesis that a unit

root is present in an AR model. The alternative hypothesis is different depending
on which version of the test is used but is usually stationarity or trend-stationarity.
It is named after the statisticians Dickey and Fuller [11], who developed the test in
1979.

4. Materials and models

Our research method has a statistical basis and is based on the use of time series
models. Because climatic elements such as precipitation occur with respect to time
and the evidence shows that there is a relationship (dependence) between the previ-
ous values   of the data and the later values (it should be noted that we also performed
a Chi-square test and showed that the data is dependent), so the best option for
data analysis is to choose time series methods. In Figure 2, it was clear that the
data had no trend and was stationary. The Dickey-Fuller test [11] showed that the
original data were stationary and there was no need to differentiate the data. In
this paper, first, all models were fitted, and finally, we came to the conclusion that
the best model is the ARIMA model. We have fitted the rain data and predicted
the amount of rain for the years 2020 to 2023.

The statistical population includes the amount of rainfall in Kashan city station
and the volume of sample rainfall data for a period of 53 years from 1976 to 2019.
The method of data analysis is that the time series models are fitted to the data
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using statistical package for the social science (SPSS) statistical software (also, we
used R and MINITAB software), and in the end, after testing the existing models,
the best method for rainfall prediction is selected, or in other words, based on data
from the years 1976-2019, we predict the amount of rainfall for the years 2020-2023.

5. Model selection

The sample ACF (Autocorrelation Function) and PACF (Partial Autocorrelation
Function) provide effective tools for identifying pure the AR(p) or the MA(q) mod-
els. However, for a mixed ARMA model, its theoretical ACF and PACF have infin-
itely many nonzero values, making it is difficult to identify mixed models from the
sample ACF and PACF [7].

The main tool for model identification is to plot the ACF and PACF and match
them to the patterns of the ARIMA model. In most of the carried out research, in
order to determine the best model, we need to use PACF and ACF [10]. Also, we
use the AIC and BIC for model selection.

6. Results

In the present study, we had 53 years of rainfall. The average annual rainfall is
133.70mm with a standard deviation of 49.32mm. The best model is theARIMA(0, 0, 1)
(or the MA(1)). For the selected model, the AIC and BIC are equal to 564.64 and
570.55, respectively (Table 2).



272 Mehdi Shams, Maryam Abdoli, Mark Ghamsary

The ARIMA(0, 0, 1) model is the same as the MA model with parameter 1.
The MA(1) process, i.e., Xt = θ1Zt−1 + Zt + δ is always stationary, but for the
process to be inverted, the roots of the ψ(B) = 1 + θ1B are greater than the unit
in absolute value, which results |θ1| < 1. The following output is from Minitab,
which indicates that the coefficients are significant. Finally, estimates of parameters
the ARIMA(0, 0, 1) model (Table 3). So, the MA(1) model can be expressed a
Xt = 0.333Zt−1 + Zt + 133.65.

An ARIMA model can be explained as ARIMA(p, d, q), where (p, d, q) is the
non-seasonal component of the model which p is the order of the non-seasonal AR,
d is the number of regular differencing, q is the order of the non-seasonal MA. We
conducted a a stationary test. The data was stationary and there was no need to
differencing, so the parameter d is equal to zero.

In Figure 3, the ACF diagram is interrupted from delay one onwards, and the
PACF diagram is sinusoidally reduced to zero. So we conclude our modelARIMA(0, 0, 1)
or in other words MA(1).

In the following diagrams (Figure 4), it is assumed that the residues are indepen-
dent of each other and are random. The ACF and PACF charts for the residuals
are used to illustrate this situation. As can be seen, these correlation coefficients,
are small and without a trend, the autocorrelation between the residuals changes at
different lags. Therefore, the evaluation of the model diagnosis is appropriate.

After fitting the model, the last step is to check the residue. White noise was
examined by the ACF and PACF, which showed that the delays tended to zero
(Figure 4). Also, according to the diagram below, the residues almost follow the
normal distribution (Figure 5).

In Table 4, we compare the forecast amount with the actual annual rainfall. As
you can see from Table 4, they are very different, but he has predicted the last one
very well. Because the residuals are normal, this difference is due to the model error,
so the model is appropriate.

The first column in Table 5, is the annual period from 2020 to 2023. The second
column shows the predicted values, which are predicted based on theARIMA(0, 0, 1)
according to the previous 53 year. Prediction of annual values from 2020 to 2023
according to the previous values of 204 periods. The third and fourth columns show
the lower and upper bounds of 95% confidence interval.
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Figure 3. Plot ACF and PACF of rainfall

Figure 4. Plot ACF, PACF of residues for ARIMA(0,0,1)

To evaluate the model, we delete the last 4 data, that is, from 2016 to 2019, and
we predict with the same model that we have chosen. In Figure 6, we show a graph
comparing the actual and forecast values of rainfall.
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Figure 5. Q-Q plot of residues for ARIMA(0,0,1)

7. Discussion & Conclusions

Rainfall prediction is crucial for making important decisions and performing strate-
gic planning. The ability to predict rainfall quantitatively guides the management
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Figure 6. Forecasts from ARIMA(0,0,1) with non-zero mean

of water-related problems such as extreme rainfall conditions such as floods and
droughts, among other issues. Therefore, the prediction of hydrological variables
such as rainfall, flood stream, and runoff flow as probabilistic events is a key issue in
water resources planning. These hydrological variables are usually measured longitu-
dinally across time, making time series analysis of their occurrences in discrete-time
appropriate for monitoring and simulating their hydrological behavior. Rainfall is
among the sophisticated and challenging components of the hydrological cycle to
modelling and prediction because of various dynamic and environmental factors
and random variations, both spatially and temporally [20].

The objective of this study in this article, is to analyse the annual rainfall forecast
from 2020 to 2023. This was predicted according to previous data. Using time series
models, the best model according to the AIC and BIC was the ARIMA model, where
the non-seasonal parameters of this model are AR = [0], DIFF = [0] and MA = [1].
As you can see from Table 3, the forecasted rainfall is lower than the average rainfall
of previous years. Since Kashan is one of the arid and semi-arid regions, we will face
the problem of water shortage, so water consumption must be saved. The limitation
of this study is that the results cannot be generalized to the whole of Iran. It seems
necessary to conduct this research in all geographical areas. It is suggested that
in future studies, the factors affecting rainfall in Kashan in the future should be
studied.

El Nino and La Nina are among the phenomena affecting the global climate, it is
possible that there will be a climate anomaly in the environment of every country
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and every year that exceeds the limits of the natural range of its environment, and
events and anomalies often arouse the curiosity of people and societies and take care
of them. Especially in cases where what is happening is not natural [24]. Climate
is not a fixed region and changes under the influence of two groups of factors:

1. Factors that cause annual climate change.
2. Factors that create long-time change trends.
El Nino, LA Nina and NAO are the main causes of short-time global climate

change. While long-time global climate change (on a scale of 10 to 1000 years) is
influenced by two main factors, namely the change in energy input from the sun
and global warming due to the intensification of the effects of greenhouse. Rising
sea levels and changes in climate thresholds are the consequences of climate change.
Climate change and increasing global warming are causing droughts, uneven rainfall
distribution, and economic problems for the global economy. The cause of low
rainfall is the negative phase of LA Nina. In other words, in this situation, the water
of the oceans, which are the source of moisture for autumn rains, has become colder,
and as a result, they will not have evaporation and will not have clouds and rain.
Agricultural water management requires culture building and proper management
of managers.
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