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Abstract. This paper aims to study the oscillatory nature of so-
lutions for fourth-order neutral differential equations with mixed
deviating arguments and improved oscillation conditions obtained
in various cases. We reduced the problem to first-order differential
inequality by using suitable substitutions that enabled us to use
comparison theorems. Further, we discuss the asymptotic nature
of solutions, and in the end, an example is given to validate the
results.
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1. Introduction

The differential equations in which the highest-order derivatives appear
with and without delay are called neutral differential equations. Neutral
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differential equations are used in the modeling of many mathematical
phenomena in the field of natural science and technology. Initially, the
existence, uniqueness, and stability of solutions for different types of
neutral equations have been studied, and in recent years, a lot of atten-
tion has been paid to the oscillatory and asymptotic behavior of such
equations, see [4, 5, 10, 11, 12, 15, 16, 18, 19, 20, 21, 24] and the refer-
ences therein. In the last few decades, the number of research activities
has been increased to obtain necessary and sufficient conditions on os-
cillation theory for higher order neutral type equations on time scales
[14, 17, 23]. Moreover, the papers [6, 7, 8, 9] provide a motivational
background for the present paper.

Basic definitions and a few approaches to investigating the oscillatory
and asymptotic properties of the solutions of neutral equations were
given in the book [13].

For similar results on various classes of fourth-order delay differen-
tial/dynamic equations, we refer the reader to the papers [1, 2, 23]. In
paper [14], authors established the oscillation criterion for third-order
linear dynamics equations on time scales.

Fourth-order neutral differential equations can be used to model var-
ious mathematical phenomena in biological and chemical science; see,
for instance, the paper [10]. Due to the wide applicability of these equa-
tions in various fields of science and engineering, there is a great interest
in obtaining new oscillation criteria for higher-order neutral differential
equations; see, for instance, [3, 10, 12, 20].

Oscillation theorems for third-order delay equations were discussed by
Tiryaki et al. [20]. Arul and Shobha et al. [4] generalized neutral differ-
ential equations of order two, and by using the Riccati transformation,
they presented some new oscillation criteria under some conditions. Im-
proved sufficient conditions for the oscillation and asymptotic stability
have been obtained in the paper [22].

Motivated by all the above works, we obtain improved oscillation
results for fourth-order neutral differential equations with mixed delays.
We reduced (1.1) into the first-order differential inequality using suitable
substitutions. Further, some sufficient conditions for the oscillation of
solutions are obtained in various cases using comparison results, and
their asymptotic nature is also discussed.

Here, we start with the following model of fourth order neutral dif-
ferential equations with mixed delay terms:

(
k2(t)

(
k1(t)υ

(2)(t)
)(1))(1)

+ k3(t)u(η3(t)) = 0, t ≥ t0, (1.1)
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where υ(t) = u(t) + au(η1(t)) + bu(η2(t)), a > 0, b > 0, η1(t) ≤ t,

η2(t) ≥ t, η3(t) ≤ t, t ≥ t0, and υ(i)(t), denote the derivative of order i
with respect to t.

The remaining part of this paper is designed in such a way that section
2 consists of some assumptions and definitions with a lemma. In section
3, the statement and proof of the main results are provided; in section
4, an example is presented to validate the results.

2. Preliminaries and Assumptions

Throughout the paper, we consider the following assumptions:
(C1) The functions kr : (t0,∞) → R+, r = 1, 2, 3 are continuous.
(C2) ηr : (t0,∞) → R, r = 1, 2, 3 are continuous functions with the

following conditions:
(i) η1(t) ≤ t, η2(t) ≥ t, η3(t) ≤ t,
(ii) η(1)r (t) = 1,
(iii) lim

t→∞
ηr(t) = ∞.

Definition 2.1. A function u ∈ C([Tu,∞)), Tu ≥ t0 is a solution of
(1.1) if corresponding function υ has two properties:

(i) k1υ(2)(t) ∈ C1([Tu,∞)), and
(ii) k2(t)

(
k1(t)υ

(2)(t)
)(1)

∈ C1([Tu,∞)),

and u(t) satisfies (1.1).

Definition 2.2. A solution u of (1.1) is said to be oscillatory if it is nei-
ther eventually positive nor eventually negative; otherwise, it is termed
nonoscillatory.

Lemma 2.3. [23] Let u(t) > 0 be an eventually positive solution of
(1.1). Then for sufficiently large ϱ ≥ t0 such that for t ≥ ϱ, there are
only four possibilities:

(i) υ(t) > 0, υ(1)(t) < 0, υ(2)(t) > 0, (k1(t)υ
(2)(t))(1) < 0,

(ii) υ(t) > 0, υ(1)(t) > 0, υ(2)(t) > 0, (k1(t)υ
(2)(t))(1) < 0,

(iii) υ(t) > 0, υ(1)(t) > 0, υ(2)(t) > 0, (k1(t)υ
(2)(t))(1) > 0,

(iv) υ(t) > 0, υ(1)(t) > 0, υ(2)(t) < 0, (k1(t)υ
(2)(t))(1) > 0.

We define

K1(t) =

∫ ∞

t

1

k2(ν)
dν, K2(t) =

∫ ∞

t

K1(ν)

k1(ν)
dν, K3(t) =

∫ ∞

t
K2(ν)dν,

Kϱ
1 (t) =

∫ t

ϱ
k3(ν)dν, K

ϱ
2 (t) =

∫ t

ϱ

Kϱ
1 (ν)

k2(ν)
dν
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and

R1(t) =

∫ ∞

t
k3(ν)dν, R2(t) =

∫ ∞

t

R1(ν)

k2(ν)
dν.

3. Main Results

Theorem 3.1. Suppose conditions (C1) and (C2) hold. Further, we
assume that ∫ ∞

t0

[
A0k3(ν)K3(ν)−

K2(ν)

4K3(ν)

]
dν = ∞, (3.1)

∫ ∞

t0

[
A0K1(ν)k3(ν)

∫ η3(ν)

ϱ

∫ ν2

ϱ

1

k1(ν1)
dν1dν2 −

1

4k2(ν)K1(ν)

]
dν = ∞,(3.2)

and there exist positive continuously differentiable functions c, d defined
on [t0,∞) such that∫ ∞

t0

[
A0c(ν)k3(ν)

Kϱ
2 (η3(ν))

−
(
c(1)(ν)

)2
4
(
c(ν)

)3 k2(ν)
]
dν = ∞, (3.3)

and ∫ ∞

t0

[
A0d(ν)R2(ν)

k1(ν)
−
(
d(1)(ν)

)2
4d(ν)

]
dν = ∞, (3.4)

where A0 = 1−a−b. Then each non zero solution of (1.1) is oscillatory.

Proof. Suppose that u(t) is an eventually positive solution of (1.1).
Then for some t ≥ ϱ, u(ηr(t)) > 0, r = 1, 2, 3. Now according to
Lemma 2.3, there are four possibilities. Suppose case (i) holds. Since(
k2(t)(k1(t)v

(2)(t))(1)
)(1)

< 0, k2(t)(k1(t)v
(2)(t))(1) is decreasing for t ≥

ϱ. Therefore, we have

k2(ν)
(
k1(ν)υ

(2)(ν)
)(1)

≤ k2(t)
(
k1(t)υ

(2)(t)
)(1)

, ν ∈ [t,∞).

Integrating from t to ∞ after dividing by k2(ν), we have

−
(
k1(t)υ

(2)(t)
)
≤ k2(t)

(
k1(t)υ

(2)(t)
)(1) ∫ ∞

t

1

k2(ν)
dν,

which implies that

υ(2)(t) ≥ −
k2(t)

(
k1(t)υ

(2)(t)
)(1)

k1(t)
K1(t).
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Integrating from t to ∞, we have

∫ ∞

t
υ(2)(ν)dν ≥ −

∫ ∞

t

k2(ν)
(
k1(ν)υ

(2)(ν)
)(1)

k1(ν)
K1(ν)dν,

which implies that

−υ(1)(t) ≥ −k2(t)
(
k1(t)υ

(2)(t)
)(1)

K2(t). (3.5)

Again integrating the latter inequality from t to ∞, we obtain

υ(t) ≥ −
∫ ∞

t
k2(ν)

(
k1(ν)υ

(2)(ν)
)(1)

K2(ν)dν

≥ −k2(t)
(
k1(t)υ

(2)(t)
)(1)

K3(t). (3.6)

If we set

χ1(t) =
k2(t)

(
k1(t)υ

(2)(t)
)(1)

υ(t)
, (3.7)

then
χ1(t)K3(t) ≥ −1. (3.8)

Since u(t) = υ(t)−au(η1(t))−bu(η2(t)), we have u(t) ≥ (1−a−b)υ(t) =
A0υ(t). Using it in (1.1), we get(

k2(t)
(
k1(t)υ

(2)(t)
)(1))(1)

+A0k3(t)υ(η3(t)) ≤ 0, t ≥ t0. (3.9)

Differentiating (3.7) with respect to t, we obtain

χ
(1)
1 (t) =

(
k2(t)

(
k1(t)υ

(2)(t)
)(1))(1)

υ(t)
−
k2(t)

(
k1(t)υ

(2)(t)
)(1)

(υ(t))2
υ(1)(t).

Using (3.9), we get

χ
(1)
1 (t) ≤ −A0k3(t)−

k2(t)
(
k1(t)υ

(2)(t)
)(1)

(υ(t))2
υ(1)(t).

Using (3.5), we have

χ
(1)
1 (t) ≤ −A0k3(t)−

(
k2(t)

(
k1(t)υ

(2)(t)
)(1))2

(υ(t))2
K2(t).

Using (3.7), we have

χ
(1)
1 (t) ≤ −A0k3(t)− χ2

1(t)K2(t). (3.10)
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Integrating the resulting inequality from ϱ1 to t after multiplying by
K3(t), we obtain

χ1(t)K3(t)− χ1(ϱ1)K3(ϱ1) +

∫ t

ϱ1

χ1(ν)K2(ν)dν +A0

∫ t

ϱ1

k3(ν)K3(ν)dν

+

∫ t

ϱ1

χ2
1(ν)K2(ν)K3(ν)dν ≤ 0.

Using (3.8), we get∫ t

ϱ1

{
χ1(ν)K2(ν) + χ2

1(ν)K2(ν)K3(ν)
}
dν +A0

∫ t

ϱ1

k3(ν)K3(ν)dν

≤ 1 + χ1(ϱ1)K3(ϱ1).

Using the inequality Qψ2 − Pψ ≥ −P 2

4Q , we get∫ t

ϱ1

[
A0k3(ν)K3(ν)−

K2(ν)

4K3(ν)

]
dν ≤ 1 + χ1(ϱ1)K3(ϱ1).

On taking limit as t→ ∞, we get a contradiction to the condition (3.1).
Suppose case (ii) holds. Define

χ2(t) =
k2(t)

(
k1(t)υ

(2)(t)
)(1)

k1(t)υ(2)(t)
. (3.11)

From (3.5), we have
−1 ≤ χ2(t)K1(t). (3.12)

Since υ(1)(t) ≥ 0, we have

υ(1)(t) ≥
∫ t

ϱ
υ(2)(ν1)dν1

=

∫ t

ϱ

1

k1(ν1)

(
k1(ν1)υ

(2)(ν1)
)
dν1.

As k1(t)υ(2)(t) is nonincreasing, we have

υ(1)(t) ≥ k1(t)υ
(2)(t)

∫ t

ϱ

1

k1(ν1)
dν1.

Integrating from ϱ to t, we obtain

υ(t) ≥ k1(t)υ
(2)(t)

∫ t

ϱ

∫ ν2

ϱ

1

k1(ν1)
dν1dν2,

which implies that
υ(t)

k1(t)υ(2)(t)
≥
∫ t

ϱ

∫ ν2

ϱ

1

k1(ν1)
dν1dν2. (3.13)
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Differentiating (3.11) with respect to t, we obtain

χ
(1)
2 (t) =

(
k2(t)

(
k1(t)υ

(2)(t)
)(1))(1)

k1(t)υ(2)(t)
− 1

k2(t)

[
k2(t)

(
k1(t)υ

(2)(t)
)(1)

k1(t)υ(2)(t)

]2
= −k3(t)u(η3(t))

k1(t)υ(2)(t)
− χ2

2(t)

k2(t)

≤ −A0
k3(t)υ(η3(t))

k1(η3(t))υ(2)(η3(t))
− χ2

2(t)

k2(t)
.

Using (3.13), we get

χ
(1)
2 (t) ≤ −A0k3(t)

∫ η3(t)

ϱ

∫ ν2

ϱ

1

k1(ν1)
dν1dν2 −

χ2
2(t)

k2(t)
. (3.14)

Integrating above inequality from ϱ2 to t after multiplying by K1(t),

K1(t)χ2(t)−K1(ϱ2)χ2(ϱ2) +

∫ t

ϱ2

χ2(ν)

k2(ν)
dν +

∫ t

ϱ2

K1(ν)χ
2
2(ν)

k2(ν)
dν

+A0

∫ t

ϱ2

K1(ν)k3(ν)

∫ η3(ν)

ϱ

∫ ν2

ϱ

1

k1(ν1)
dν1dν2dν ≤ 0.

Using (3.12), we get∫ t

ϱ2

[
χ2(ν)

k2(ν)
+
K1(ν)χ

2
2(ν)

k2(ν)
+A0K1(ν)k3(ν)

∫ η3(ν)

ϱ

∫ ν2

ϱ

1

k1(ν1)
dν1dν2

]
dν

≤ 1 +K1(ϱ2)χ2(ϱ2).

Using the inequality Qψ2 − Pψ ≥ −P 2

4Q , we get∫ t

ϱ2

[
A0K1(ν)k3(ν)

∫ η3(ν)

ϱ

∫ ν2

ϱ

1

k1(ν1)
dν1dν2 −

1

4k2(ν)K1(ν)

]
dν

≤ 1 +K1(ϱ2)χ2(ϱ2).

On taking limit as t→ ∞, we get a contradiction to the condition (3.2).
Suppose case (iii) holds. Since u(η3(t)) ≤ υ(t), we have from (1.1)(

k2(t)
(
k1(t)υ

(2)(t)
)(1))(1)

≥ −k3(t)υ(t). (3.15)

Integrating from ϱ to t, we get

k2(t)
(
k1(t)υ

(2)(t)
)(1)

≥ −
∫ t

ϱ
k3(ν)υ(ν)dν.

As υ(t) is increasing, we get(
k1(t)υ

(2)(t)
)(1)

≥ − υ(t)

k2(t)
Kϱ

1 (t).
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Integrating from ϱ to t, we get

υ(2)(t) ≥ − υ(t)

k1(t)

∫ t

ϱ

Kϱ
1 (ν)

k2(ν)
dν = − υ(t)

k1(t)
Kϱ

2 (t),

which implies that
υ(t)

υ(2)(t)
≥ − k1(t)

Kϱ
2 (t)

. (3.16)

Define

χ3(t) = c(t)
k2(t)

(
k1(t)υ

(2)(t)
)(1)

k1(η3(t))υ(2)(η3(t))
. (3.17)

Differentiating (3.17) with respect to t, we have

χ
(1)
3 (t) = c(1)(t)

k2(t)
(
k1(t)υ

(2)(t)
)(1)

k1(η3(t))υ(2)(η3(t))
+ c(t)

[
k2(t)

(
k1(t)υ

(2)(t)
)(1)

k1(η3(t))υ(2)(η3(t))

](1)
.

Using the fact that
(
k1(t)υ

(2)(t)
)(1)

is decreasing and (3.17), we have

χ
(1)
3 (t) ≤ c(1)(t)

c(t)
χ3(t) + c(t)

(
k2(t)

(
k1(t)υ

(2)(t)
)(1))(1)

k1(η3(t))υ(2)(η3(t))
− c(t)

k2(t)
χ2
3(t).

Using (1.1) and inequality u(t) ≥ A0υ(t), we get

χ
(1)
3 (t) ≤ c(1)(t)

c(t)
χ3(t)−A0c(t)

k3(t)υ(η3(t))

k1(η3(t))υ(2)(η3(t))
− c(t)

χ2
3(t)

k2(t)
.

Using (3.16), we have

χ
(1)
3 (t) ≤ c(1)(t)

c(t)
χ3(t)−

A0c(t)k3(t)

Kϱ
2 (η3(t))

− c(t)
χ2
3(t)

k2(t)
.

Using the inequality −Pψ −Qψ2 ≤ P 2

4Q , we get

χ
(1)
3 (t) ≤

(
c(1)(t)

)2
4
(
c(t)
)3 k2(t)− A0c(t)k3(t)

Kϱ
2 (η3(t))

. (3.18)

Integrating from ϱ3 to t, we get

χ3(t)− χ3(ϱ3) ≤
∫ t

ϱ3

[(
c(1)(ν)

)2
4
(
c(ν)

)3 k2(ν)− A0c(ν)k3(ν)

Kϱ
2 (η3(ν))

]
dν,

which implies that∫ t

ϱ3

[
A0c(ν)k3(ν)

Kϱ
2 (η3(ν))

−
(
c(1)(ν)

)2
4
(
c(ν)

)3 k2(ν)
]
dν ≤ χ3(ϱ3).
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On taking limit as t→ ∞, we get a contradiction to the condition (3.3).
Suppose case (iv) holds.
Define

χ4(t) = d(t)
υ(1)(t)

υ(η3(t))
.

Differentiating with respect to t, we get

χ
(1)
4 (t) = d(1)(t)

υ(1)(t)

υ(η3(t))
+ d(t)

(
υ(1)(t)

υ(η3(t))

)(1)

≤ d(1)(t)
υ(1)(t)

υ(η3(t))
+ d(t)

υ(2)(t)

υ(η3(t))
− d(t)

(
υ(1)(t)

υ(η3(t))

)2

=
d(1)(t)

d(t)
χ4(t) + d(t)

υ(2)(t)

υ(η3(t))
− χ2

4(t)

d(t)
. (3.19)

Using the inequality u(t) ≥ A0υ(t) in (1.1), we get(
k2(t)

(
k1(t)υ

(2)(t)
)(1))(1)

≤ −A0k3(t)υ(η3(t)).

Integrating the above inequality from t to ∞, we get

−k2(t)
(
k1(t)υ

(2)(t)
)(1)

≤ −A0

∫ ∞

t
k3(ν)υ(η3(ν))dν.

As υ(t) is increasing, we have

−
(
k1(t)υ

(2)(t)
)(1)

≤ −A0υ(η3(t))

k2(t)
R1(t).

Now integrating the resulting inequality from t to ∞, we get

k1(t)υ
(2)(t) ≤ −A0υ(η3(t))

∫ ∞

t

R1(ν)

k2(ν)
dν,

which implies that
υ(2)(t)

υ(η3(t))
≤ − A0

k1(t)
R2(t).

Using the above inequality in (3.19), we get

χ
(1)
4 (t) ≤ d(1)(t)

d(t)
χ4(t)−

A0d(t)R2(t)

k1(t)
− χ2

4(t)

d(t)
.

Using the inequality Pψ −Qψ2 ≤ P 2

4Q , we get

χ
(1)
4 (t) ≤ [d(1)(t)]2

4d(t)
− A0d(t)R2(t)

k1(t)
.
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Integrating the above inequality from ϱ4 to t, we get

χ4(t)− χ4(ϱ4) ≤
∫ t

ϱ4

[(
d(1)(ν)

)2
4d(ν)

− A0d(ν)R2(ν)

k1(ν)

]
dν,

which implies that∫ t

ϱ4

[
A0d(ν)R2(ν)

k1(ν)
−
(
d(1)(ν)

)2
4d(ν)

]
dν ≤ χ4(ϱ4).

Condition (3.4) contradicted on taking limit as t → ∞. This completes
the proof. □

Corollary 3.2. Suppose u(t) be an eventually positive solution of (1.1)
such that case (i) of Lemma 2.3 holds. Further, if for ϱ ≥ t0∫ ∞

ϱ

∫ ∞

ν4

1

k1(ν3)

∫ ∞

ν3

1

k2(ν2)

∫ ν2

ϱ
k3(ν1)dν1dν2dν3dν4 = ∞, (3.20)

then lim
t→∞

u(t) = 0.

Proof. Suppose that u(t) is an eventually positive solution of (1.1). Then
for some t ≥ ϱ , u(ηr(t)) > 0, r = 1, 2, 3. Since case (i) of Lemma 2.3
holds.
So if lim

t→∞
υ(t) = L, then L ≥ 0. Claim L = 0, otherwise L > 0. Since

u(t) ≥ A0υ(t), from (1.1), we have(
k2(t)

(
k1(t)υ

(2)(t)
)(1))(1)

≤ −A0k3(t)υ(η3(t)), t ≥ t0.

Integrating the above inequality from ϱ to t, we get

k2(t)
(
k1(t)υ

(2)(t)
)(1)

≤ −A0

∫ t

ϱ
k3(ν)υ(η3(ν))dν.

As v(t) is decreasing, we have(
k1(t)υ

(2)(t)
)(1)

≤ −A0
υ(t)

k2(t)

∫ t

ϱ
k3(ν1)dν1.

Integrating the above inequality from t to ∞, we get

k1(t)υ
(2)(t) ≥ A0

∫ ∞

t

υ(ν2)

k2(ν2)

∫ ν2

ϱ
k3(ν1)dν1dν2.

As υ(t) ≥ L for t ≥ ϱ, we have

k1(t)υ
(2)(t) ≥ A0L

∫ ∞

t

1

k2(ν2)

∫ ν2

ϱ
k3(ν1)dν1dν2.
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Integrating the resulting inequality from t to ∞ after dividing by k1(t),
we get

−υ(1)(t) ≥ A0L

∫ ∞

t

1

k1(ν3)

∫ ∞

ν3

1

k2(ν2)

∫ ν2

ϱ
k3(ν1)dν1dν2dν3.

Integrating the above inequality from ϱ to t, we get

υ(ϱ) ≥ A0L

∫ t

ϱ

∫ ∞

ν4

1

k1(ν3)

∫ ∞

ν3

1

k2(ν2)

∫ ν2

ϱ
k3(ν1)dν1dν2dν3dν4.

On taking limit as t→ ∞, we get a contradiction to the condition (3.20).
Hence, L = 0. Since u(t) ≤ υ(t), we have lim

t→∞
u(t) = 0. Now the proof

is completed. □

Corollary 3.3. Let u(t) be an eventually positive solution of (1.1) such
that the case (ii) of Lemma 2.3 holds. Further if for ϱ ≥ t0∫ ∞

ϱ

∫ ν4

ϱ

1

k1(ν3)

∫ ∞

ν3

1

k2(ν2)

∫ ∞

ν2

k3(ν1)dν1dν2dν3dν4 = −∞, (3.21)

then lim
t→∞

u(t) = ∞.

Proof. Assume lim
t→∞

υ(t) = L. Since case (ii) of Lemma 2.3 holds, we
have L ≤ ∞. Claim L = ∞, otherwise L < ∞. Since u(η3(t)) ≤ υ(t),
from (1.1), we have(

k2(t)
(
k1(t)υ

(2)(t)
)(1))(1)

≥ −k3(t)υ(t).

Integrating the above inequality from t to ∞, we get

−k2(t)
(
k1(t)υ

(2)(t)
)(1)

≥ −
∫ ∞

t
k3(ν1)υ(ν1)dν1.

As υ(t) ≤ L, we have

−k2(t)
(
k1(t)υ

(2)(t)
)(1)

≥ −L
∫ ∞

t
k3(ν1)dν1.

Integrating the resulting inequality from t to ∞ after dividing by k2(t),
we get

k1(t)υ
(2)(t) ≥ −L

∫ ∞

t

1

k2(ν2)

∫ ∞

ν2

k3(ν1)dν1dν2.

Integrating the resulting inequality twice from ϱ to t after dividing by
k1(t), we get

υ(t) ≥ −L
∫ t

ϱ

∫ ν4

ϱ

1

k1(ν3)

∫ ∞

ν3

1

k2(ν2)

∫ ∞

ν2

k3(ν1)dν1dν2dν3dν4.
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Condition (3.21) contradicted on taking limit as t → ∞. Hence, L =
∞. Since u(t) ≥ A0υ(t), we have lim

t→∞
u(t) = ∞. This completes the

proof. □
Following the proof of above corollary, we can prove the following two

results:

Corollary 3.4. Let u(t) be an eventually positive solution of (1.1) such
that case (iii) of Lemma 2.3 holds. Further if for ϱ ≥ t0∫ ∞

ϱ

∫ ν4

ϱ

1

k1(ν3)

∫ ν3

ϱ

1

k2(ν2)

∫ ν2

ϱ
k3(ν1)dν1dν2dν3dν4 = −∞,

then lim
t→∞

u(t) = ∞.

Corollary 3.5. Let u(t) be an eventually positive solution of (1.1) such
that case (iv) of Lemma 2.3 holds. Further if for ϱ ≥ t0∫ ∞

ϱ

∫ ∞

ν4

1

k1(ν3)

∫ ∞

ν3

1

k2(ν2)

∫ ν2

ϱ
k3(ν1)dν1dν2dν3dν4 = −∞,

then lim
t→∞

u(t) = ∞.

4. Application

Example 4.1. Suppose the following model of neutral differential equa-
tion:(
e2t
(
e−t
(
u(t) + au(t− 2π) + bu(t+ π)

)(2))(1))(1)
+ 2etu

(
t− π

6

)
= 0,

t ≥ t0, (4.1)
u(i)(t), denote the derivative of order i with respect to t.

Here k1(t) = e−t, k2(t) = e2t, k3(t) = 2et, c(t) = e3t, d(t) = t3, η3(t) =
t− π

6 .
We can easily calculate the following.

K1(t) =

∫ ∞

t

1

k2(ν)
dν =

∫ ∞

t
e−2νdν =

e−2t

2
, K2(t) =

∫ ∞

t

K1(ν)

k1(ν)
dν =

1

2
e−t, K3(t) =

∫ ∞

t
K2(ν)dν =

1

2
e−t, Kϱ

1 (t) =

∫ t

ϱ
k3(ν)dν = 2(et − eϱ),

Kϱ
2 (t) =

∫ t

ϱ

Kϱ
1 (ν)

k2(ν)
dν = −2e−t + eϱe−2t + e−ϱ, R1(t) = ∞ and R2(t) =

∞.
Next we check the conditions (3.1), (3.2), (3.3), and (3.4).
Clearly ∫ ∞

t0

[
A0k3(ν)K3(ν)−

K2(ν)

4K3(ν)

]
dν = ∞.
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Thus the condition (3.1) is satisfied.∫ ∞

t0

[
A0K1(ν)k3(ν)

∫ η3(ν)

ϱ

∫ ν2

ϱ

1

k1(ν1)
dν1dν2 −

1

4k2(ν)S1(ν)

]
dν

=

∫ ∞

t0

[
A0e

−ν

∫ ν−π
6

ϱ

∫ ν2

ϱ
eν1dν1dν2 −

1

2

]
dν = ∞.

Thus, the condition (3.2) is satisfied.∫ ∞

t0

[
A0c(ν)k3(ν)

Kϱ
2 (η3(ν))

−
(
c(1)(ν)

)2
4
(
c(ν)

)3 k2(ν)
]
dν

=

∫ ∞

t0

[ 2A0e
4ν

−2e−(ν−π) + eϱ+2πe−2ν + e−ϱ
− 9

4
e−ν
]
dν = ∞.

Thus the condition (3.3) is satisfied. Similarly, we can show that condi-
tion (3.4) is satisfied. As all the conditions of Theorem 3.1 are fulfilled,
therefore by applying Theorem 3.1, we conclude that each non zero so-
lution of the problem (4.1) is oscillatory.

5. Conclusion

The goal of this paper was to provide an investigation of the os-
cillatory and asymptotic behavior for fourth-order neutral differential
equations with mixed delay terms. We reduced the fourth-order neu-
tral differential equation using suitable substitutions into the first-order
differential inequality. We used the comparison theorem to ensure that
every solution of the studied equation oscillates. In Corollaries, we in-
vestigated the asymptotic nature of the solution.

It would be of interest to discuss the problem (1.1) with different
neutral coefficients (where the neutral coefficients are not constants).
Studying the problem (1.1) with a nonlinear neutral term would also be
interesting.
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