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Abstract. In this study, we examine biorthogonal wavelets that
are tailored to a specific discrete pseudo-differential equation of the
form Tσu = f , where Tσ is an invertible discrete pseudo-differential
operator defined on the lattice Zn for every f ∈ ℓ2(Zn). Our focus
is on computing Galerkin approximations of the solution to this
problem using an adaptive algorithm.
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1. Introduction and Preliminaries

Wavelets theory has been developing intensively in the last decades
and has become a powerful tool to study mathematics, applied sciences
and technology, like for example, the theory of the singular integral, sin-
gular integro-differential equations, and in applied sciences sound anal-
ysis, image compression, neural networks, mechanics, physics, see e.g.,
[8, 10, 18, 31] and references therein. Wavelets are a very powerful math-
ematical tool which enables to approximate functions by using both the
concept of scale and translation so that we can easily and efficiently rep-
resent a function in terms of a set of basis functions, namely wavelets,
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which are localized both in location and scale. The translated instances
of a wavelet for all dilations form an unconditional orthonormal bases of
ℓ2(Zn) and the translates of a scaling function for all dilations form an
unconditional orthonormal bases for Vj ⊂ ℓ2(Zn) which is a great im-
provement over the standard polynomial basis or a trigonometric basis
for the Galerkin Method.

The numerical methods for the solution of PDE’s or integral bound-
ary problems are usually based on the Galerkin, also known as Petrov-
Galerkin, method which consists on the following steps:
1) finding a functional basis for the solution space of the equation,
2) projecting the solution on the functional basis, and at last
3) minimizing the residual with respect to the functional basis.

The majority of problems in science and engineering can be formulated
as boundary integral equations which can be solved numerically by sev-
eral methods like, in particular, wavelet-based adaptive algorithms for
the numerical solution of elliptic equations. Boundary value problems
in complex function theory [2, 3] and the method of boundary reduction
for the oblique derivative problem in the plane, [5, 14] and references
therein, lead to singular integro-differential [6, 17, 26], or more generally,
to pseudo-differential equations on a closed curve [15, 27, 28]. Projection
methods with trigonometric polynomials for the approximate solution of
singular integral equations on the unit circle, also in the degenerate (i.e.
non-elliptic) case, have been studied in detail in [16]. In [20], the au-
thors investigated Galerkin methods with finite elements for an integral
operator with logarithmic kernel which can be considered as a strongly
elliptic pseudo-differential operator of order −1. Moreover, the authors
in [29] dealt with finite element collocation methods for one-dimensional
singular integral and pseudo-differential equations.

The singular integral operators arise naturally in the regularity study
of elliptic and parabolic equations. In particular, the pseudo-differential
operators are a special case of singular integral operator with Schwartz
kernel which are characterized by

P (x,D)f(x) =

∫
Rn

e2πi(x−y).ξp(x, ξ)f(y)dydξ

where p ∈ Sm(Rn × Rn) is a suitable function so-called the symbol
of pseudo-differential operator P (x,D) [1, 24]. It is well-konwn that
P (x,D) has a representation by a kernel in the form

P (x,D)f(x) =

∫
Rn

k(x, x− y)f(y)dy ∀x /∈ Supp(f),

where f ∈ S(Rn) for a suitable locally integrable function k : Rn ×
(Rn\{0}) → C, (see Theorem 5.12 in [1]). Pseudo-differential equations
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are a special case of singular integral equations corresponding to the
pseudo-differential operators P (x,D), for more details see Chapter 7 in
[1] and [24]. The pseudo-differential operators on the lattice Zn are
suitable for solving difference equations on Zn. Such equations naturally
appear in various problems of modelling and in the discretisation of
continuous problems [13, 22, 23]. One can define (see Section 2) a general
pseudo-differential operator with symbol σ : Zn×Tn → C depending on
a spatial discrete variable ξ by the similar formula

(Tσf)(ξ) =

∫
Tn

∑
η∈Zn

e2πi(ξ−η).xσ(ξ, x)f(η)dx, ξ ∈ Zn. (1.1)

The main goal of this manuscript is to apply the Galerkin methods
for the approximate solutions of discrete pseudo-differential equations of
the type:

Tσu = f (1.2)

where Tσ is a pseudo-differential operator as 1.1, u is unknown function
on Zn × Tn and f is a given suitable function on Zn. In particular
case, we study the n−dimensional discrete wave equation by the pseudo-
differential operator Tσ = ∂2t −∆ (see also [1, 4, 24])

In order to obtain approximate solutions to pseudo-differential equa-
tions, adaptive strategies have become very popular in recent years (see
e.g. [11, 19, 22, 28]). The aim is to compute a numerical solution in
such a way that the error i.e., the difference between the exact and
the approximate solution, is measured under a suitable norm as given
in the next section. In the following we will develop an adaptive re-
finement strategy and show that it will guarantee an improvement for
the approximate solution after the refinement step. We will extend the
adaptive strategy, already developed in [12, 19], to compute the inverse
of discrete pseudo-differential operators 1.1 on lattice Zn. Our general-
ization is based on the discrete pseudo-differential calculus developed in
[13, 24]. In fact, we will apply some results about the ellipticity and the
concept of parametrix operators to compute the approximation solutions
via Galerkin method. The introduced algorithm here can be applied to
estimate for the approximation solutions and compare with the exact
solution for many discrete system such as discrete wave system with the
discrete Laplacian or the discrete Riesz operator (see Examples 3.2 and
3.3. The pseudo-differential operators on the lattice Zn are suitable for
solving difference equations on Zn. Such equations naturally appear in
various problems of modelling and in the discretisation of continuous
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problems. Several attempts of developing a suitable theory of pseudo-
differential operators on the lattice Zn have been done in the literature
[13, 24].

2. Wavelets and discrete multi-resolution analysis

In this section, we recall some definitions and preliminary results
about the wavelets theory and discrete pseudo-differential operators the-
ory from [10, 24]. A discrete multi-resolution analysis (DMRA) is a
sequence of closed subspaces {Vj}Z0 of ℓ2(Zn) such that

Vj ⊂ Vj+1, j ∈ Z,
∩
j∈Z

Vj = {0},
∪
j∈Z

Vj = ℓ2(Zn)

u ∈ Vj ⇔ D2u ∈ Vj+1 j ∈ Z, u0 ∈ V0 ⇔ T−ku ∈ V0 k ∈ Zn,

where D2 and T−k are the dilation and the translation given, respec-
tively, by D2f(ξ) = f(2ξ) and (T−kf)(ξ) = f(ξ − k) for ξ ∈ Zn and
k = (k1, ..., kn) ∈ Zn and for all measurable functions f on Z. Suppose
that ψ ∈ ℓ2(Zn), one can consider the translations and dilations ψj,k of
ψ defined as the following

ψj,k(ξ) = 2
j
2ψ(2jξ − k) ξ, k ∈ Zn, j ∈ Z.

For any fixed j ∈ Z, the sequence {ψj,k : k ∈ Zn} is an orthonormal
sequence for Vj for which the sequence is uniformly stable in the following
sense ∥∥∥∥∑

k∈Zn

Cj,kψj,k

∥∥∥∥
2

∼
(∑

k∈Zn

|Cj,k|2
) 1

2

uniformly with respect to j ∈ Z, i.e., there exist positive constants M
and M

′ such that

M

(∑
k∈Zn

|Cj,k|2
) 1

2

≤
∥∥∥∥Cj,kψj,k

∥∥∥∥2
2

≤M
′
(∑

k∈Zn

|Cj,k|2
) 1

2

, j ∈ Z

then we call ψ a scaling function of the DMRA. For j ∈ Z, it is denoted
the orthogonal complement of Vj−1 in Vj by Wj . The raison d’étre for
Wj−1 contains the details needed to pass from an approximation at level
j − 1 to an approximation at level j [9, 19]. Assume that φ ∈W0. Thus
the translations and dilations φj,k of φ are given as the following

φj,k(ξ) = 2
j
2φ(2jξ − k) ξ, k ∈ Zn,

for all j ∈ Z. For any fixed j ∈ Z, the collection {φj,k : k ∈ Zn} forms
an orthonormal basis for Wj . Then, φ is said to be a mother wavelet
and φj,k for j ∈ Z and k ∈ Zn, the wavelets for the DMRA. As the
similar way in [9, 10], one can construct orthonormal bases for ℓ2(Zn)
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consisting of compactly supported of wavelets that can be represented
by polynomials of a fixed degree.

Hence, if it is denoted for convenience W0 and V0, then for all positive
integer n, every element vn ∈ Vn given by vn =

∑
k∈Zn Cn,kψn,k, where

every Cn,k is complex number, has an alternative multiscale representa-
tion defined by the wavelets. In fact,

vn =

n∑
j=0

∑
k∈Zk

Dj,kφj,k,

where every Dj,k is a complex number. In other words, one can represent
the subspace Vn as Vn =

⊕n
j=0Wj , for every n.

Therefore, one can consider two biorthogonal DMRAs of ℓ2(Zn). This
means that {Vj}j∈Z and {Ṽj}j∈Z are DMRAs of ℓ2(Z) for which the
primal DMRA {Vj}j∈Z and the dual DMRA {Ṽj}j∈Z can be equipped
with, respectively, Riesz bases Ψj = {ψj,k : k ∈ Zn} and Ψ̃j =

{ψ̃j,k : k ∈ Zn} with the property of biorthogonality to the effect that
⟨ψj,k, ψ̃j,k′ ⟩2 = δk,k′ for all k, k′ ∈ Zn, where ⟨., .⟩2 is the inner product
in ℓ2(Zn). Every primal scaling function ψ and dual scaling function ψ̃
is assumed to have compact support such that the measure of ψj,k and
ψ̃j,k are ∼ 2−j for all j ∈ Z. Moreover, these biorthogonal bases define
the projection operators Pj : ℓ2(Zn) → Vj and P̃j : ℓ2(Zn) → Ṽj , such
that are uniformly stable in ℓ2(Zn). They are defined as the following

Pjv =
∑
k∈Zn

⟨v, ψ̃j,k⟩2ψj,k and P̃jv =
∑
k∈Zn

⟨v, ψj,k⟩2ψ̃j,k

for all v ∈ ℓ2(Zn) and j = 0, 1, 2, ... . The nestedness of the DMRA
spaces gives the properties that PjPj+1 = Pj and P̃jP̃j+1 = P̃j for
all j ∈ Z. Thus for j ∈ Z, again the operators Qj and Q̃j defined by

Qj = Pj+1 − Pj and Q̃j = P̃j+1 − P̃j

are projection operators. For j ∈ Z, the wavelet spaces Wj and W̃j are
defined as the following

Wj = Vj+1 ∩ Ṽ ⊥
j W̃j = Ṽj+1 ∩ V ⊥

j ,

which are, respectively, the range R(Qj) of Qj and the range R(Q̃j)

of Q̃j . The wavelet spaces {Wj}j∈Z and {W̃j}j∈Z induce two multiscale
decompositions of ℓ2(Z) via

v = P1v +

∞∑
j=1

Qjv =

∞∑
j=0

Qjv, v ∈ ℓ2(Zn),
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where Q0 = P1 and

ṽ = P̃1v +

∞∑
j=1

Q̃jv, v ∈ ℓ2(Zn).

Moreover, for j ∈ Z, the wavelet spaces Wj and W̃j are equipped with
compactly supported biorthogonal the Riesz bases is indicated , respec-
tively, by Φj = {φj,k : k ∈ Zn} and Φ̃j = {φ̃j : k ∈ Zn}. For
every nonnegative integer n, one can introduce the canonical truncated
projection operators Qn and Q

′
n which is defined by

Qnv =
n∑

j=0

∑
k∈Zn

⟨v, φ̃j,k⟩2φj,k and Q
′
nv =

n∑
j=0

∑
k∈Zn

⟨v, φj,k⟩2φ̃j,k ∀v ∈ ℓ2(Zn).

3. Discrete pseudo-differential operators

Now, let us give some definitions and implications about the discrete
calculus of pseudo-differential operators on the lattice Zn [13]. The
discrete Fourier transform f̂ of a function f in ℓ1(Z) is defined by

f̂(x) =
∑
ξ∈Zn

e−2πiξ.xf(ξ)

for all x ∈ Tn where Tn = Rn/Zn. The discrete Fourier transform can be
extended to ℓ2(Zn) using the usual density arguments. We normalize the
Haar measure on Zn and Tn in such a way that the Plancherel formula
to the effect that ∑

ξ∈Zn

|f(ξ)|2 =
∫
Tn

|f̂(x)|2dx,

is valid. Then, the inverse discrete Fourier transform is defined as the
following

f(ξ) =

∫
Tn

e2πiξ.xf̂(x)dx, ξ ∈ Zn.

We recall the discrete calculus developed in [13, 24]. Let f be a
function on Zn and ej ∈ Nn be such that ej has 1 in the jth entry and
zeros elsewhere. The difference operator ∆ξj is given by

∆ξjf(ξ) = f(ξ + ej)− f(ξ)

and take ∆α
ξ = ∆α1

ξ1
∆α2

ξ2
...∆αn

ξn
for all α = (α1, ..., αn) ∈ Nn

0 = Nn ∪ {0}
and ξ = (ξ1, ..., ξn) ∈ Zn. We use the usual notations, Dα

x = Dα1
x1
...Dαn

xn
,

Dxj =
1

2πi
∂

∂xj
and

D(α)
x = D(α1)

x1
...D(αn)

xn
, , D(l)

xj
=

l∏
m=0

(
1

2πi

∂

∂xj

−m

)
, l ∈ N.
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The operators D(α)
x are useful in the analysis in torus and details can be

found in [24]. The symbol classes are then defined as follows:
Definition 3.1. For m ∈ R, we say that a function σ : Zn × Tn → C
belong to Sm(Zn × Tn) if σ(ξ, .) ∈ C∞(Tn) for all ξ ∈ Zn and for all
multi-indices α, β ∈ Nn

0 , there exists a positive constant Mα,β such that∣∣∣∣(D(β)
x ∆α

ξ σ)(ξ, x)

∣∣∣∣ ≤Mα,β(1 + |ξ|)m−|α|, (ξ, x) ∈ Zn × Tn.

Therefore, the corresponding discrete pseudo-differential operator with
symbol σ is given by

(Tσf)(ξ) =

∫
Tn

e2πiξ.xσ(ξ, x)f̂(x)dx, ξ ∈ Zn.

Example 3.2. For a complex-valued function on Zn its discrete Lpla-
cian is given by

∆(f)(ξ) =
n∑

j=1

∂j∂
∗
j f(ξ) =

n∑
j=1

∂∗j ∂jf(ξ), ξ ∈ Zn,

where ∂jf(ξ) = f(ξ + ej) − f(ξ) and ∂∗j f(ξ) = f(ξ − ej) − f(ξ). Then
one can get

∆(f)(ξ) =
n∑

j=1

(
f(ξ + ej)− 2f(ξ) + f(ξ − ej

)
).

The discrete Laplacian ∆ is a bounded self-adjoint operator on ℓ2(Zn)
and one gets

FZn(∆(f))(ξ) = −
n∑

j=1

|ei2πξj−1|2FZn(f)(ξ) = −4

( n∑
j=1

sin2(πξj)

)
FZn(f)(ξ).

The symbol of the discrete laplacian is the function

σ∆(ξ) =

n∑
k=1

(ei2πξk − 1)2.

Example 3.3. The discrete Riesz transforms Rj , j = 1, ..., n, associated
with ∆ are defined on ℓ2(Zn) as the multiplier operators

FZn(Rj(f))(ξ) =
ie−iπξj sin(πξj)(∑n
k=1 sin

2(πξk)

) 1
2

FZn(f)(ξ),

it can be interpreted as Rj = ∂j∆
− 1

2 .

The following theorem gives the product of two discrete pseudo-differential
operators.
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Theorem 3.4. [4, 13] Let σ ∈ Sm1(Zn × Tn) and τ ∈ Sm2(Zn × Tn).
Then the product TσTτ of the pseudo-differential operators Tσ and Tτ is
a pseudo-differential operator with symbol in Sm1+m2(Zn × Tn).

Definition 3.5. A symbol σ ∈ Sm(Zn × Tn) is called elliptic of order
m if there exist positive constants C and M such that

|σ(ξ, x)| ≥ C(1 + |ξ|)m

for all ξ ∈ Zn and all x ∈ Tn with |ξ| ≥M.

The corresponding discrete pseudo-differential operator Tσ is called
elliptic. The following theorem gives the parametrix for an elliptic dis-
crete pseudo-differential operator.

Theorem 3.6. Let σ ∈ Sm(Zn × Tn), m ∈ R, be elliptic. Then there
exists a symbol τ ∈ S−m(Zn × Tn) such that

TσTτ = I +R, TτTσ = I + S

where R and S are infinitely smoothing in the sense that they are pseudo-
differential operators with symbol in

∩
µ∈R S

µ(Zn × Tn).

Proof. Let σ be the symbol of the operator Tσ. In special case, by using
of Proposition (3.6) in [21] and similar to Theorem (3.7) in [21], we
consider a function τ0(x, ξ) = 1

σ(x,ξ) ∈ S−m(Zn × Tn). Now, we can
apply theorem of composition of two pseudo-differential operators [21]
to obtain

Tτ0Tσ = I +R0 and TσTτ0 = I + S0,

with r0(x, ξ), s0(x, ξ) ∈ S−1. Using the formal expansion

I −R0 +R2
0 − ... ∼ I +R ∈ OPS0

and setting Tτ = (I +R)Tτ0 ∈ OPS−m we have

TτTσ = I +R, r(x, ξ) ∈ S−∞.

Similarly, we obtain T̃τ ∈ OPS−m satisfying

TσT̃τ = I + S, s(x, ξ) ∈ S−∞.

But evaluating (TτTσ)T̃τ = Tτ (TσT̃τ ) yields Tτ = T̃τ mod OPS−∞.
Therefore, TσTτ = I mod OPS−∞ and TτTσ = I mod OPS−∞. In fact
we have that TσTτ = I+R and TτTσ = I+S where R and S are infinitely
smoothing in the sense that they are pseudo-differential operators with
symbols in ∩k∈RS

k. □
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Now, let us recall the definition of the Schwartz space S(Zn), on the
lattice Zn the space of all functions φ : Zn → C such that for all multi-
indices α, β ∈ Nn

0 ,

sup
ξ∈Zn

∣∣∣∣ξα(∆α
ξ φ)(ξ)

∣∣∣∣ <∞.

A sequence {φj} of functions in S(Zn) is said to be converge to zero in

S(Zn) if for all multi-indices α, β ∈ Nn
0 , supξ∈Zn

∣∣∣∣ξα(∆α
ξ φj)(ξ)

∣∣∣∣ → 0 as

j → ∞. A linear functional T on S(Zn) is called a tempered distribution
if for any sequence {φj} of functions in S(Zn) converging to 0, one has
T (φj) → 0 as j → ∞. For s ∈ R, it is usual denoted by Js the pseudo-
differential operator of which the symbol σs is defined by

σs(ξ) = (1 + |ξ|2)
s
2 , ξ ∈ Zn.

It is noteworthy that the symbol of Js is in Ss(Zn × Tn). The pseudo-
differential operator Js is often called the discrete Bessel potential of
order s. Hence, for s ∈ R, one can define ℓ2−Sobolev space, Hs,2(Zn), to
be the set of all tempered distributions u for which Jsu ∈ ℓ2(Zn). Then
Hs,2(Zn) is a Banach space with respect to the norm ∥.∥s,2 given by

∥u∥s,2 = ∥J−su∥2, u ∈ Hs,2(Zn).

The following result is well-known.

Proposition 3.7. For s ∈ R, J−s : Hs,2(Zn) → ℓ2(Zn) is a surjective
isometry.

Proof. Since ∥u∥s,2 = ∥J−su∥2 for any u ∈ Hs,2(Zn) it follows that
J−s : Hs,2 → ℓ2(Zn) is an isometry. For every v ∈ ℓ2(Zn) we take
u := (J−s)

−1v then J−su = v ∈ ℓ2(Zn). Hence, Js : Hs,2(Zn) → ℓ2(Zn)
is surjection. □

Theorem 3.8. Let σ ∈ Sm(Zn × Tn), m ∈ R. Then Tσ : Hs,2(Zn) →
Hs−m,2(Zn) is abounded linear operator.

Proof. We factorize the pseudo-differential operator Tσ as in following
diagram and get

Tσ = (Jm−s)
−1TτJ−s,

where Tτ = Jm−sTσ(J−s)
−1.

Hs,2(Zn)
Tσ−−−−→ Hs−m,2(Zn)

J−s

y yJm−s

H0,2 = ℓ2(Zn)
Tτ−−−−→ ℓ2(Zn)

.
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By Theorem 3.4 and proposition 3.7 we can see that Tτ is a pseudo-
differential operator with symbol S0. Hence, by theorem (3.3) in [21],
Tτ : ℓ2(Zn) → ℓ2(Zn) ia a bounded linear operator. Therefor, Tσ :
Hs,2(Zn) → Hs−m,2(Zn) is bounded linear operator. □

The following result on spectral invariance [25] is well-known. See
also Theorem 4.2 in [13] in this connection.

Theorem 3.9. Let σ ∈ Sm(Zn×Tn) be such that the pseudo-differential
operator Tσ : H

m
2
,2(Zn) → H−m

2
,2(Zn) is invertible. Then σ is ellip-

tic and T−1
σ is an elliptic pseudo-differential operator with symbol in

S−m(Zn × Tn).

The following estimate is useful in continue of the paper.

Theorem 3.10. Let σ ∈ Sm(Zn×Tn) be such that the pseudo-differential
operator Tσ : H

m
2
,2(Zn) → H−m

2
,2(Zn) is invertible. Then there exist

positive constants M1 and M2 such that

M1∥Tσu∥−m
2
,2 ≤ ∥u∥m

2
,2 ≤M2∥Tσu∥−m

2
,2, u ∈ H

m
2
,2(Zn).

Proof. The inequality on the left side is obtained by the boundedness
of the discrete pseudo-differential operator Tσ from Theorem 3.8. More-
over, by using of Theorem 3.8 and 3.9, there exists a positive constant
M such that

∥u∥m
2
,2 = ∥T−1

σ Tσu∥m
2
,2 ≤M∥Tσu∥−m

2
,2, u ∈ H

m
2
,2(Zn).

□

We let λ = (j, k), where j is the level of resolution and k is the
location. We let J be the index set given by

J = {λ = (j, k) : j = 0, 1, 2, ..., k ∈ Zn},

and for λ = (j, k) in J, we define |λ| := j. Thus, as similar result in
[10, 19], one can have the following result on the lattice Zn.

Theorem 3.11. Suppose that Ψ = {ψλ : λ ∈ J} and Ψ̃ = {ψ̃λ : λ ∈
J} are biorthogonal collections in ℓ2(Zn) for which the sequence {Qn}∞n=0

of the projection operators given by

Qnv =
n∑

j=0

∑
ξZn

⟨v, ψ̃j,k⟩2ψj,k, v ∈ ℓ2(Zn),

is uniformly bounded in the sense that there exists a positive constant
M such that

∥Qnv∥s,2 ≤M∥v∥s,2, n = 0, 1, 2, ... .
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Then for every v ∈ Hs,2(Zn), one can get

∥v∥s,2 ∼
(∑

λ∈J
22|λ|

s |⟨v, ψ̃λ⟩2|2
) 1

2

, s ∈ (−γ′
, γ),

where γ = sup{s ∈ R : ψ ∈ Hs,2(Zn)} and γ
′
= sup{s ∈ R : ψ̃ ∈

Hs,2(Zn)}.

It is noteworthy that γ and γ
′ are, respectively, less than or equal

to the vanishing moments of ψ and ψ̃. The goal of this article is to use
adaptive wavelets to compute numerically the inverse of an invertible
discrete pseudo-differential operator Tσ : Hm,2(Zn) → ℓ2(Zn), where
σ ∈ Sm(Zn × Tn) and m = min{γ, γ′}. This means to solving the
discrete pseudo-differential equation

Tσu = f (3.1)
on Zn for all functions u ∈ Hm,2(Zn) and f ∈ ℓ2(Zn). In order to do
this, one can transform the equation 3.1 to the equation

T ∗
σTσu = T ∗

σf (3.2)
on Zn, where T ∗

σ denotes the discrete formal adjoint of Tσ. Further-
more, T ∗

σTσ is a discrete pseudo-differential operator Tτ or order 2m and
T ∗
σf ∈ H−m,2(Zn). Moreover, Tτ is asymmetric and there exist positive

constants M and M
′ for which

M∥u∥2m,2 ≤ ⟨Tτu, u⟩2 ≤M
′∥u∥2m,2, u ∈ Hm,2(Zn). (3.3)

The right hand side inequality follows from Theorem 3.8. In fact, there
exists a positive constant M ′ for which

⟨Tτu, u⟩2 ≤
∣∣∣∣⟨Tτu, u⟩2∣∣∣∣ ≤ ∥Tτu∥−m,2∥u∥m,2 ≤M

′∥u∥2m,2, u ∈ Hm,2(Zn).

On the other hand, one gets from Theorem 3.8 and 3.9 a positive
constant M such that

∥u∥2m,2 = ∥T−1
σ Tσu∥2m,2 ≤M∥Tσ∥2m,2, u ∈ Hm,2(Zn).

Therefore, by abusing the notations, the problem 3.1 is the same as
solving for u ∈ Hm,2(Zn) to the equation

Tσu = f

on Zn for any f ∈ H−m,2(Zn), where Tσ is asymmetric discrete pseudo-
differential operator of order 2m such that there exist positive constants
M

′ and M” for which
M

′∥u∥m,2 ≤ ∥u∥Tσ ≤M”∥u∥m,2, u ∈ Hm,2(Zn),
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where ∥u∥2Tσ
= ⟨Tσu, u⟩2. The existence of a positive constant M ′ such

that
∥u∥2Tσ

≥M
′∥u∥m,2, u ∈ Hm,2(Zn),

is a condition related to Gårding’s inequality on the symbol σ ∈ Sm(Zn×
Tn). For example, see the paper [30] in this connection. Adaptive wavelet
methods in finding solutions to differential and integral equations can
be found in [7, 12].

4. Residual estimate and error bounds on Zn

The process of calculating the inverse of the discrete pseudo-differential
operator Tσ : Hm,2(Zn) → H−m,2(Zn) numerically is equivalent to the
computation of subspaces VΛ of the form VΛ = span{ψλ : λ ∈ Λ} that
are adapted to the unique solution u ∈ Hm,2(Zn) of the discrete pseudo-
differential equation

Tσu = f (4.1)

on Zn for any function f ∈ H−m,2(Zn).
To illustrate the equation 4.1, one can consider the Bessel potential

operator as discrete pseudo-differential operator as follows:
The function ⟨ξ⟩ :=

√
1 + |ξ|2 is a pseudo-differential symbol of order

1. According to Example 3.2 and since 1 + |ξ|2 is the symbol I −∆, the
associated discrete pseudo-differential operator

⟨Dx⟩u =

∫
Tn

e2πi.x.ξ⟨ξ⟩ûdξ

can be considered as the square root of I −∆. More generally, one can
consider a symbol ⟨ξ⟩m ∈ Sm for every m ∈ R and ⟨Dx⟩m = (I −∆)

m
2 .

In order to do this, one can use the weak formulation of 4.1 to the
effect of finding a solution uΛ ∈ VΛ for which

⟨TσuΛ, v⟩2 = ⟨f, v⟩2, v ∈ VΛ. (4.2)

In other words, for an arbitrary tolerance eps, one attempts to find a
subset Λ of J for which the Galerkin approximation uΛ ∈ VΛ given by
4.2 satisfies the estimate ∥uΛ − u∥m,2 ≤ eps. This is to be achieved by
successively upgrading Λ based on appropriate a posteriori estimates of
a current Galerkin approximation uΛ. Consider the residual term rΛ =
TσuΛ−f which is the same as rΛ = Tσ(uΛ−u). Therefore„ by Theorem
3.10, one can find positive constants M1 and M2 such that

M1∥rΛ∥−m,2 ≤ ∥uΛ − u∥m,2 ≤M2∥rΛ|∥−m,2,
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for all subsets Λ of J. Hence, one can find positive constants M3 and M4

for which

M3

( ∑
λ∈J\Λ

2−2m|λ||⟨rΛ, ψλ⟩2|2
) 1

2

≤ ∥rΛ∥−m,2 ≤M4

( ∑
λ∈J\Λ

2−2m|λ||⟨rΛ, ψλ⟩2|2
) 1

2

.

For λ ∈ J\Λ, define δλ := 2−m|λ||⟨rΛ, ψλ⟩2|. From uΛ ∈ VΛ implies that
uΛ =

∑
λ′∈Λ uλ′ψλ′ , where uλ′ = ⟨uλ, ψ̃λ′ ⟩2. Thus, for λ ∈ J\Λ,

δλ = 2−m|λ|
∣∣∣∣fλ −

∑
λ′∈Λ

⟨Tσψλ′ , ψλ⟩2uλ′

∣∣∣∣.
Let µ be the Hölder exponent of ∂γφ. Therefore, for all positive numbers
ϵ and δ with δ < µ − 1

2 , one can choose positive numbers ϵ1 and ϵ2 for
which ϵ

2(r̃+1)
1 + 2

− δ
ϵ2 ≤ ϵ, where r̃ is the vanishing moment of φ̃. For

any λ ∈ J and for an arbitrary positive number ϵ, one can define the
tolerance set

Jλ,ϵ := {λ′ ∈ J : ||λ|−|λ′ || ≤ ϵ−1
2 , 2min{|λ|,|λ′ |}d(supp(ψλ), supp(ψλ′ )) ≤ ϵ−1

1 }.

Therefore, one can obtain the following lemma, which is Lemma 4.2 in
[12].

Lemma 4.1. For λ ∈ J\Λ, let eλ be defined by eλ =
∑

λ′∈Λ\Jλ,ϵ
2−m|λ|⟨Tσψλ′ , ψλ⟩2uλ′ .

Then there exists a positive constant M5 such that( ∑
λ∈J\Λ

|eλ|2
) 1

2

≤M5∥Q
′
Λf∥−m,2,

where Q′
Λf =

∑
λ∈Λ

⟨f, ψλ⟩2ψ̃λ.

For λ ∈ J\Λ, one can get the following estimates:

δλ = 2−m|λ|
∣∣∣∣fλ −

( ∑
λ′∈Λ∩Jλ,ϵ

+
∑

λ′∈Λ\Jλ,ϵ

)
⟨Tσψλ′ , ψλ⟩2uλ′

∣∣∣∣
≤ |dλ|+ |eλ|,

where dλ = 2−m|λ|
∣∣∣∣fλ −

∑
λ′∈Λ∩Jλ,ϵ⟨Tσψλ, ψλ⟩2uλ′

∣∣∣∣.
Suppose that NΛ,ϵ is the set of all indices in the complement of Λ with

influence set intersecting Λ. In other words,

NΛ,ϵ := {λ ∈ J\Λ : Jλ,ϵ ∩ Λ ̸= ∅}.
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It can be shown that NΛ,ϵ = ∪λ′∈ΛJλ′ ,ϵ and NΛ,ϵ has at most a finite
number of elements. Therefore,

λ
′ ∈ J\(Λ ∪NΛ,ϵ) ⇒ Jλ′ ,ϵ ∩ Λ = ∅.

Since f ∈ H−m,2(Zn) if and only if
∑

λ∈J 2
−2m|λ||fλ|2 < ∞, it follows

that ∑
λ∈J\(Λ∪NΛ,ϵ)

2−2m|λ||fλ|2

can be made arbitrarily small by choosing Λ appropriately. Conse-
quently,∑
λ∈J\(Λ∪NΛ,ϵ)

2−2m|λ||fλ|2 =
∑
λ∈J

22m|λ||fλ|2 −
∑

λ∈(Λ∪NΛ,ϵ)

2−2m|λ||fλ|2

= ∥f −Q
′
Λ∪NΛ,ϵ

f∥−m,2 ∼ inf
v∈ṼΛ∪NΛ,ϵ

∥f − v∥−m,2

≤ inf
v∈ṼΛ

∥f − v∥2−m,2.

Now, one can apply the basic assumptions to the effect that there are
positive constants M6 and M7 for which

M6∥Q
′
Λf∥−m,2 ≤M7∥f∥−m,2

and ( ∑
λ∈J\Λ

2−2m|λ||fλ|2
) 1

2

≤M7 inf
v∈ṼΛ

∥f − v∥−m,2

for all subsets Λ of J. Suppose that λ ∈ J\Λ, consider aλ by

aλ := 2−m|λ|
∣∣∣∣ ∑
λ′∈Λ∩JΛ,ϵ

⟨Tσψλ′ , ψλ⟩2uλ′

∣∣∣∣.
Proposition 4.2. Under the assumptions of Lemma 4.1, one gets

∥uΛ − u∥m,2 ≤M2M4

{( ∑
λ∈NΛ,ϵ

a2λ

) 1
2

+M6ϵ∥f∥−m,2 +M7 inf
v∈ṼΛ

∥f − v∥−m,2

}
and( ∑

λ∈NΛ,ϵ

a2λ

) 1
2

≤ 1

M1M3
∥uΛ − u∥m,2 +M6ϵ∥f∥−m,2 +M7 inf

v∈ṼΛ

∥f − v∥−m,2.

Theorem 4.3. Assume that Λ ⊂ Λ̃ ⊂ J. Then( ∑
λ∈Λ̃∩NΛ,ϵ

a2λ

) 1
2

≤ 1

M1M3
∥uΛ̃ − uλ∥m,2 +M6ϵ∥f∥−m,2 +M7 inf

v∈Ṽ Λ
∥f − v∥−m,2.
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Proof. Suppose that λ ∈ Λ̃. Then

⟨TσuΛ, ψλ⟩2 = ⟨Tσ(uΛ − uΛ̃), ψλ⟩2 + fλ.

Thus, dλ(Λ, ϵ) ≤ 2−m|λ||⟨Tσ(uΛ − uΛ̃), ψλ⟩2||eλ|. Furthermore,∑
λ∈Λ̃\Λ

2−m|λ||⟨Tσ(uΛ − uΛ̃), ψλ⟩2|2 ≤
1

M2
3

∥Tσ(uΛ − uΛ̃)∥
2
−m,2 ≤

1

M2
1M

2
3

∥uΛ − uΛ̃∥
2
m,2.

Therefore, from Lemma 4.1 one can get,( ∑
λ∈Λ̃\Λ

dλ(Λ, ϵ)
2

) 1
2

≤ 1

M1M3
∥uΛ − uΛ̃∥

2
m,2 +M5ϵ∥Q

′
Λf∥−m,2.

Hence, |aλ(Λ, ϵ)| ≤ |dλ(Λ, ϵ)|+2−m|λ||fλ|, and the proof is complete. □

5. An adaptive algorithm

In this section, we show that for a set Λ̃ containing Λ, the solutions
in VΛ̃ approximate the actual solutions better than the one in VΛ. In
order to do this, we recall our assumptions at the end of Section 2 that
the discrete pseudo-differential operator Tσ is symmetric and there exist
positive constants M8 and M9 for which

M8∥u∥m,2 ≤ ∥u∥Tσ ≤M9∥u∥m,2, u ∈ Hm,2(Zn),

where ∥u∥2Tσ
= ⟨Tσu, u⟩2.

Theorem 5.1. Let eps be a given tolerance. For θ∗ ∈ (0, 1), we define
the number Me :=

1
M1M3

+ 1−θ∗

2M2M4
. Suppose that µ∗ is a positive number

for which µ∗Me ≤ 1−θ∗

2(2−θ∗)M2M4
. Assume that ϵ is the positive number

defined by ϵ := µ∗eps
2M6∥f∥−m,2

. Suppose that Λ is a subset of J for which

M7 inf
v∈Ṽλ

∥f − v∥−m,2 ≤
1

2
µ∗eps.

Then for all subsets Λ̃ of J such that Λ ⊂ Λ̃ and( ∑
λ∈Λ̃∩NΛ,ϵ

a2λ

) 1
2

≥ (1− θ∗)

( ∑
λ∈NΛ,ϵ

a2λ

) 1
2

,

there exists a number κ ∈ (0, 1) such that ∥u− uΛ̃∥Tσ ≤ κ∥u− uΛ∥Tσ .
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Proof. Let us consider the assumption ∥uΛ − u∥m,2 ≥ eps
Ce
. By using of

Proposition 4.2 and Theorem 4.3,

∥uΛ̃ − uΛ∥m,2 ≥M1M3

{( ∑
λ∈Λ̃∩NΛ,ϵ

a2λ

) 1
2

−M6ϵ∥f∥−m,2 −M7 inf
v∈Λ̃

∥f − v∥−m,2

}

≥M1M3

{
(1− θ∗)

(
1

M2M4
∥u− uΛ∥m,2 −M6ϵ∥f∥−m,2

−M7 inf
v∈ṼΛ

∥f − v∥−m,2

)
−M6ϵ∥f∥−m,2 −M7 inf

v∈ṼΛ

∥f − v∥−m,2

}

≥M1M3

(
(1− θ∗)

1

M2M4
∥u− uΛ∥m,2 − (2− θ∗)M6ϵ∥f∥−m,2

− (2− θ∗)M7 inf
v∈ṼΛ

∥f − v∥−m,2

)
.

Thus,

∥uΛ̃ − uΛ∥m,2 ≥M1M3

(
1− θ∗

M2M4
∥u− uΛ∥m,2 − (2θ∗)µ∗eps

)
.

Indeed,

∥uΛ̃ − uΛ∥m,2 ≥M1M3

(
1− θ∗

M2M4
− (2− θ∗)µ∗Me

)
∥u− uΛ∥m,2 ≥

M1M3(1− θ∗)

2M2M4
∥u− uΛ∥m,2.

On the other hand,

∥uΛ̃ − uΛ∥2m,2 = ⟨TσuΛ̃ − TσuΛ, uλ̃ − uΛ⟩2 = ∥uΛ̃∥
2
Tσ

+ ∥uΛ∥2Tσ
− ⟨TσuΛ̃, uΛ⟩2 − ⟨TσuΛ, uΛ̃⟩2

= ∥uΛ̃∥
2
Tσ

+ ∥uΛ∥2Tσ
− ⟨f, uΛ⟩2 − ⟨uΛ, f⟩2 = ∥uΛ̃∥

2
Tσ

+ ∥uΛ∥2Tσ

− ⟨TσuΛ, uΛ⟩2 − ⟨uΛ, TσuΛ⟩2 = ∥uΛ̃∥
2
Tσ

− ∥uΛ∥2Tσ
. (5.1)

Moreover,

∥u− uΛ̃∥
2
m,2 = ⟨Tσu− TσuΛ̃⟩2 = ∥u∥2Tσ

+ ∥uΛ̃∥
2
Tσ

− ⟨Tσu, uΛ̃⟩2 − ⟨TσuΛ̃, u⟩2
= ∥u∥2Tσ

+ ∥uΛ̃∥
2
Tσ

− ⟨f, uΛ̃⟩2 − ⟨uΛ̃, f⟩2 = ∥u∥2Tσ
+ ∥uΛ̃∥

2
Tσ

− ⟨TσuΛ̃, uΛ̃⟩2 − ⟨uΛ̃, TσuΛ̃⟩2 = ∥u∥2Tσ
− ∥uΛ̃∥

2
Tσ
. (5.2)

Furthermore,

∥u− uΛ∥2Tσ
= ⟨Tσu− TσuΛ, u− uΛ⟩2 = ∥u∥2Tσ

+ ∥uΛ∥2Tσ
− ⟨Tσu, uΛ⟩2 − ⟨TσuΛ, u⟩2

= ∥u∥2Tσ
+ ∥uΛ∥2Tσ

− ⟨f, uΛ⟩2 − ⟨uΛ, f⟩2 = ∥u∥2Tσ
+ ∥uΛ∥2Tσ

− ⟨TσuΛ, uΛ⟩2 − ⟨uΛ, TσuΛ⟩2 = ∥u∥2Tσ
− ∥u∥2Tσ

. (5.3)
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Hence, by using of the relations 5.1, 5.2 and 5.3, ∥uΛ̃ − uΛ∥2Tσ
= ∥u −

uΛ∥2Tσ
= ∥u− uΛ̃∥

2
Tσ
, or equivalently ∥u− uΛ̃∥

2
Tσ

+ ∥uΛ̃ − uΛ∥2Tσ
= ∥u−

uΛ∥2Tσ
. On the other side,

∥uΛ̃ − uΛ∥Tσ ≥M8∥uΛ̃ − uΛ∥m,2 ≥
M1M3M8(1− θ∗)

2M2M4
∥u− uΛ∥m,2

≥ M1M3M8(1− θ∗)

2M2M4M9
∥u− uΛ∥Tσ . (5.4)

Therefore,

∥u− uΛ̃∥
2
Tσ

= ∥u− uΛ∥2Tσ
− ∥uΛ̃ − uΛ∥2Tσ

≤ ∥u− uΛ∥2Tσ
−
(
M1M3M8(1− θ∗)

2M2M4M9

)2

∥u− uΛ∥2Tσ
= κ∥u− uΛ∥2Tσ

,

where κ =

√
1−

(
M1M3M8(1−θ∗)

2M2M4M9

)2

. □

We can give an adaptive algorithm by the following steps:
Suppose that θ∗ ∈ (0, 1) and the desired accuracy eps are given, we

proceed as follows:
Step 1: Compute ϵ = µ∗eps

2M6∥f∥−m,2
.

Step 2: Determine an index set Λ ⊂ J such that

M7 inf
v∈Ṽλ

∥f − v∥−m,2 <
1

2
µ∗eps.

Step 3: Compute the Galerkin solution uΛ with respect to VΛ.
Step 4: Compute

ηΛ,ϵ =

( ∑
λ∈NΛ,ϵ

a2λ

) 1
2

.

If ηΛ,ϵ < eps, then we stop and accept uΛ as a solution. Otherwise,
go to the next step.

Step 5: Determine an index set Λ̃ such that Λ ⊂ Λ̃ ⊂ J and( ∑
λ∈Λ̃∩NΛ,ϵ

a2λ

) 1
2

≥ (1− θ∗)ηΛ,ϵ,

and go to Step 3 with Λ replaced by Λ̃.
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