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Abstract. For every positive integer k, a set S of vertices in a

graph G = (V,E) is a k-tuple dominating set of G if every vertex

of V − S is adjacent to at least k vertices and every vertex of S is

adjacent to at least k−1 vertices in S. The minimum cardinality of

a k-tuple dominating set of G is the k-tuple domination number of

G. When k = 1, a k-tuple domination number is the well-studied

domination number. We define the k-tuple domatic number of G

as the largest number of sets in a partition of V into k-tuple dom-

inating sets. Recall that when k = 1, a k-tuple domatic number

is the well-studied domatic number. In this study, basic properties

and bounds for the k-tuple domatic number are derived.

Keywords: k-tuple dominating set; k-tuple domination number; k-

tuple domatic number.

1. INTRODUCTION

The notation used in this study is as follows. Let G be a simple graph
with vertex set V = V (G) and edge set E = E(G). The order | V | of G
is denoted by n = n(G). For every vertex v ∈ V , the open neighborhood
NG(v) is the set {u ∈ V | uv ∈ E} and the closed neighborhood of
v is the set NG[v] = NG(v) ∪ {v}. The degree of a vertex v ∈ V is
deg(v) =| N(v) |. The minimum and maximum degree of a graph G are
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denoted by δ = δ(G) and ∆ = ∆(G), respectively. If every vertex of
G has degree k, then G is said to be k-regular. The complement of a
graph G is denoted by G which is a graph with V (G) = V (G) and for
every two vertices v and w, vw ∈ E(G) if and only if vw /∈ E(G). The
subgraph induced by S in a graph G is denoted by G[S]. Kn for the
complete graph of order n and Kn,m for the complete bipartite graphare
written..

For every positive integer k, the k-join G◦kH of a graph G to a graph
H, of order at least k, is the graph obtained from the disjoint union of
G and H by joining each vertex of G to at least k vertices of H.

A dominating set of a graph G is a subset S of the vertex set V (G)
such that every vertex of G is either in S or has a neighbor in S. The
minimum cardinality of a dominating set of G is the domination number
γ(G) of G. It is common that the complement of a dominating set
of minimum cardinality of a graph G without isolated vertices is also
a dominating set. Hence one can partition the vertex set of G into at
least two disjoint dominating sets. The maximum number of dominating
sets which the vertex set of a graph G can be partitioned is called the
domatic number of G, and denoted by d(G). This graph invariant was
introduced by Cockayne and Hedetniemi [2]. They also showed that

γ(G) · d(G) ≤ n. (1.1)

To simplify matters of notation, a domatic partition of a graph G into
` dominating sets is given by a colouring f : V (G) → {1, 2, ..., `} of
the vertex set V (G) with ` colors. The dominating sets are recovered
from f by taking the inverse, i.e. Di = f−l(i), i = 1, ..., `. Clearly,
a coloring f defines a domatic partition of G if and only if for every
vertex x ∈ V (G), f(N [x]) = {1, 2, ..., `}. Thus, any graph G satisfies
d(G) ≤ δ(G) + 1. The word domatic, an amalgamation of the words
domination and chromatic, refers to an analogy between the chromatic
number (partitioning of the vertex set into independent sets) and the
domatic number (partitioning into dominating sets). For a survey of
results on the domatic number of graphs I refer the reader to [13]. It
was first observed by Cockayne and Hedetniemi [2] that for every graph
without isolated vertices 2 ≤ d(G) ≤ δ(G)+1. The upper bound δ(G)+1
derived from interval graphs [9], for example.

Intuitively, it seems reasonable to expect that a graph with large
minimum degree will have a large domatic number. Zelinka [14] showed
that this is not necessarily the case. He gave examples for graphs of
arbitrarily large minimum degree with domatic number 2. For more
details about domatic number consider the following studies [1, 3, 10, 11].
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The total domatic number dt(G) is similarly defined based on the con-
cept of the total domination number γt(G). Sheikholeslami and Volk-
mann, in a similar manner, generalized in [12] the concept of total do-
matic number to the k-tuple total domatic number d×k,t(G) based on
the concept of k-tuple total domination number γ×k,t(G), which is de-
fined by Henning and Kazemi in [8]. We recall that for every positive
integer k, a k-tuple total dominating set, abbreviated kTDS, of a graph
G is a subset S of the vertex set V (G) such that every vertex of G is
adjacent to at least k vertices of S. And the minimum cardinality of a
kTDS of G is the k-tuple total domination number γ×k,t(G) of G.

Harary and Haynes in [5] extend the concept of domatic number to
k-tuple domatic number based on the concept of k-tuple domination
number. For every positive integer k, a k-tuple dominating set, abbrevi-
ated kDS, of a graph G is a subset S of the vertex set V (G) such that
every vertex of G is either in S and is adjacent to at least k−1 vertices in
S or is not in S and is adjacent to at least k vertices in S. The minimum
cardinality of a kDS of G is the k-tuple domination number γ×k(G) of
G. For a graph to have a k-tuple dominating set, its minimum degree is
at least k − 1. The k-tuple domatic number d×k(G) of G is the largest
number of sets in a partition of V (G) into k-tuple dominating sets. If
d = d×k(G) and V (G) = V1 ∪ V2 ∪ ... ∪ Vd is a partition of V (G) into k-
tuple dominating sets V1, V2, ... and Vd, we say that {V1, V2, ..., Vd} is a
k-tuple domatic partition, abbreviated kDP, of G. The k-tuple domatic
number is well-defined and

d×k(G) ≥ 1, (1.2)

for all graphs G with δ(G) ≥ k − 1, since the set consisting of V (G)
forms a k-tuple domatic partition of G.

Similar to the domatic partition of a graph, we simplify matters of
notation as follows: a k-tuple domatic partition of a graph G into `
k-tuple dominating sets is given by a coloring f : V (G) → {1, 2, ..., `}
of the vertex set V (G) with ` colors. The k-tuple dominating sets are
recovered from f by taking the inverse, i.e. Di = f−l(i), i = 1, ..., `.
Clearly, a coloring f defines a k-tuple domatic partition of G if and only
if for every vertex x ∈ V (G), f(N(x)) = {f(y) | y ∈ N(x)} contains the
mulitiset {t1.1, t2.2, ..., t`.`} such that for every i, ti ∈ {k− 1, k} and for
an index i, if ti = k−1, then f(x) = i. Harary and Haynes in [5] proved
that for each positive integer k and each graph G with minimum degree
at least k − 1,

d×k(G) ≤ δ(G) + 1

k
. (1.3)

The next proposition is an immediate result of the inequalities (1.2) and
(1.3).



108 A. P. Kazemi

Proposition 1.1. Let k ≥ 1 be an integer, and let G be a graph. If
k − 1 ≤ δ(G) ≤ 2k − 2, then d×k(G) = 1.

Graphs for which d×k(G) achieves this upper bound δ(G)+1
k we call

k-tuple domatically full.
In this study basic properties and bounds for the k-tuple domatic

number are deriven.
The following observations are useful.
observation

Let Kn be the complete graph of order n ≥ 1. Then

d×k(Kn) = bn
k
c.

Proof. The inequality (1.3) implies d×k(Kn) ≤ δ(G)+1
k = n

k , and hence
d×k(Kn) ≤ bnk c. Now let bnk c = ` and let V (Kn) = {1, 2, ..., n}. Let
Vi = {(i − 1)k + j|1 ≤ j ≤ k} for 1 ≤ i ≤ ` − 1 and V` = {(` − 1)k +
1, (` − 1)k + 2, ..., n}. Since V (Kn) = V1 ∪ V2 ∪ ... ∪ V` is a partition
of V (Kn) into k-tuple dominating sets V1, V2, ... and V`, we obtain
d×k(Kn) = ` = bnk c. �

observation
Let G be a bipartite graph with δ(G) ≥ k − 1 ≥ 1. If X and Y are the

bipartite sets of G, then γ×k(G) ≥ 2k − 2 with equality if and only if
G = Kk−1,k−1.

Proof. Let D be a γ×k(G)-set, and let w ∈ X and z ∈ Y be two arbitrary
vertices. The definition implies that | D ∩ N(w) |≥ k − 1 and | D ∩
N(z) |≥ k − 1. Since N(w) ∩ N(z) = ∅, we deduce that | D |≥ 2k − 2
and thus γ×k(G) ≥ 2k− 2. Obviously, we can see that γ×k(G) = 2k− 2
if and only if G = Kk−1,k−1. �

2. Properties of the k-Tuple Domatic Number

Here, we present basic properties of d×k(G) and bounds on the k-
tuple domatic number of a graph. I start my study with a theorem that
characterizes graphs G with γ×k(G) = m, for some m ≥ k ≥ 1.

Theorem 2.1. Let G be a graph with δ(G) ≥ k − 1 ≥ 0. Then for any
integer m ≥ k, γ×k(G) = m if and only if G = K ′m or G = F ◦kK ′m, for
some graph F and some spanning subgraph K ′m of Km with δ(K ′m) ≥
k − 1 such that m is minimum in the set

{t | G = F ′ ◦k K ′t}, (2.1)

where F ′ is a graph and K ′t is a spanning subgraph of Kt with δ(K ′t) ≥
k − 1.
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Proof. Let S be a γ×k(G)-set and γ×k(G) = m, for some m ≥ k. Then
| S |= m and every vertex in V − S has at least k neighbors in S and
otherwise k−1 neighbors. ThenG[S] = K ′m, for some spanning subgraph
K ′m of Km with δ(K ′m) ≥ k−1. If | V |= m, then G = K ′m. If | V |> m,
then let F be the induced subgraph G[V −S]. Then G = F ◦kK ′m. Also
by the definition of k-tuple domination number, m is minimum in the
set given in (2.1).

Conversely, let G = K ′m or G = F ◦k K ′m, for some graph F and
some spanning subgraph K ′m of Km with δ(K ′m) ≥ k − 1 such that m
is minimum in the set given in (2.1). Then, since V (K ′m) is a kDS
of G of cardinality m, γ×k(G) ≤ m. If γ×k(G) = m′ < m, then the
previous paragraph concludes that for some graph F ′ and some spanning
subgraph K ′m′ of Km′ with δ(K ′m′) ≥ k − 1, G = F ′ ◦k K ′m′ , that is
contradiction with the minimality of m. Therefore γ×k(G) = m. �

Corollary 2.2. Let G be a graph with δ(G) ≥ k−1 ≥ 0. Then γ×k(G) =
k if and only if G = Kk or G = F ◦k Kk, for some graph F .

Theorem 2.3. If G is a graph of order n and δ(G) ≥ k − 1, then

γ×k(G) · d×k(G) ≤ n.
Moreover, if γ×k(G) · d×k(G) = n, then for each kDP {V1, V2, ..., Vd} of
G with d = d×k(G), each set Vi is a γ×k(G)-set.

Proof. Let {V1, V2, ..., Vd} be a kDP of G such that d = d×k(G). Then

d · γ×k(G) =
d∑
i=1

γ×k(G)

≤
d∑
i=1
| Vi |

= n.

If γ×k(G) · d×k(G) = n, then the inequality occurring in the proof be-
comes equality. Hence for the kDP {V1, V2, ..., Vd} of G and for each i,
| Vi |= γ×k(G). Thus each set Vi is a γ×k(G)-set. �

The case k = 1 in Theorem 2.3 leads to the well-known inequality
(1.1), given by Cockayne and Hedetniemi [2] in 1977.

Corollary 2.2 and Theorem 2.3 with this fact that for any graph G
of order n with minimum degree at least k − 1, γ×k(G) ≥ k, imply the
next result.

Corollary 2.4. If G is a graph of order n with δ(G) ≥ k − 1 ≥ 0, then

d×k(G) ≤ n

k
,

with equality if and only if G = Kk or G = F ◦k Kk, for some graph F .
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For bipartite graphs, we can improve the bound given in Corollary
2.4, by Observation 1.

Corollary 2.5. Let G be a bipartite graph of order n with vertex parti-
tion V (G) = X ∪ Y and δ(G) ≥ k − 1 ≥ 1. Then

d×k(G) ≤ n

2k − 2
,

with equality if and only if G = Kk−1,k−1.

Theorem 2.6. If G is a graph of order n and δ(G) ≥ k − 1 ≥ 2, then

γ×k(G) + d×k(G) ≤ n+ 1.

Proof. Applying Theorem 2.3, we obtain

γ×k(G) + d×k(G) ≤ n

d×k(G)
+ d×k(G).

Since d×k(G) ≥ 1, by inequality (1.2), and k ≥ 3, Corollary 2.4 implies
that d×k(G) ≤ n

2 . Using these inequalities, and the fact that the function

g(x) = x + n
x is decreasing for 1 ≤ x ≤ n1/2 and increasing for n1/2 ≤

x ≤ n
2 , we obtain

γ×k(G) + d×k(G) ≤ max{n+ 1,
n

2
+ 2} = n+ 1,

and this is the desired bound. �

If G = `Kk for integers ` ≥ 1 and k ≥ 3, then γ×k(G) = n(G) = `k
and d×k(G) = 1. Therefore γ×k(G) + d×k(G) = n+ 1, and so the upper
bound n+ 1 in Theorem 2.6 is sharp.

By closer look at the proof of Theorem 2.6 we have:

Corollary 2.7. [5] Let G be a graph of order n with δ(G) ≥ k − 1 ≥ 2.
If d×k(G) ≥ 2, then

γ×k(G) + d×k(G) ≤ n

2
+ 2.

If G = K2k, then γ×k(G) = k and d×k(G) = 2. Therefore γ×k(G) +
d×k(G) = n/2 + 2, and so the upper bound n/2 + 2 in Corollary 2.7 is
sharp. As a further application of the inequality (3), Harary and Haynes
in [5] proved the next theorem.

Theorem 2.8. [5] For every graph G of order n in which min{δ(G), δ(G)} ≥
k − 1,

d×k(G) + d×k(G) ≤ n+ 1

k
.
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The upper bound in Theorem 2.8 is sharp. Since for k ≥ 2, we have

d×k(Kk,k) + d×k(Kk,k) = 1 + 1 = b2k + 1

k
c.

Finally, we compare the k-tuple domatic number of a graph with its
k-tuple total domatic number.

Theorem 2.9. Let G be a graph with δ(G) ≥ k ≥ 1. Then

d×k,t(G) ≤ d×k(G) ≤ 2d×k,t(G),

and this bounds are sharp.

Proof. Since every k-tuple total dominating set of G is a k-tuple domi-
nating set and the union of at least two disjoint k-tuple dominating sets
is a k-tuple total dominating set, then d×k,t(G) ≤ d×k(G) ≤ 2d×k,t(G).

The lower bound is sharp for the complete bipartite graph Kmk,mk,
where k ≥ 2 and m ≥ 1. Because d×k,t(G) = d×k(G) = m. Also for the
cycle C4, we have d(C4) = dt(C4) = 2.

The upper bound is sharp for the graphs G which is obtained let H1,
H2, H3 and H4 be four disjoint copies of the complete graph Kk, where
k ≥ 1. Let G be the union of the four graphs H1, H2, H3 and H4 such
that for each 1 ≤ i ≤ 3 every vertex of Hi is adjacent to all vertices
of Hi+1. Obviously V (H2) ∪ V (H3) is the unique γ×k,t(G)-set, and so
d×k,t(G) = 1. This follows that d×k(G) ≤ 2d×k,t(G) = 2. Since the sets
V (H2) ∪ V (H3) and V (H1) ∪ V (H4) are two disjoint γ×k(G)-sets, then
d×k(G) = 2 = 2d×k,t(G). �

Corollary 2.10. [15] Let G be a graph with no isolated vertices. Then

dt(G) ≤ d(G) ≤ 2dt(G).

Theorem 2.11. Let k ≥ 1 be integer. If one of the numbers d×k(G)
and d×k,t(G) for a graph G is infinite, then

d×k(G) = d×k,t(G).

Proof. Let d×k(G) = α, where α is an infinite cardinal number. Then
there exists a k-tuple domatic partition < having α classes. The family
< can be partitioned into two subfamilies <1 and <2 which both have
the cardinality of α. There exists a bijection f : <1 → <2. Let <0 =
{D∪f(D) | D ∈ <1}. This is evidently a k-tuple total domatic partition
of G having α classes and thus d×k,t(G) ≥ α = d×k(G). Since d×k,t(G) ≤
d×k(G), we have d×k,t(G) = d×k(G) = α. If d×k,t(G) is infinite, then so
is d×k(G) and also d×k,t(G) = d×k(G) will be, too. �

Corollary 2.12. [16] If one of the numbers the d(G) and dt(G) for a
graph G is infinite, then

d(G) = dt(G)willbe, too.
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