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1. Introduction

Let B (H) denote the C∗-algebra of all bounded linear operators on
a complex Hilbert space (H, ⟨., .⟩) with the identity operator 1H in
B (H). An operator T ∈ B(H) is said to be positive if ⟨Tx, x⟩ ≥ 0
for each x ∈ H. We write T > 0 if T is positive and invertible. For
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T ∈ B (H), T ∗ denotes the adjoint of T. We write |T | = (T ∗T )1/2

and |T ∗| = (TT ∗)1/2. Every T ∈ B (H) can be decomposition as
T = ℜ (T )+ iℑ (T ), where ℜ (T ) = 1

2 (T + T ∗) and ℑ (T ) = 1
2i (T − T ∗).

This decomposition is called the Cartesian decomposition of T. The nu-
merical radius of T ∈ B (H) , denoted by w (T ) , is defined as w (T ) =
sup {|⟨Tu, u⟩| : u ∈ H and ∥u∥ = 1} . Recall that the operator norm of
T ∈ B (H) is defined by ∥T∥ = sup {∥Tu∥ : u ∈ H and ∥u∥ = 1}. It is
easy to verify that w (.) defines a norm on B (H) . Furthermore, it is
equivalent to the operator norm on B (H), satisfies

1

2
∥T∥ ≤ w (T ) ≤ ∥T∥ . (1.1)

A recently released book [7] discusses several improvements of the in-
equalities in (1.1) and related conclusions. The reader can also view the
papers [9, 8, 11, 29] and references.

Next we turn our attention to a functional Hilbert space (FHS). A
functional Hilbert space H = H (Ω) is a Hilbert space of all complex-
valued functions on a non-empty set Ω, which has the property that point
evaluations are continuous, i.e., for every τ ∈ Ω the map Eτ : H → C
defined by Eτ (h) = h (τ) , is continuous. Riesz representation theorem
ensures that for each τ ∈ Ω there exists a unique kτ ∈ H such that
h(τ) = ⟨h, kτ ⟩ for all h ∈ H. The collection of kτ for all τ ∈ Ω is
called the reproducing kernel of H and the collection of k̂τ := kτ

∥kτ∥H
for

all τ ∈ Ω is called the normalized reproducing kernel of H. For any
T ∈ B (H) , the Berezin symbol of T is a function T̃ on Ω defined as
T̃ (τ) :=

〈
T k̂τ , k̂τ

〉
, for each τ ∈ Ω, which was introduced by Berezin

[2]. The Berezin set (or range) of T is denoted by Ber(T ) and is defined
as Ber(T ) :=

{
T̃ (τ) : τ ∈ Ω

}
. The Berezin number (or radius) of T,

denoted by ber(T ) and the Berezin norm of T, denoted by ∥T∥Ber , are
respectively defined as

ber(T ) := sup
τ∈Ω

∣∣∣T̃ (τ)∣∣∣ and ∥T∥Ber := sup
τ∈Ω

∥∥∥T k̂τ∥∥∥
(see, [25, 26]). For T, S ∈ B(H) it is clear from the definition of the
Berezin number and the Berezin norm that the following properties hold:

(B1) ber(αT ) = |α| ber(T ) for all α ∈ C,
(B2) ber(T + S) ≤ ber(T ) + ber(S),
(B3) ber(T ) ≤ ∥T∥ber ,
(B4) ∥αT∥ber = |α| ∥T∥ber for all α ∈ C,
(B5) ∥T + S∥ber ≤ ∥T∥ber + ∥S∥ber ,
(B6) ∥T∥ber = ∥T ∗∥ber and ber(T ) = ber(T ∗).
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In [10], it is proved that ∥T∥Ber = ber(T ), if T ∈ B(H) is positive. It
is clear from the definition that Ber(T ) ⊆ W (T ) and so

ber(T ) ≤ w (T ) ≤ ∥T∥ . (1.2)
The Berezin number inequalities have been studied by many mathemati-
cians over the years, for the latest and recent results we refer the readers
to see [3, 5, 6, 12, 15, 16, 18, 19, 20, 21, 30, 31, 32, 34].

In 2021, the following inequalities has been shown Huban et al. ([22])
1

4

∥∥∥|T |2 + |T ∗|2
∥∥∥
ber

≤ ber (T ) ≤ 1

2

∥∥∥|T |2 + |T ∗|2
∥∥∥
ber

(1.3)

and
berr (S∗T ) ≤ 1

2
∥|T |r + |S|r∥ber . (1.4)

Also, the same authors (see, [23, 24]) have proved

ber (T ) ≤ 1

2
∥|T |+ |T ∗|∥ber ≤

1

2

(
∥T∥ber + ∥T∥1/2ber

)
(1.5)

and
ber2r (T ) ≤ 1

2

∥∥∥|T |2r + |T ∗|2r
∥∥∥
ber

, where r ≥ 1. (1.6)

In this article, we obtain new inequalities for Berezin radius. We have
some improvements and interpolations of Berezin radius inequalities via
operator convex function. These results offer several general forms and
refinements of some known inequalities in the literature. The bounds
obtained here improve on the earlier ones studied in [17, 22].

2. Auxiliary Theorems

To reach our goal in this present article we begin with the follow-
ing sequence of lemmas. The first lemma is aritmetic-geometric mean
inequality for usual norm.

Lemma 2.1 ([8]). Let T, S ∈ B (H) be positive, then

∥TS∥ ≤ 1

4
∥T + S∥2 . (2.1)

Lemma 2.2 ([27]). (i) Let T ∈ B (H). If f, g : [0,∞] → [0,∞] are
continuous functions satisfying f (t) g (t) = t for all t ≥ 0, then

|⟨Tx, y⟩| ≤ ∥f (|T |)x∥ ∥g (|T ∗|) y∥ , ∀x, y ∈ H. (2.2)
(ii) Let x ∈ H with ∥x∥ = 1. Then

|⟨Tx, x⟩|2 ≤ ⟨|T |x, x⟩ ⟨|T ∗|x, x⟩ . (2.3)

Lemma 2.3 ([28]). If T, S ∈ B (H) are positive operators, then we have
∥T + S∥ ≤ ∥T∥+ ∥S∥ iff ∥TS∥ = ∥T∥ ∥S∥.
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Now, we remember the definition of operator convex function. It says
that: A real-valued continuous function f on an interval J is denoted
operator convex if

f ((1− t)T + tS) ≤ (1− t) f (T ) + tf (S)

in the operator order for all t ∈ [0, 1] and for every self-adjoint operator
T and S on a Hilbert space H whose spectra are contained in J . If either
1 ≤ r ≤ 2 or −1 ≤ r ≤ 0, the function f (t) = tr is operator convex.
Lemma 2.4 ([14]). Let T ∈ B (H) be a self-adjoint operator and let
x ∈ H be an unit vector. If f is a convex function on an interval
containing the spectrum of T , then

f (⟨Tx, x⟩) ≤ ⟨f (T )x, x⟩ . (2.4)
If f is a concave, then inequality (2.4) holds in the reverse direction.

Lemma 2.5 ([13]). Let f : J → R be an operator convex function on
an interval J . Let T and S be two self-adjoint operators with spectra in
J . Then

f

(
T + S

2

)
≤
∫ 1

0
f ((1− t)T + tS) dt ≤ 1

2
(f (T ) + f (S)) . (2.5)

If f is non-negative, then the operator inequality (2.5) can be reduced to
the following norm inequality:∥∥∥∥f (T + S

2

)∥∥∥∥ ≤
∥∥∥∥∫ 1

0
f ((1− t)T + tS) dt

∥∥∥∥ ≤ 1

2
∥f (T ) + f (S)∥ .

(2.6)
Lemma 2.6. If f : [0, d] → [0,∞] , (d > 0) is an increasing convex
function with f (0) = 0 and α ∈ [0, 1]. Then we have

f (αx) = αf (x) . (2.7)
Lemma 2.7 ([1]). Let f be a nonnegative increasing convex function on
[0,∞) and let T, S ∈ B (H) be a positive operators. Then

∥f ((1− v)T + vS)∥ ≤ ∥(1− v) f (T ) + vf (S)∥ (2.8)
for every 0 ≤ v ≤ 1.

Lemma 2.8 ([22]). Let H = H (Ω) be a FHS and let T, S ∈ B (H) be a
self adjoint. Then

∥T + S∥ ≤
√

ber2 (T + iS) + ∥T∥ ∥S∥+ ber (ST ). (2.9)

Lemma 2.9 ([4]). Let T ∈ B (H) be a positive operator. Then for all
λ ∈ Ω (

T̃ (λ)
)α

≤ 1

µ
T̃α (λ) , α ≥ 1, (2.10)
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where µ = 1 + 2 (α− 1)

(
1− T̃ 1/2(λ)

(T̃ (λ))
1/2

)
.

Lemma 2.10 ([33]). If T ∈ B (H) be a hyponormal, i.e. T ∗T−TT ∗ ≥ 0,
v = min {λ, 1− λ}, where 0 ≤ λ ≤ 1, then

ber (T ) ≤ 1

ζ

∥|T |+ |T ∗|∥ber
2

, (2.11)

where ζ ≥ 1, ζ = infξ∈Ω

{
K

(
|̃T |(ξ)
|̃T ∗|(ξ)

, 2

)v}
.

3. Main Results

In this section, we mainly establish several refinement of Berezin ra-
dius inequalities (1.3). Furthermore, the main goal of this section is to
present new interpolation inequalities of some known inequalities for the
numerical radius by using the properties of operator convex functions.

3.1. Some refinement of Berezin radius inequalities. We now
prove the following norm inequalities.

Theorem 3.1. If H = H (Ω) is a FHS and T, S ∈ B (H), then the
following inequalities hold:

∥T + S∥2ber ≤ ∥T∥2ber + ∥S∥2ber +
1

2
∥T ∗T + S∗S∥ber + ber (T ∗S)

and

∥T + S∥2ber ≤ ∥T∥2ber + ∥S∥2ber +
1

2
∥TT ∗ + SS∗∥ber + ber (TS∗) .

Proof. Let τ, υ be an arbitrary. Then we have∣∣∣〈(T + S) k̂τ , k̂υ

〉∣∣∣2
≤
(∣∣∣〈T k̂τ , k̂υ〉∣∣∣+ ∣∣∣〈Sk̂τ , k̂υ〉∣∣∣)2

=
∣∣∣〈T k̂τ , k̂υ〉∣∣∣2 + ∣∣∣〈Sk̂τ , k̂υ〉∣∣∣2 + 2

∣∣∣〈T k̂τ , k̂υ〉〈Sk̂τ , k̂υ〉∣∣∣
=
∣∣∣〈T k̂τ , k̂υ〉∣∣∣2 + ∣∣∣〈Sk̂τ , k̂υ〉∣∣∣2 + 2

∣∣∣〈T k̂τ , k̂υ〉〈k̂τ , Sk̂υ〉∣∣∣
≤
∣∣∣〈T k̂τ , k̂υ〉∣∣∣2 + ∣∣∣〈Sk̂τ , k̂υ〉∣∣∣2 + ∥∥∥T k̂τ∥∥∥∥∥∥Sk̂τ∥∥∥+ ∣∣∣〈T k̂τ , Sk̂υ〉∣∣∣

≤
∣∣∣〈T k̂τ , k̂υ〉∣∣∣2 + ∣∣∣〈Sk̂τ , k̂υ〉∣∣∣2 + 1

2

(∥∥∥T k̂τ∥∥∥+ ∥∥∥Sk̂τ∥∥∥)+ ∣∣∣〈T k̂τ , Sk̂υ〉∣∣∣
≤
∣∣∣〈T k̂τ , k̂υ〉∣∣∣2 + ∣∣∣〈Sk̂τ , k̂υ〉∣∣∣2 + 1

2

〈
(T ∗T + S∗S) k̂τ , k̂τ

〉
+
∣∣∣〈T ∗Sk̂τ , k̂τ

〉∣∣∣ ,



Running Title 187

where the fourth inequality follows from Bozano’s inequality ([11]), i.e.,
if x, y, e ∈ H and ∥e∥ = 1, then we have

|⟨x, e⟩ ⟨e, y⟩| ≤ 1

2
(∥x∥ ∥y∥+ |⟨x, y⟩|) . (3.1)

Now, taking the supremum over all τ, υ ∈ Ω with τ = υ, we get

sup
τ∈Ω

∣∣∣〈(T + S) k̂τ , k̂τ

〉∣∣∣2 ≤ sup
τ∈Ω

∣∣∣〈T k̂τ , k̂τ〉∣∣∣2 + sup
τ∈Ω

∣∣∣〈Sk̂τ , k̂τ〉∣∣∣2
+ sup

τ∈Ω

1

2

〈
(T ∗T + S∗S) k̂τ , k̂τ

〉
+
∣∣∣〈T ∗Sk̂τ , k̂τ

〉∣∣∣
which to equivalent

∥T + S∥2ber ≤ ∥T∥2ber + ∥S∥2ber +
1

2
∥T ∗T + S∗S∥ber + ber (T ∗S) . (3.2)

By replacing T by T ∗ and S by S∗ in (3.2), we get

∥T + S∥2ber ≤ ∥T∥2ber + ∥S∥2ber +
1

2
∥TT ∗ + SS∗∥ber + ber (TS∗) .

This completes the proof. □

In [22, Theorem 3.1], Huban et al. obtained another refinement of the
second inequality in (1.2), the authors proved that

1

4
∥T ∗T + TT ∗∥ber ≤ ber2 (T ) ≤ 1

2
∥T ∗T + TT ∗∥ber . (3.3)

Based on the above norm inequalities we obtain the following refine-
ment of Huban et al.’s inequality (3.3).

Theorem 3.2. If H = H (Ω) is a FHS and T ∈ B (H), then we have

1

4
∥T ∗T + TT ∗∥ber

≤ 1

8

[(
∥T + T ∗∥2ber + ∥T − T ∗∥2ber

)
+

1

2

(
∥T + T ∗∥2ber − ∥T − T ∗∥2ber

)2] 1
2

≤ ber2 (T ) .

Proof. Let T = S + iR be the Cartesian decomposition of T. Then S
and R are self-adjoint, and T ∗T + TT ∗ = 2

(
S2 +R2

)
. It is clear that

1

4
∥T ∗T + TT ∗∥ber =

1

2

∥∥S2 +R2
∥∥
ber

. (3.4)
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From the identity (3.4) and Theorem 3.1, we get
1

4
∥T ∗T + TT ∗∥ber

=
1

2

∥∥S2 +R2
∥∥
ber

≤ 1

2

[
∥S∥4ber + ∥R∥4ber +

1

2

∥∥S4 +R4
∥∥
ber

+ ber
(
S2R2

)]1/2
≤ 1

2

[
∥S∥4ber + ∥R∥4ber +

1

2

(
∥S∥4ber + ∥R∥4ber

)
+ ∥S∥2ber ∥R∥2ber

]1/2
.

The rest of the proof is easily illustrated with a basic calculation. □

The following theorem shows that inequality (3.5) is a refinement of
inequality given in Theorem 3.2.

Theorem 3.3. If H = H (Ω) is a FHS and T ∈ B (H), then we have
1

4
∥T ∗T + TT ∗∥ber

≤ 1

8

[(
∥T + T ∗∥2ber + ∥T − T ∗∥2ber

)
+

3

4

(
∥T + T ∗∥2ber + ∥T − T ∗∥2ber

)2] 1
2

≤ ber2 (T ) . (3.5)

Proof. Now let us prove the first inequality in (3.5). In fact, according
to the identity (3.4), the AM-GM inequality for usual norm (see, [8]),
the inequality ber2

(
S2 + iR2

)
≤
∥∥S4 +R4

∥∥
ber

and the inequality (2.1),
we have that
1

4
∥T ∗T + TT ∗∥ber

=
1

2

∥∥S2 +R2
∥∥
ber

≤ 1

2

[
ber2

(
S2 + iR2

)
+
∥∥S2

∥∥
ber

∥∥R2
∥∥
ber

+ ber
(
S2R2

)] 1
2

≤ 1

2

[∥∥S4 +R4
∥∥
ber

+
∥∥S2

∥∥
ber

∥∥R2
∥∥
ber

+
∥∥S2R2

∥∥
ber

] 1
2

≤ 1

2

[
∥S∥4ber + ∥R∥4ber + ∥S∥2ber ∥R∥2ber +

1

4

∥∥S2 +R2
∥∥2
ber

] 1
2

≤ 1

2

[
∥S∥4ber + ∥R∥4ber +

1

2

(
∥S∥4ber + ∥R∥4ber

)
+

1

4

(
∥S∥2ber + ∥R∥2ber

)2] 1
2

.

The desired first inequality in (3.5) is obtained. We will now prove the
second inequality in (3.5). We have ∥S∥ber ≤ ber (T ) and ∥R∥ber ≤
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ber (T ) . So
1

4
∥T ∗T + TT ∗∥ber

≤ 1

2

[
∥S∥4ber + ∥R∥4ber +

1

2

(
∥S∥4ber + ∥R∥4ber

)
+

1

4

(
∥S∥2ber + ∥R∥2ber

)2] 1
2

≤ 1

2

[
4ber4 (T )

] 1
2

≤ ber2 (T )

which gives the desired the second inequality in (3.5). This completes
the proof. □

Theorem 3.4. Let H = H (Ω) be a FHS and T, S ∈ B (H). Then

∥T + S∥ber ≤
√

∥T + iS∥2ber + ∥T∥Ber ∥S∥Ber + ber (S∗T ) (3.6)
≤ ∥T∥ber + ∥S∥ber

Proof. Let τ, υ be an arbitrary. Then we have∣∣∣〈(T + S) k̂τ , k̂υ

〉∣∣∣2 ≤ (∣∣∣〈T k̂τ , k̂υ〉∣∣∣+ ∣∣∣〈Sk̂τ , k̂υ〉∣∣∣)2
=
∣∣∣〈T k̂τ , k̂υ〉∣∣∣2 + ∣∣∣〈Sk̂τ , k̂υ〉∣∣∣2 + 2

∣∣∣〈T k̂τ , k̂υ〉〈Sk̂τ , k̂υ〉∣∣∣
=
∣∣∣〈T k̂τ , k̂υ〉∣∣∣2 + ∣∣∣〈Sk̂τ , k̂υ〉∣∣∣2 + 2

∣∣∣〈T k̂τ , k̂υ〉〈k̂τ , Sk̂υ〉∣∣∣
≤
∣∣∣〈T k̂τ , k̂υ〉∣∣∣2 + ∣∣∣〈Sk̂τ , k̂υ〉∣∣∣2 + ∥∥∥T k̂τ∥∥∥∥∥∥Sk̂τ∥∥∥+ ∣∣∣〈T k̂τ , Sk̂υ〉∣∣∣

=
∣∣∣〈T k̂τ , k̂υ〉+ i

〈
Sk̂τ , k̂υ

〉∣∣∣2 + ∥∥∥T k̂τ∥∥∥∥∥∥Sk̂τ∥∥∥+ ∣∣∣〈S∗T k̂τ , k̂υ

〉∣∣∣
=
∣∣∣〈(T + iS) k̂τ , k̂υ

〉∣∣∣2 + ∥∥∥T k̂τ∥∥∥∥∥∥Sk̂τ∥∥∥+ ∣∣∣〈S∗T k̂τ , k̂υ

〉∣∣∣ ,
where the second inequality follows from the inequality (|a|+ |b|)2 =

|a|2 + |b|2 + 2 |ab| and the fifth inequality follows from the inequality
|a+ ib|2 = |a|2 + |b|2 . Hence we have∣∣∣〈(T + S) k̂τ , k̂υ

〉∣∣∣2
≤
∣∣∣〈(T + iS) k̂τ , k̂υ

〉∣∣∣2 + ∥∥∥T k̂τ∥∥∥∥∥∥Sk̂τ∥∥∥+ ∣∣∣〈S∗T k̂τ , k̂υ

〉∣∣∣ .
Now, taking the supremum over τ, υ ∈ Ω with τ = υ in the above
inequality, we have

∥T + S∥2ber ≤ ∥T + iS∥2ber + ∥T∥Ber ∥S∥Ber + ber (S∗T ) .
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Thus

∥T + S∥ber ≤
√
∥T + iS∥2ber + ∥T∥Ber ∥S∥Ber + ber (S∗T ).

We will now prove the second inequality of (3.6). We have

(∥T∥ber + ∥S∥ber)
2 ≤ ∥T∥2ber + ∥S∥2ber + 2 ∥T∥ber ∥S∥ber
= ∥T∥2ber + ∥S∥2ber + ∥T∥ber ∥S∥ber + ∥T∥ber ∥S∥ber
≥ ∥T∥2ber + ∥S∥2ber + ∥T∥Ber ∥S∥Ber + ∥T∥ber ∥S∥ber
≥ ∥T + iS∥2ber + ∥T∥Ber ∥S∥Ber + ber (S∗T ) ,

and, so√
∥T + iS∥2ber + ∥T∥Ber ∥S∥Ber + ber (S∗T ) ≤ ∥T∥ber + ∥S∥ber ,

which gives the desired the second inequality in (3.6). □

Theorem 3.5. Let H = H (Ω) be a FHS. If T ∈ B (H) and f, g are non-
negative continuous function on [0,∞) satisfying f (t) g (t) = t (t ≥ 0),
then we get

ber2r (T ) ≤ 1

4

∥∥f4r (|T |) + g4r (|T ∗|)
∥∥
ber

+
1

4

∥∥f2r (|T |) g2r (|T ∗|) + g2r (|T ∗|) f2r (|T |)
∥∥
ber

≤ 1

4

∥∥f4r (|T |) + g4r (|T ∗|)
∥∥
ber

+
1

2
ber

(
f2r (|T |) g2r (|T ∗|)

)
(3.7)

for all r ≥ 1.

Proof. Let τ be an arbitrary. Then, from the inequalities (2.2), Hölder-
McCarthy inequality and AM-GM inequality, we get∣∣∣〈T k̂τ , k̂τ〉∣∣∣2r
≤
〈
f2 (|T |) k̂τ , k̂τ

〉r 〈
g2 (|T ∗|) k̂τ , k̂τ

〉r
≤
〈
f2r (|T |) k̂τ , k̂τ

〉〈
g2r (|T ∗|) k̂τ , k̂τ

〉
≤


〈
f2r (|T |) k̂τ , k̂τ

〉
+
〈
g2r (|T ∗|) k̂τ , k̂τ

〉
2

2

≤ 1

4

〈(
f2r (|T |) + g2r (|T ∗|)

)
k̂τ , k̂τ

〉2
≤ 1

4

〈(
f2r (|T |) + g2r (|T ∗|)

)2
k̂τ , k̂τ

〉
=

1

4

〈(
f4r (|T |) + g4r (|T ∗|) + f2r (|T |) g2r (|T ∗|) + g2r (|T ∗|) f2r (|T |)

)
k̂τ , k̂τ

〉
,
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and so∣∣∣〈T k̂τ , k̂τ〉∣∣∣2r
≤ 1

4

〈(
f4r (|T |) + g4r (|T ∗|) + f2r (|T |) g2r (|T ∗|) + g2r (|T ∗|) f2r (|T |)

)
k̂τ , k̂τ

〉
.

Taking the supremum over τ ∈ Ω in the above inequality, we have
ber2r (T )

≤ 1

4

∥∥f4r (|T |) + g4r (|T ∗|) + f2r (|T |) g2r (|T ∗|) + g2r (|T ∗|) f2r (|T |)
∥∥
ber

≤ 1

4

(∥∥f4r (|T |) + g4r (|T ∗|)
∥∥
ber

+
∥∥f2r (|T |) g2r (|T ∗|) + g2r (|T ∗|) f2r (|T |)

∥∥
ber

)
=

1

4

∥∥f4r (|T |) + g4r (|T ∗|)
∥∥
ber

+
1

4

∥∥f2r (|T |) g2r (|T ∗|) + g2r (|T ∗|) f2r (|T |)
∥∥
ber

.

From the (B6) and (B2) feature, we also observe that

ber
(
f2r (|T |) g2r (|T ∗|)

)
=

1

2
ber

(
f2r (|T |) g2r (|T ∗|)

)
+

1

2
ber

(
g2r (|T ∗|) f2r (|T |)

)
≥ 1

2
ber

(
f2r (|T |) g2r (|T ∗|) + g2r (|T ∗|) f2r (|T |)

)
≥ 1

2

∥∥f2r (|T |) g2r (|T ∗|) + g2r (|T ∗|) f2r (|T |)
∥∥
ber

as required to prove. The theorem is proven. □
Corollary 3.6. If we put r = 1 in inequality (3.7), then we have

ber2 (T ) ≤ 1

4

∥∥f4 (|T |) + g4 (|T ∗|)
∥∥
ber

+
1

4

∥∥f2 (|T |) g2 (|T ∗|) + g2 (|T ∗|) f2 (|T |)
∥∥
ber

≤ 1

4

∥∥f4 (|T |) + g4 (|T ∗|)
∥∥
ber

+
1

2
ber

(
f2 (|T |) g2 (|T ∗|)

)
,

which is the result of [17].

Taking f (t) = t1−v and g (t) = tv with 0 ≤ v ≤ 1 in inequality (3.7),
we also get the following inequality:

Corollary 3.7. If T ∈ B (H), then we have

ber2r (T ) ≤ 1

4

∥∥∥|T |4r(1−v) + |T ∗|4rv
∥∥∥
ber

+
1

4

∥∥∥|T |2r(1−v) |T ∗|2rv + |T ∗|2rv |T |2r(1−v)
∥∥∥
ber

≤ 1

4

∥∥∥|T |4r(1−v) + |T ∗|4rv
∥∥∥
ber

+
1

2
ber

(
|T |2r(1−v) |T ∗|2rv

)
.

Corollary 3.8. If we put r = 1 in Corollary 3.7, then we have

ber2 (T ) ≤ 1

4

∥∥∥|T |4(1−v) + |T ∗|4v
∥∥∥
ber

+
1

4

∥∥∥|T |2(1−v) |T ∗|2v + |T ∗|2v |T |2(1−v)
∥∥∥
ber

≤ 1

4

∥∥∥|T |4(1−v) + |T ∗|4v
∥∥∥
ber

+
1

2
ber

(
|T |2(1−v) |T ∗|2v

)
.
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In particular

ber2 (T ) ≤ 1

4

∥∥∥|T |2 + |T ∗|2
∥∥∥
ber

+
1

4
∥|T | |T ∗|+ |T ∗| |T |∥ber

≤ 1

4

∥∥∥|T |2 + |T ∗|2
∥∥∥
ber

+
1

2
ber (|T | |T ∗|) . (3.8)

Remark 3.9. Gürdal and Başaran (see, [17, Corollary 2]) have proven the
first inequality of Corollary 3.7 and inequality (3.8), and in [22, Corolary
3.3], Huban et al. have proved the second inequality of inequality (3.8).
From Corollary 3.8, we have

1

2
∥|T | |T ∗|+ |T | |T ∗|∥ber ≤ ber (|T | |T ∗|) . (3.9)

Theorem 3.10. Let H = H (Ω) be a FHS. If T, S ∈ B (H) and r ≥ 1,
then

ber2r (S∗T ) ≤ 1

4

∥∥∥|T |4r + |S|4r
∥∥∥
ber

+
1

4

∥∥∥|T |2r |S|2r + |S|2r |T |2r
∥∥∥
ber

≤ 1

4

∥∥∥|T |4r + |S|4r
∥∥∥
ber

+
1

2
ber

(
|T |2r |S|2r

)
(3.10)

≤ 1

2

∥∥∥|T |4r + |S|4r
∥∥∥
ber

Proof. Following the same procedure as in Theorem 3.5 and Cauchy-
Schwarz inequality∣∣∣〈S∗T k̂τ , k̂τ

〉∣∣∣2r ≤ 〈|T |2r k̂τ , k̂τ〉〈|S|2r k̂τ , k̂τ〉 ,

we obtain the first inequality and second inequality in (3.10). Then,
from the inequality in [9, Corollary 3.16], we get

1

4

∥∥∥|T |4r + |S|4r
∥∥∥
ber

+
1

2
ber

(
|T |2r |S|2r

)
≤ 1

4

∥∥∥|T |4r + |S|4r
∥∥∥
ber

+
1

2

∥∥∥|T |2r |S|2r∥∥∥
ber

≤ 1

4

∥∥∥|T |4r + |S|4r
∥∥∥
ber

+
1

2

∥∥∥∥∥
(
|T |4r + |S|4r

2

)∥∥∥∥∥
ber

≤ 1

4

∥∥∥|T |4r + |S|4r
∥∥∥
ber

+
1

4

∥∥∥|T |4r + |S|4r
∥∥∥
ber

=
1

2

∥∥∥|T |4r + |S|4r
∥∥∥
ber

,

which gives the desired the last inequality in (3.10). This completes the
proof. □
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Corollary 3.11. Let T ∈ B (H) be an operator and r ≥ 1. If we take
v = 1

2 in Remark 3.9, then we have

ber2r (T ) ≤ 1

4

∥∥∥|T |2r + |T ∗|2r
∥∥∥
ber

+
1

4
∥|T |r |T ∗|r + |T |r |T ∗|r∥ber

≤ 1

4

∥∥∥|T |2r + |T ∗|2r
∥∥∥
ber

+
1

2
ber (|T |r |T ∗|r) (by (3.9))

≤ 1

4

∥∥∥|T |2r + |T ∗|2r
∥∥∥
ber

.

The above inequality is an improvement of inequality (1.3).

In the future theorem, we have the improvement of the second in-
equality in Corollary 3.11.

Theorem 3.12. Let H = H (Ω) be a FHS, T ∈ B (H) and r ≥ 1. Then
we have

ber2r (T ) ≤ 1

4ςγ

∥∥∥|T |2r + |T ∗|2r
∥∥∥
ber

+
1

2ςγ
ber (|T |r |T ∗|r) ,

where

ς = inf

1 + 2 (r − 1)

1− |̃T |
1
2 (τ)(

|̃T | (τ)
) 1

2


 ,

γ = inf

1 + 2 (r − 1)

1− |̃T ∗|
1
2 (τ)(

|̃T ∗| (τ)
) 1

2


 .



194 M. Gürdal, H. Başaran and O.O. Satmaz

Proof. Let k̂τ be a normalized reproducing kernel. It follows from (2.3),
(2.10) and (3.1) that∣∣∣〈T k̂τ , k̂τ〉∣∣∣2r

≤
〈
|T | k̂τ , k̂τ

〉r 〈
|T ∗| k̂τ , k̂τ

〉r
≤ 1

ςγ

〈
|T ∗|r k̂τ , k̂τ

〉〈
k̂τ , |T r| k̂τ

〉
≤ 1

2ςγ

(∥∥∥|T r| k̂τ
∥∥∥∥∥∥|T ∗|r k̂τ

∥∥∥+ ∣∣∣〈|T r| k̂τ , |T ∗|r k̂τ
〉∣∣∣)

≤ 1

4ςγ

(∥∥∥|T r| k̂τ
∥∥∥2 + ∥∥∥|T ∗|r k̂τ

∥∥∥2)+
1

2ςγ

∣∣∣〈|T r| |T ∗|r k̂τ , k̂τ
〉∣∣∣

=
1

4ςγ

(〈
|T |2r k̂τ , k̂τ

〉
+
〈
|T ∗|2r k̂τ , k̂τ

〉)
+

1

2ςγ

∣∣∣〈|T r| |T ∗|r k̂τ , k̂τ
〉∣∣∣

=
1

4ςγ

〈(
|T |2r + |T ∗|2r

)
k̂τ , k̂τ

〉
+

1

2ςγ

∣∣∣〈|T r| |T ∗|r k̂τ , k̂τ
〉∣∣∣ .

Taking the supremum over τ ∈ Ω in the above inequality, we have

sup
τ∈Ω

∣∣∣〈T k̂τ , k̂τ〉∣∣∣2r ≤ sup
τ∈Ω

1

4ςγ

〈(
|T |2r + |T ∗|2r

)
k̂τ , k̂τ

〉
+ sup

τ∈Ω

1

2ςγ

∣∣∣〈|T r| |T ∗|r k̂τ , k̂τ
〉∣∣∣

which is equivalent to

ber2r (T ) ≤ 1

4ςγ

∥∥∥|T |2r + |T ∗|2r
∥∥∥
ber

+
1

2ςγ
ber (|T |r |T ∗|r) ,

as required. This completes the proof. □

3.2. Operator convex function in Berezin radius inequalities.
The main idea of this section is to present new interpolation inequalities
of same known for the Berezin radius by using the properties operator
convex functions.

Theorem 3.13. Let H = H (Ω) be a FHS, T ∈ B (H) be hyponormal and
f be nonnegative increasing operator convex function on [0,∞). Then
for ζ ≥ 1 we have

f (ber (T )) ≤ 1

2ζ
∥f (|T |) + f (|T ∗|)∥ber . (3.11)
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Proof. Let R ∈ B (H) and R be a self-adjoint operator, f be non-negative
increasing operator convex function on [0,∞). Then

f (∥R∥ber) = f

(
sup
τ∈Ω

〈
Rk̂τ , k̂τ

〉)
= sup

τ∈Ω
f
(〈

Rk̂τ , k̂τ

〉)
≤ sup

τ∈Ω

〈
f (R) k̂τ , k̂τ

〉
(by (2.4))

= ∥f (R)∥ber .

It follows from Lemma 2.10 that

ber (T ) ≤
∥∥∥∥ 1

2ζ
(|T |+ |T ∗|)

∥∥∥∥
ber

, (3.12)

and, so

f (ber (T )) ≤ f

(∥∥∥∥ 1

2ζ
(|T |+ |T ∗|)

∥∥∥∥
ber

)
.

Since 1
2ζ (|T |+ |T ∗|) is a self-adjoint operator, then we have

f

(∥∥∥∥ 1

2ζ
(|T |+ |T ∗|)

∥∥∥∥
ber

)
≤
∥∥∥∥f ( 1

2ζ
(|T |+ |T ∗|)

)∥∥∥∥
ber

≤
∥∥∥∥1ζ f

(
1

2
(|T |+ |T ∗|)

)∥∥∥∥
ber

(by (2.7))

≤ 1

ζ

∥∥∥∥12 (f (|T |) + f (|T ∗|))
∥∥∥∥
ber

(by (2.8))

≤ 1

2ζ
∥(f (|T |) + f (|T ∗|))∥ber .

This completes the proof. □

Corollary 3.14. Let T ∈ B (H) be hyponormal. Then

f (ber (T )) ≤
∥∥∥∥f ( 1

2ζ
(|T |+ |T ∗|)

)∥∥∥∥
ber

≤ 1

2ζ
∥(f (|T |) + f (|T ∗|))∥ber .

(3.13)

Taking f (t) = tr with r ≥ 1 in inequality (3.13), we also get the
following inequality.

Corollary 3.15. Let T ∈ B (H) be hyponormal. Then
(i) berr (T ) ≤ 1

2ζ ∥|T |
r + |T ∗|r∥ber.

(ii) berr (T ) ≤
∥∥∥( 1

2ζ (|T |+ |T ∗|)
)r∥∥∥

ber
.
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Remark 3.16. If we pay attention to the case for r = 1, we have

ber (T ) ≤
∥∥∥∥ 1

2ζ
(|T |+ |T ∗|)

∥∥∥∥
ber

≤ 1

2ζ
∥(|T |+ |T ∗|)∥ber .

Theorem 3.17. Let H = H (Ω) be a FHS, T ∈ B (H) be hyponormal
and f be non-negative increasing operator convex function on [0,∞).
Then

f (ber (T )) ≤
∥∥∥∥∫ 1

0
f

(
(1− t)

(
1

2ζ
(|T |+ |T ∗|)

)
+ tber (T ) I

)
dt

∥∥∥∥
ber

≤ 1

2ζ
∥(f (|T |) + f (|T ∗|))∥ber .

Proof. Since∥∥∥∥ 1

2ζ
(|T |+ |T ∗|) ber (T ) I

∥∥∥∥
ber

=

∥∥∥∥ 1

2ζ
(|T |+ |T ∗|)

∥∥∥∥
ber

∥ber (T ) I∥ber .

From Lemma 2.1, we have∥∥∥∥ 1

2ζ
(|T |+ |T ∗|) ber (T ) I

∥∥∥∥
ber

=

∥∥∥∥ 1

2ζ
(|T |+ |T ∗|)

∥∥∥∥
ber

+ ber (T ) . (3.14)

By using inequality (3.12) and equality (3.14) we can find

2ber (T ) ≤
∥∥∥∥ 1

2ζ
(|T |+ |T ∗|) + ber (T )

∥∥∥∥
ber

.

Then we get

f (ber (T )) ≤ f

(
1

2

∥∥∥∥ 1

2ζ
(|T |+ |T ∗|) + ber (T )

∥∥∥∥
ber

)
≤
∥∥∥∥f (1

2

(
1

2ζ
(|T |+ |T ∗|) + ber (T )

))∥∥∥∥
ber

(by (2.4))

≤
∥∥∥∥∫ 1

0
f

(
(1− t)

(
1

2ζ
(|T |+ |T ∗|)

)
+ tber (T ) I

)
dt

∥∥∥∥
ber

(by (2.6))

≤ 1

2

∥∥∥∥f ( 1

2ζ
(|T |+ |T ∗|)

)∥∥∥∥
ber

+
1

2
f (ber (T )) (by (2.6))

≤
∥∥∥∥f ( 1

2ζ
(|T |+ |T ∗|)

)∥∥∥∥
ber

(by (2.10))

≤ 1

2ζ
∥(f (|T |) + f (|T ∗|))∥ber (by (3.13)).

This completes the proof. □

The following corollary is an immediate consequence of Theorem 3.17.



Running Title 197

Corollary 3.18. Let T ∈ B (H) be hyponormal. Then

f (ber (T )) ≤
∥∥∥∥∫ 1

0
f

(
(1− t)

(
1

2ζ
(|T |+ |T ∗|)

)
+ tber (T ) I

)
dt

∥∥∥∥
ber

≤
∥∥∥∥f ( 1

2ζ
(|T |+ |T ∗|)

)∥∥∥∥
ber

.

Corollary 3.19. Let T ∈ B (H) be hyponormal. Then

(i) ber (T ) ≤
∥∥∥∥∫ 1

0

(
(1− t)

(
1
2ζ (|T |+ |T ∗|)

)
+ tber (T ) I

)2
dt

∥∥∥∥1/2
ber

≤
1
2ζ ∥(|T |+ |T ∗|)∥ber.

(ii) ber (T ) ≤
∥∥∥∥∫ 1

0

(
(1− t)

(
1
2ζ (|T |+ |T ∗|)

)
+ tber (T ) I

)2
dt

∥∥∥∥1/2
ber

≤∥∥∥ 1
2ζ (|T |+ |T ∗|)

∥∥∥
ber

.

Corollary 3.20. Let T ∈ B (H) be hyponormal. Then
(i) berr (T ) ≤

∥∥∥∫ 1
0

(
(1− t)

(
1
2ζ (|T |+ |T ∗|)

)
+ tber (T ) I

)r
dt
∥∥∥
ber

≤
1
2ζ ∥(|T |

r + |T ∗|r)∥ber.
(ii) berr (T ) ≤

∥∥∥∫ 1
0

(
(1− t)

(
1
2ζ (|T |+ |T ∗|)

)
+ tber (T ) I

)r
dt
∥∥∥
ber

≤∥∥∥( 1
2ζ (|T |+ |T ∗|)

)r∥∥∥
ber

.

Theorem 3.21. Let H = H (Ω) be a FHS, T ∈ B (H) and f be nonneg-
ative increasing operator convex function on [0,∞). Then

f (berr (T )) ≤
∥∥∥∥∫ 1

0
f

(
(1− t)

(
1

2

(
|T |2αr + |T ∗|2(1−α)r

))
+ tberr (T ) I

)
dt

∥∥∥∥
ber

≤
∥∥∥∥f (1

2

(
|T |2αr + |T ∗|2(1−α)r

))∥∥∥∥
ber

(3.15)

for all α ∈ (0, 1), r ≥ 1.

Proof. Indeed, by the proof of [23, Teorem 3.2] we get

berr (T ) ≤ 1

2

∥∥∥|T |2αr + |T ∗|2(1−α)r
∥∥∥
ber

, α ∈ (0, 1) , r ≥ 1.

Therefore, by using the some arguments in Theorem 3.17, (3.15) follows.
The theorem is proved. □

Next inequality follows from Lemma 2.7 and the inequality (3.15).



198 M. Gürdal, H. Başaran and O.O. Satmaz

Corollary 3.22. Let T ∈ B (H) be hyponormal. Then

f (berr (T )) ≤
∥∥∥∥∫ 1

0
f

(
(1− t)

(
1

2

(
|T |2αr + |T ∗|2(1−α)r

))
+ tberr (T ) I

)
dt

∥∥∥∥
ber

≤ 1

2

∥∥∥f (|T |2αr)+ f
(
|T ∗|2(1−α)r

)∥∥∥
ber

for all α ∈ (0, 1), r ≥ 1.

Considering f (t) = t2 in Theorem 3.21 and Corollary 3.22, we have
the following corollaries.

Corollary 3.23. If T ∈ B (H) , then we have

berr (T ) ≤

∥∥∥∥∥
∫ 1

0

(
(1− t)

(
1

2

(
|T |2αr + |T ∗|2(1−α)r

))
+ tberr (T ) I

)2

dt

∥∥∥∥∥
1/2

ber

≤
∥∥∥∥12 (|T |2αr + |T ∗|2(1−α)r

)∥∥∥∥
ber

and

berr (T ) ≤

∥∥∥∥∥
∫ 1

0

(
(1− t)

(
1

2

(
|T |2αr + |T ∗|2(1−α)r

))
+ tberr (T ) I

)2

dt

∥∥∥∥∥
1/2

ber

≤
(
1

2

∥∥∥(|T |4αr + |T ∗|4(1−α)r
)∥∥∥

ber

)1/2

for all α ∈ (0, 1), r ≥ 1.

Considering f (t) = t in Theorem 3.21, then we get the following
inequality.

Corollary 3.24. Let T ∈ B (H). Then we have

berr (T ) ≤
∥∥∥∥∫ 1

0

(
(1− t)

(
1

2

(
|T |2αr + |T ∗|2(1−α)r

))
+ tberr (T ) I

)
dt

∥∥∥∥
ber

≤
∥∥∥∥12 (|T |2αr + |T ∗|2(1−α)r

)∥∥∥∥
ber

for all α ∈ (0, 1), r ≥ 1.

Theorem 3.25. Let H = H (Ω) be a FHS. For any T, S ∈ B (H), α ∈
(0, 1) and r ≥ 1, we have the inequality

ber2r (S∗T ) ≤
∥∥∥α |T |

2r
α + (1− α) |S|

2r
(1−α)

∥∥∥
ber

. (3.16)
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Proof. Let k̂τ be a normalized reproducing kernel. From Cauchy-Schwarz
inequality, Hölder-McCarthy inequalities,Weighted AM-GM inequality
and convexity of f (t) = tr, we have∣∣∣〈S∗T k̂τ , k̂τ

〉∣∣∣ ≤ 〈T ∗T k̂τ , k̂τ

〉〈
S∗Sk̂τ , k̂τ

〉
=
〈[

(T ∗T )
1
α

]α
k̂τ , k̂τ

〉〈[
(S∗S)

1
(1−α)

](1−α)
k̂τ , k̂τ

〉
≤
〈
(T ∗T )

1
α k̂τ , k̂τ

〉α 〈
(S∗S)

1
(1−α) k̂τ , k̂τ

〉
≤ α

〈
(T ∗T )

1
α k̂τ , k̂τ

〉
+ (1− α)

〈
(S∗S)

1
(1−α) k̂τ , k̂τ

〉
≤
[
α
〈
(T ∗T )

1
α k̂τ , k̂τ

〉2r
+ (1− α)

〈
(S∗S)

1
(1−α) k̂τ , k̂τ

〉2r] 1
2r

≤
[
α
〈
(T ∗T )

2r
α k̂τ , k̂τ

〉
+ (1− α)

〈
(S∗S)

2r
(1−α) k̂τ , k̂τ

〉] 1
2r .

Hence∣∣∣〈S∗T k̂τ , k̂τ

〉∣∣∣2r ≤ 〈(α (T ∗T )
2r
α + (1− α) (S∗S)

2r
(1−α)

)
k̂τ , k̂τ

〉
.

Taking the supremum over τ ∈ Ω in the above inequality, we have

ber2r (S∗T ) ≤
∥∥∥α |T |

2r
α + (1− α) |S|

2r
(1−α)

∥∥∥
ber

.

This completes the proof. □

Corollary 3.26. For α = 1
2 , we obtain the following inequality:

ber2r (S∗T ) ≤ 1

2

∥∥∥|T |4r + |S|4r
∥∥∥
ber

for all r ≥ 1.

If we take S = I and S = T ∗, respectively, we have the following
corollary.

Corollary 3.27. For any T ∈ B (H) and any α ∈ (0, 1), r ≥ 1, we get
the inequalities

ber2r (T ) ≤
∥∥∥α |T |

2r
α + (1− α) I

∥∥∥
ber

and
ber2r

(
T 2
)
≤
∥∥∥α |T |

2r
α + (1− α) |T ∗|

2r
(1−α)

∥∥∥
ber

,

respectively. Moreover, we get

∥T∥4rber ≤
∥∥∥α |T |

2r
α + (1− α) |T ∗|

2r
(1−α)

∥∥∥
ber

.



200 M. Gürdal, H. Başaran and O.O. Satmaz

Theorem 3.28. Let H = H (Ω) be a FHS. Let T, S ∈ B (H) and f be
nonnegative increasing operator convex function on [0,∞). Then

f
(
ber2r (S∗T )

)
≤
∥∥∥∥∫ 1

0
f
(
(1− t)

(
α |T |

2r
α + (1− α) |S|

2r
(1−α)

)
+ tber2r (T ) I

)
dt

∥∥∥∥
ber

≤
∥∥∥f (α |T |

2r
α + (1− α) |T ∗|

2r
(1−α)

)∥∥∥
ber

for all α ∈ (0, 1), r ≥ 1.

Proof. Using the inequality (3.16) and proceeding similarly as Theorem
3.17 we can reach the required inequalities. □

In particular, if f (t) = t2 and f (t) = t, respectively, then we obtain
the following interpolation inequalities of (3.16).

Corollary 3.29. Let T, S ∈ B (H). Then

ber4r (S∗T ) ≤
∥∥∥∥∫ 1

0

(
(1− t)

(
α |T |

2r
α + (1− α) |S|

2r
(1−α)

)
+ tber2r (T ) I

)2
dt

∥∥∥∥
1
2

ber

≤
∥∥∥α |T |

2r
α + (1− α) |S|

2r
(1−α)

∥∥∥
ber

and

ber2r (S∗T ) ≤
∥∥∥∥∫ 1

0

(
(1− t)

(
α |T |

2r
α + (1− α) |S|

2r
(1−α)

)
+ tber2r (T ) I

)
dt

∥∥∥∥
ber

≤
∥∥∥α |T |

2r
α + (1− α) |S|

2r
(1−α)

∥∥∥
ber

for all α ∈ (0, 1), r ≥ 1.

Theorem 3.30. Let H = H (Ω) be a FHS. Let T, S ∈ B (H) and f be
nonnegative increasing operator convex function on [0,∞). Then

f
(
ber2r (S∗T )

)
≤
∥∥∥∥∫ 1

0
f
(
(1− t)

(
α |T |

2r
α + (1− α) |S|

2r
(1−α)

)
+ tber2r (T ) I

)
dt

∥∥∥∥
ber

≤ 1

2

∥∥∥αf (|T | 2rα )+ (1− α) f
(
|S|

2r
(1−α)

)∥∥∥
ber

.

for all α ∈ (0, 1), r ≥ 1.

Proof. If we apply Lemma 2.7 to Theorem 3.30, then we get required
inequalities. □
Corollary 3.31. If we take α = 1

2 and f (t) = t, then we have

ber2r (S∗T ) ≤
∥∥∥∥∫ 1

0
(1− t)

(
1

2

(
|T |4r + |S|4r

))
+ tber2r (T ) Idt

∥∥∥∥
ber

≤ 1

4

∥∥∥|T |4r + |S|4r
∥∥∥
ber

.
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Corollary 3.32. For any T ∈ B (H) and α ∈ (0, 1), r ≥ 1, we get the
following inequalities:

ber4r (S∗T ) ≤
∥∥∥∥∫ 1

0

(
(1− t)

(
α |T |

2r
α + (1− α) |S|

2r
(1−α)

)
+ tber2r (T ) I

)2
dt

∥∥∥∥
ber

≤ 1

2

∥∥∥α |T |
4r
α + (1− α) |S|

4r
(1−α)

∥∥∥
ber

,

ber2r (T ) ≤
∥∥∥∥∫ 1

0

(
(1− t)

(
α |T |

2r
α + (1− α) I

)
+ tber2r (T ) I

)2
dt

∥∥∥∥
ber

≤ 1

2

∥∥∥α |T |
2r
α + (1− α) I

∥∥∥
ber

and

ber2r
(
T 2
)
≤
∥∥∥∥∫ 1

0

(
(1− t)

(
α |T |

2r
α + (1− α) |T ∗|

2r
(1−α)

)
+ tber2r (T ) I

)
dt

∥∥∥∥
ber

≤
∥∥∥α |T |

2r
α + (1− α) |T ∗|

2r
(1−α)

∥∥∥
ber

.
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