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Abstract. In this article, we have defined the ideal Cauchy and
ideal bounded double sequences on L− fuzzy normed spaces, which
are generalizations of normed spaces, fuzzy normed spaces and in-
tuitionistic fuzzy normed spaces, with the help of ideal convergence
of double sequences, which can be accepted as a generalization of
known convergence types, and examined their relationships.
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1. Introduction

Many valuable studies have been made and continue to be done on
the concept of convergence of sequences[8, 9, 10, 13, 23, 27, 28, 29,
30]. Especially Savas has made very important contributions to the
mathematics community on this subject[6, 17, 18, 19, 20, 21].

L− fuzzy normed spaces entered the literature as a generalization
of normed spaces, fuzzy normed spaces and intuitionistic fuzzy normed
spaces [31, 1, 14, 16, 7, 12, 11, 3]based on some logical algebraic struc-
tures, which also enrich the notion of a L−fuzzy metric space [4, 5].
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There is a vast literature of studies on this structure. In particular,
some properties of a variant of the ideal convergence of sequences on
L−fuzzy normed spaces are given [3, 22]. However, generalizations of
some well-known results are absent and in particular there is no litera-
ture on statistical boundedness conditions on sequences.

We come across double and triple sequences [2, 24, 26, 25], i.e. matri-
ces, in many branches of science and engineering, and there are definitely
situations where either the concept of ordinary convergence does not op-
erate or the underlying space does not serve our intent.

In this study we give some results regarding ideal convergence for
double sequences on L− fuzzy normed spaces and investigate the rela-
tionship between ideal convergent, ideal Cauchy[15] and ideal bounded
double sequences, which will be newly introduced on L− fuzzy normed
spaces.

2. Preliminaries

In this section we give some preliminaries on L− normed spaces.

Definition 2.1. [22] Let T : [0, 1]×[0, 1] → [0, 1] be a function satisfying
the conditions

(1) T (x, y) = T (y, x)
(2) T (T (x, y), z) = T (x, T (y, z))
(3) T (x, 1) = T (1, x) = x
(4) x ≤ y, z ≤ t then T (x, z) ≤ T (y, t)

is called a triangular norm (or shortly t−norm).

Example 2.2. [22] The functions T1, T2 and T3 given with,
T1(x, y) = min{x, y},
T2(x, y) = xy,
T3(x, y) = max{x+ y − 1, 0}

are some well-known examples of t−norms.

Definition 2.3. [22] Given a complete lattice L = (L,⪯) and a set X
which will be called the universe. A function

A : X → L

is called an L−fuzzy set, or an L−set for short, on X. The family of all
L−sets on a set X is denoted by LX .

Intersection of two L− sets on X is given by
(A ∩B)(x) = A(x) ∧B(x)

for all x ∈ X. Similarly union of two L−sets and intersection and union
of a family {Ai : i ∈ I} of L−sets is given by

(A ∪B)(x) = A(x) ∨B(x)
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respectively.

We denote the smallest and the greatest elements of the complete
lattice L by 0L and 1L, respectively. We also use the symbols ⪰,≺ and
≻ on a given lattice (L,⪯), in the obvious meanings.

Definition 2.4. [22] A triangular norm (t−norm) on a complete lattice
L = (L,⪯) is a function T : L × L → L satisfying the following
conditions for all x, y, z, t ∈ L:

(1) T (x, y) = T (y, x)
(2) T (T (x, y), z) = T (x,T (y, z))
(3) T (x, 1L) = T (1L, x) = x
(4) x ⪯ y and z ⪯ t, then T (x, z) ⪯ T (y, t).

Definition 2.5. [22] A t−norm T on a complete lattice L = (L,⪯)
is called continuous, if for every pair of sequences (xn) and (yn) on L
such that (xn) → x ∈ L and (yn) → y ∈ L, one have the property that
T (xn, yn) → T (x, y) with respect to the order topology on L.

Definition 2.6. [22] A mapping N : L → L is called a negator on
L = (L,⪯) if,
N1) N (0L) = 1L
N2) N (1L) = 0L
N3) x ⪯ y implies N (y) ⪯ N (x) for all x, y ∈ L.
If in addition,
N4) N (N (x)) = x for all x ∈ L,
then the negator N is said to be involutive.

On the lattice ([0, 1],≤) the function Ns : [0, 1] → [0, 1] defined as
Ns(x) = 1 − x is an example of a involutive negator, called standart
negator on [0, 1], which is used in the theory of fuzzy sets. Similarly,
given the lattice ([0, 1]2,⪯) with the order

(µ1, ν1) ⪯ (µ2, ν2) ⇐⇒ µ1 ≤ µ2 and ν1 ≥ ν2

for all (µi, νi) ∈ [0, 1]2, i = 1, 2. Then the mapping N1 : [0, 1]
2 → [0, 1]2,

N1(µ, ν) = (ν, µ)

is an involutive negator used in the theory of intuitionistic fuzzy sets in
the sense of Atanassov[1].
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Definition 2.7. [22] Let V be a real vector space. L = (L,⪯) be a
complete lattice, T be a continuous t−norm on L and ρ be an L−set
on V × (0,∞) satisfying the following

(a) ρ(x, t) ≻ 0L for all x ∈ V, t > 0
(b) ρ(x, t) = 1L for all t > 0 if and only if x = θ
(c) ρ(αx, t) = ρ(x, t

|α|) for all x ∈ V, t > 0 and α ∈ R− {0}
(d) T (ρ(x, t), ρ(y, s)) ⪯ ρ(x+y, t+s), for all x, y ∈ V and t, s > 0
(e) limt→∞ ρ(x, t) = 1L and limt→0 ρ(x, t) = 0L for all x ∈ V − {θ}
(f) The mappings fx : (0,∞) → L given by f(t) = ρ(x, t) are con-

tinuous.
In this case, the triple (V, ρT ) is called an L−fuzzy normed

space or L−normed space.

Definition 2.8. [22] A sequence (xn) in an L− fuzzy normed space
(V, ρ,T ) is said to conergent to ℓ if, there exists n0 ∈ N such that, for
all n > n0

ρ(xn − ℓ, t) ≻ N (ϵ)

where N is a negator on L , for each ϵ ∈ L− {0L} and t > 0.

Definition 2.9. [22] A sequence (xn) in an L− fuzzy normed space
(V, ρ,T ) is said to be Cauchy sequence if, there exists n0 ∈ N such that,
for all m,n > n0

ρ(xn − xm, t) ≻ N (ϵ)

where N is a negator on L , for each ϵ ∈ L − {0L} and t > 0. In this
case, we show this convergence as L − limn xn = ℓ.

Definition 2.10. Let (V, ρ,T ) be an L−fuzzy normed space. Then a
sequence x = (xk) is said to be bounded with respect to fuzzy norm ρ ,
provided that, for each r ∈ L− {0L, 1L} and t > 0,

ρ(xk, t) ≻ N (r)

for all k ∈ N.

We will look at statistical convergence on L−fuzzy normed spaces.
Before we go any further, we should review some statistical convergence
terminology [3]. If K is a subset of N, the set of natural numbers, then
its asymptotic density, denoted by δ{K}, is

δ{K} := lim
n

1

n

∣∣{k ≤ n : k ∈ K}
∣∣

whenever the limit exists, with |A| denoting the cardinality of the set A.
If the set K(ϵ) = {k ≤ n : |xk − l| > ϵ} has the asymptotic density

zero, i.e.
lim
n

1

n
{k ≤ n : |xk − l| > ϵ} = 0



356 Reha YAPALI

then a number sequence x = (xk) is said to be statistically convergent
to the l. In this scenario, we will write st− limx = l.

Although every convergent sequence is statistically convergent to the
same limit, the converse is not always true.

Definition 2.11. Let (V, ρ,T ) be an L−fuzzy normed space. Then a
sequence x = (xk) is statistically convergent to l ∈ V with respect to
fuzzy norm ρ, provided that, for each ϵ ∈ L− {0L} and t > 0,

δ{k ∈ N : ρ(xk − l, t) ⊁ N (ϵ)} = 0

or equivalently

lim
m

1

m
{j ≤ m : ρ(xk − l, t) ⊁ N (ϵ)} = 0.

In this scenario, we will write stL − limx = l.

Definition 2.12. Let (V, ρ,T ) be an L−fuzzy normed space. Then a
sequence x = (xk) is said to be statistically Cauchy with respect to the
fuzzy norm ρ, provided that

δ{k ∈ N : ρ(xk − xm, t) ⊁ N (ϵ)} = 0

for each ϵ ∈ L− {0L}, m ∈ N and t > 0.

Definition 2.13. Let (V, ρ,T ) be an L−fuzzy normed space. Then
a sequence x = (xk) is said to be statistically bounded with respect to
fuzzy norm ρ, provided that there exists r ∈ L−{0L, 1L} and t > 0 such
that

δ{k ∈ N : ρ(xk, t) ⊁ N (r)} = 0

for each positive integer k.

Definition 2.14. [8] If X is a non-empty set then a family I of subsets
of X is called an ideal in X if and only if

(a) ∅ ∈ I,
(b) A,B ∈ I implies A ∪B ∈ I,
(c) For each A ∈ I and B ⊂ A we have B ∈ I,

where P (X) is the power set of X. I is called nontrivial ideal if I ̸= 0
and X /∈ I.

Definition 2.15. [8] Let X be a non-empty set. A non-empty family
of sets F ⊂ P (X) is called a filter on X if and only if

(a) ∅ /∈ I,
(b) A,B ∈ F implies A ∩B ∈ F ,
(c) For each A ∈ F and A ⊂ B we have B ∈ F .
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Definition 2.16. [8] A nontrivial ideal I in X is called an admissible
ideal if it contains all singletions, i.e., {x} ∈ I for each x ∈ X.

Let I ⊂ P (X) be a nontrivial ideal. Then a class F (I) = {M ⊂ X :
M = X \ A, for some A ∈ I} is a filter on X and is called the filter
associated with the ideal I.
Definition 2.17. [8] An admissible ideal I is said to satisfy the condition
(AP ) if for every sequence (An)n∈N of pairwise disjoint sets from I there
are sets Bn ⊂ N, n ∈ N, such that the symmetric difference An△Bn is
a finite set for every n and

⋂
n∈Bn

∈ I.

Definition 2.18. [8] Let I ⊂ 2N be a nontrivial ideal in N. Then, a
sequence x = (xk) is said to be I− convergent to ℓ if, for every ϵ > 0,
the set

{k ∈ N : |xk − ℓ| ≥ ϵ} ∈ I.

In this case we write I − limx = ℓ.
Definition 2.19. [8] Let I ⊂ 2N be an admissible ideal in N. Then, a
sequence x = (xk) is said to be I − Cauchy if, for every ϵ > 0, there
exist a number N = N(ϵ) such that

{k ∈ N : |xk − xN | ≥ ϵ} ∈ I.

We will look at the concept of ideal convergence on L−fuzzy normed
spaces in this section. Throughout the paper we take I1 as a nontrivial
ideal in N.
Definition 2.20. Let (V, ρ,T ) be a L−fuzzy normed space and I1 be
a nontrivial ideal in N. Then a sequence x = (xk) is I1 convergent to
l ∈ V with respect to ρ fuzzy norm, provided that, for each ϵ ∈ L−{0L}
and t > 0,

{k ∈ N : ρ(xk − l, t) ⊁ N (ϵ)} ∈ I1.

In this scenario, we will write IL
1 − limx = l.

Theorem 2.21. Let (V, ρ,T ) be an L−fuzzy normed space and let I1
be an admissible ideal. If limx = l, then IL

1 − limx = l.

The converse of the theorem is not true in general.
Theorem 2.22. Let (V, ρ,T ) be an L−fuzzy normed space. If a se-
quence x = (xk) is I1 convergent with respect to the L−fuzzy norm ρ,
then IL

1 −limit is unique.
Theorem 2.23. Let (V, ρ,T ) be an L−fuzzy normed space and I1 be
an admissible ideal. Then,

(a) If IL
1 − limxk = l1 and IL

1 − lim yk = l2 then IL
1 − lim(xk+yk) =

(l1 + l2)
(b) If IL

1 − limxk = l then IL
1 − limαxk = αl.
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3. Ideal Cauchyness and Boundedness for Double Sequences

We will look at the concept of ideal convergence for double sequences
on L−fuzzy normed spaces in this section. Throughout the paper we
take I2 as a nontrivial ideal in N× N.

Ideal Cauchy for double sequences with respect to L− fuzzy normed
space will be given in this section, and also a new concept of ideal com-
pleteness will be defined.

First, let’s recall the concept of double sequence and the definition of
ideal double convergence in L -fuzzy normed spaces.

For any given ε > 0, if there exists an integer N such that | xjk −
l |< ε whenever j, k > N , a double sequence x = (xjk) is said to be
Pringsheim’s convergent or shortly P− convergent. This will be written
as

lim
j,k→∞

xjk = l

with j and k tending to infinity independently of one another.
Let K ⊂ N× N be a two-dimensional set of positive integers, and let

K(m,n) be the numbers of (j, k) in K such that j ≤ m and k ≤ n.
Then we can define the two-dimensional analogue of natural density as
follows: The lower asymptotic density of the set K ⊂ N × N is defined
as

δ2(K) = lim inf
m,n

K(m,n)

mn

and if the sequence
(
K(m,n)

mn

)
has a limit in the sense of Pringsheim, we

say it has a double natural density, and it is defined as

lim
m,n

K(m,n)

mn
= δ2(K).

Definition 3.1. Let (V, ρ,T ) be a L−fuzzy normed space and I2 be
a nontrivial ideal in N. Then a sequence x = (xjk) is I2 convergent to
l ∈ V with respect to ρ fuzzy norm, provided that, for each ϵ ∈ L−{0L}
and t > 0,

δ2{(j, k) ∈ N× N : ρ(xjk − l, t) ⊁ N (ϵ)} ∈ I2.

In this scenario, we will write IL
2 − limx = l.

Lemma 3.2. Let (V, ρ,T ) be a L−fuzzy normed space. Then, the
following statements are equivalent, for every ϵ ∈ L− {0L} and t > 0:

(a) IL
2 − limx = l.

(b) {(j, k) ∈ N× N : ρ(xjk − l, t) ⊁ N (ϵ)} ∈ I2.
(c) {(j, k) ∈ N× N : ρ(xjk − l, t) ≻ N (ϵ)} ∈ F (I2).
(d) I

L

2 − lim ρ(xjk − l, t) = 1L.
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Definition 3.3. Let (V, µ,K ) be a L− fuzzy normed space. Then,
a sequence a = (amn) is said to be ideal double Cauchy with respect
to L− fuzzy norm µ, if for every ε ∈ L − {0L} and t > 0, there exist
N = N(ε) and M = M(ε) such that for all m, k ≥ N and n, l ≥ M
provided that

δ2{(m,n) ∈ N× N : µ(amn − akl, t) ⊁ N (ε)} ∈ I2.

Theorem 3.4. Every ideal convergent double sequence is ideal double
Cauchy on L− fuzzy normed space.

Proof. Let a = (amn) be a double sequence such that ideal convergent
to ℓ with respect to L− fuzzy norm µ. For a given ε > 0, choose r > 0
such that,

K (N (r),N (r)) ≻ N (ε).

For t > 0 we can write,

A = {(m,n) ∈ N× N : µ(amn − ℓ,
t

2
) ≻ N (r)}.

Take (p, q) ∈ A. Obviously, µ(apq − ℓ, t
2) ≻ N (r). Also since,

µ(ℓ− apq,
t

2
) = µ(apq − ℓ,

t
2

| − 1|
) = µ(apq − ℓ,

t

2
) ≻ N (ε)

we have

µ(amn − xpq, t) = µ
(
(amn − ℓ) + (ℓ− apq),

t

2
+

t

2

)
≻ K

(
µ(amn − ℓ,

t

2
), (ν(ℓ− apq,

t

2
)
)

≻ K
(
N (r),N (r)

)
≻ N (ε).

If we define a set B = {(m,n) ∈ N× N : µ(amn − apq, t) ≻ N (ε)}, then
A ⊆ B. Since δ2(A) /∈ I2, δ2(B) /∈ I2. Thus, the double theta density of
complement of B in I2, i.e. δ2(B

c) ∈ I2, which means a = (amn) is ideal
double Cauchy. □
Definition 3.5. Let (V, µ,K ) be a L− fuzzy normed space and a =
(amn) be a double sequence. Then, a = (amn) is said to be ideal double
bounded with respect to L− fuzzy norm µ, provided that there exists
r ∈ L− {0L, 1L} and t > 0 such that

δ2{(m,n) ∈ N× N : µ(amn, t) ⊁ N (r)} ∈ I2

for each positive integer m,n.

Theorem 3.6. Every double bounded sequence on a L− fuzzy normed
space (V, µ,K ), is ideal double bounded.
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Proof. Let (amn) be a double bounded sequence on (V, µ,K ). Then,
there exist t > 0 and r ∈ L − {0L, 1L} such that µ(amn, t) ≻ N (r). In
that case we have,

{(m,n) ∈ N× N : µ(amn, t) ⊁ N (r)} = ∅

which yields
δ2{(m,n) ∈ N× N : µ(amn, t) ⊁ N (r)} ∈ I2.

Thus, (amn) is ideal double bounded. □

However the converse of this theorem does not hold in general as seen
in the example below.

Example 3.7. Let V = R and L = (L,≤) where L is the set of non-
negative extended real numbers, that is L = [0,∞]. Then, 0L = 0, 1L =
∞. Define a L−fuzzy norm ν on V by µ(x, t) = t

|x| for x ̸= 0 and
ν(0, t) = ∞ for each t ∈ (0,∞). Consider the t− norm K (a, b) =
min{a, b} on L . Given the sequence,

xmn =

{
m+ n, if m+n is a prime number,

1
τ(m+n)−2 , otherwise

where, τ(m+n) denotes the number of positive divisors of m+n. Note
that (xmn) is not bounded since for each t > 0 and r ∈ L− {0,∞}, for
any prime number m+ n such that rt ≤ m+ n we have

µ(xmn, t) = µ(m+ n, t) =
t

| m+ n |
=

t

m+ n
≯

1

r
= N (r).

However for t = 1 and any non-prime integer m+ n, r = 2 satisfies

µ(xmn, 1) = µ(
1

τ(m+ n)− 2
, 1) =

1

| 1
τ(m+n)−2 |

= |τ(m+n)−2| > 1

2
= N (r)

since τ(m + n) ̸= 2 for any non-prime m + n, and since the density of
prime numbers converges zero by Prime Number Theorem we have,

δ2{(j, k) ∈ N× N : µ(xjk, 1) ≯ N (2)} ∈ I2

suggesting that (xmn) is ideal double bounded.

Theorem 3.8. Every ideal double Cauchy sequence on a L−fuzzy
normed space (V, µ,K ) is ideal double bounded.

Proof. Let (amn) be a ideal double Cauchy on (V, µ,K ). Then, for every
ϵ ∈ L−{0L} and t > 0, there exist N = N(ε) and M = M(ε) such that
for all m, k ≥ N and n, l ≥ M provided that

δ2{(m,n) ∈ N× N : µ(amn − akl, t) ⊁ N (ε)} ∈ I2.
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Then,
δ2{(m,n) ∈ N× N : µ(amn − akl, t) ≻ N (ε)} /∈ I2.

Consider a number (m,n) ∈ N × N such that µ(amn − akl, 1) ≻ N (ε).
Then, for t = 2

µ(amn, 2) = µ(amn−akl+akl, 2) ≻ K (µ(amn−akl, 1), µ(akl, 1)) ≻ K (N (ε), ν(xkl, 1)).

Say r := N (K (N (ε), µ(akl, 1))). Then,

µ(amn, 2) ≻ K (N (ε), µ(akl, 1)) = N (r),

which implies

δ2{(m,n) ∈ N× N : µ(amn, 2) ≻ N (r)} /∈ I2

or equivalently

δ2{(m,n) ∈ N× N : µ(amn, 2) ⊁ N (r)} ∈ I2

giving ideal double boundedness of (amn). □
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