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ABSTRACT. We investigate 2-dimensional viscoelastic equations with a
view of Lie groups. In this sense, we answer question of the symmetry
classification. =~ We provide the algebra of symmetry and build the
optimal system of Lie subalgebras. Reductions of similarities related to
subalgebras are classified. In the end by using Bluman-Anco homotopy
formula, we find local conservation laws of the viscoelastic equation.
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1. INTRODUCTION

Viscoelastic equations are important mathematical models that have many
applications in various sciences. Recently, the calculation of viscoelastic equa-
tions has been considered by different methods. We check out the following

model )
o0“u(x,y,t OAu(x,y,t
(8t2y ) - (aty ) —’}/AU({E,y,t) :f7 (11)
where [ is a function. The Equation (@) has several applications, for exam-
ple, it is applied to describe the heat transfer with memory materials, viscous

elastic mechanics, loose medium pressure [5], nuclear reaction kinetics [[14],
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Li et al. [L0], used a proper orthogonal decomposition (POD) technique to
reduce the finite volume element (FVE) method for two-dimensional (2D) vis-
coelastic equations. Error estimates of the reduced-order fully discrete FVE
solution and its implementation are also provided in Ref. [10] for solving the
reduced-order fully discrete FVE algorithm. Performing the Lie symmetry
group procedure, the problem of symmetry classification for different equa-
tions is widely considered in various spaces [, 2, [7, 8, 9]. On the other hand,
the symmetry group approach or Lie’s approach itself, which is a computa-
tional method algorithmic for finding group-invariant solutions, is significantly
used in the resolution of differential equations. Using this procedure, one can
find appropriate solutions through known ones, study the invariant solutions,
and even decrease the order of ODEs [11, B, 6, 4, 12]. Our aim in this pa-
per is to investigate two-dimensional viscoelastic equations from Lie’s point of
view. Because Lie’s theory is one of the useful and effective methods for solv-
ing nonlinear equations. Then we apply this method and obtain specified the
symmetry algebra infinitesimal generators of Eq([Ll.1)). According the optimal
system of symmetry algebra can detect invariant solutions,which is relevant
one-dimensional Lie algebra. In Lie’s method Using symmetric algebra, the
optimal 1-parameter device for viscoelastic equations can be found. In the
following, more details are given in different sections of the article. This paper
is divided into four sections. The second section are specified the symmetry
algebra infinitesimal generators of Eq() In the next Section by using the
symmetry group We obtain the one-parameter optimal system of Eq([L.1) . We
find in section 4 similarity reduction corresponding to the infinitesimal sym-
metries of Eq([l.1]) by using one-dimensional subalgebras. In the last section,
we obtain the associated conservation laws for the equation using the direct
method and provide conclusion remarks.

2. THE SYMMETRY ALGEBRA OF EQ.()
Generally,

Ao (X, UMY =0, a=1,..t (2.1)

is a system of PDE of order pth, where X = (z!,...,2™) and U = (u!,...,u")
are m independent and n dependent variables respectively, and U (@) is the i—
order derivative of U with respect to x, 0 < ¢ < p. Infinitesimal transforma-
tions Lie group acts on both X and U, is:

Fo=al 1 e (X, U) +o(e?),  i=1,..m, (2.2)
W= +edi(X.U) +o(e),  j=1,..n, (2:3)

where ¢¢ and ¢/ represent the infinitesimal transformations for {x!, ..., 2} and
{ul,...,u?}, respectively. An arbitrary infinitesimal generator corresponding
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to the group of transformations (@) is

p

V=) (X, U)0: + Y 6;(X,U)0,. (2.4)

i—1 j=1

Now in order to apply the Lie group procedure for Eq.(@), an infinitesimal
transformation’s one parameter Lie group is considered: (we use x, y and ¢
instead of z!, 2? and 23 respectively in order not to use index. So, z' =

x7x2 :y7x3:t?ul :u7u2 :f)7

i = z+efl(z,y t,u, f) + o(e?),
§ = y+e&(z,y tu, f)+o(?),
t = t+e&(x,y,t,u, f)+o(e?), (2.5)
i = u+edi(z,y,t,u, f)+ o(e?) (2.6)

f = f + 8¢1($, y7t7ua f) + 0(62)'
The corresponding symmetry generator is as follows:

V= 51($7y7t7u7f)8x +€2($7y7t7u7f)ay +§3(x7y7ta u, f)8t+ (2 7)
¢1(x7y’t7u7f)a’lt+¢2(x7y7t7u7f)af' '

The proviso of being invariance corresponds to the equations:
O*u(x,y,t 0Au(x,y,t
U(8t2y ) - ( Y ) - ”YAU(%yat) - f] =0, whenever

ot
0%u(z,y,t OAu(x,y,t

Pr(3)V[

Since &1, €2, €3,¢01 and ¢ are only dependent on z,y, t ,uand f, setting the
individual coefficients equal to zero, we have the following system of equations:

(—a&l =0, —ag} =0,
ag‘]l“ = 07 _agtl = 07
agf =0, agyp =0,
ag} = 07 agq?zuf - 07
atl, =0, —2a&} =0,

—3agy; =0, —adjss =0,

\

The total number of these equations is 227. By solving these PDE equations,
we earn the following result:
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TABLE 1. Lie algebra for Eq(@)

LI[Xh Xo X3 Xy X5
X1] 0 0 0 —Xo 0
Xo | % 0 0 X3 0
X3 | % * 0 0 0
X4 Xg —X1 * 0 0
X5 | * * * * 0
Theorem 2.1. The point symmetries Lie group of equation (EI) possesses a
Lie algebra generated by (ﬁ), whose coefficients are the following infinitesi-
mals:
¢ =c1y + cay,
& =—cay+es,
53 =C4,
¢1 =csu + FQ(J"a Y, t)v
93 o3 (2.8)
P2 = — a(m&(%yat)) +e5f - G(%Fﬂfﬂayat))
0? 0?
- b(@FQ(J:?y’t)) - b(aiygFQ(xaya t))
0? 03 0?
— F t) —a(=—5=F t) — (=5 F t
+ atQ 2($,y, ) a(8y28t Q(xayv )) (8t2 2(5572/7 ))7

where ¢; € R, i =1,...,5 and a(u) is a function satisfying Eq(@)

Corollary 2.2. Every point symmetry’s one-parameter Lie group of Eq(@)

has the infinitesimal generators as follows:

Xl = 8357

Xo = 0y,

X3 = 8t7

X = yd, — 20, 29)

X5 = u0y + fOy,

Xy = a0y,

We provide Lie algebra for Eq(@) by Table (1). The expression

[Xi, X;] = XiX; — X;X; determines the entry in row it" and column ;"
i,j=1,..5.

For example, the flow of vector field X4 in Corollary is shown by
O, = (ysin(e) + zcos(e), ycos(e) — wsin(e), t).

The flow ®. is plotted in Figures 1 and 2.
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FIGURE 2. The projection of flow @, into the (x,y,0)-plane.

3. CLASSIFICATION OF ONE-DIMENSIONAL SUBALGEBRAS

Using the symmetry group, we can determine the one-parameter optimal
system of Eq ([L.1)). It is important to obtain those subgroups which present
different kinds of solutions. Thus, we need to search for invariant solutions that
are not linked by a transformation in the full symmetry group. This subject
leads to the notion of an optimal set of subalgebras. The problem of classifying
one-dimensional subalgebras would be the same as the question of classifying
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TABLE 2. Adjoint representation of the Lie algebra

Ad X X5 X3 Xy Xs
X1 X1 X2 — SX4 X3 X4 X5
X2 X1 + SX4 X2 X3 X4 X5
X X, X, Xy X4 Xs
Xy | cos(s) X1 — sin(s)Xa sin(s)X1 +cos(s) X2 X3 X4 X5
X; X, X, Xy X4 Xs

the adjoint representation orbits. An optimal set of subalgebras problem is
solved by considering one representative from every group of corresponding
subalgebras [13] and [11]. The definition of the adjoint representation of each
Xi, t=1,...,5 would be:

2
Ad(eap(s.X1).X,) = Xy — 8.[Xy, X,] + %.[Xt, Xn X, -, (3.1)

where s is a parameter and [Xy, X,] is defined in Table (1) for t,r =1,---,5
([11]),page 199). Let g, be the Lie algebra that produced by (@) We obtain
the adjoint action for g in Table (2).

Theorem 3.1. One-dimensional subalgebras of Eq. (ll:l!) are as follows:

1) X1+ X3+ X5,
2) X3+ c1 X3+ X5,
3) X4+ a1 X3+ c2X5,
4) X3+ c1X5,

where ¢; € R are arbitrary numbers fori=1,--- 5.

Proof. From Table (1), it is clear that the center of Lie algebra is (X3, X5).
Hence, it would be sufficient to determine the sub-algebras of

(X1, X9, Xy).
Fort=1,---,5, the map:
Fiig—g
{X — Ad(exp(sXy).X)

is a linear function. Considering basis {X1, -, X5}, the matrixes M} of FY,
t=1,---5 are given by:
100 0 O 1 0 0 s2 0
01 0 —s1 O 010 0 O
Mi=l0o 01 0 0|, Mi=l0o 01 0 0],
000 1 O 000 1 0
000 0 1 0 00 01
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TABLE 3. Lie invariants and similarity solution.

/) H; fz i w; Uj fl

1] X Y t u h(&,m) 9(&m)
21 X, z t u h(&,m) g(&m)
31 X, T y u h(&,m) g(&n)
41 X1+ X5 T —t y u h(&,m) g(&;m)

TABLE 4. Reduced equations regarding infinitesimal symmetries.

1 | Reduction of equations
1 hay — ahgen — ahnmy — bhee — bhyy — g = 0,
2 hay — aheen — ahuyy — bhee — bhyy — g = 0,
3 hay — ahgen — ahy — bhee — bhyy — g = 0,
4 h& + ah&n + ahm,g + ah&é" — bh& — bh,m — bh§£ —9= 0,
5 hupn + aheen + aluy + algy — bheg — bheg — bhuy — by, — g = 0.
10 000 cos(sy) —sin(sg) 0 0 0O
01 000 sin(sg) cos(s4) 0 0 O
Mi=l 0 010 0], Mi=| 0O 0 100/,
000160 0 0 010
00 0 01 0 0 0 01
1 00 00
01 00O
Mi=| 0 0 1 00
00 0160
0 0 0 01

By applying these matrixes on a vector field X = Z?:l a; X; alternatively, we
can simplify X as follows:

For a4 # 0, the coefficients of X; and X5 can be disappeared by setting
so = —(ag/a1) and s; = (ag/a2) respectively. If needed, by scaling X, we
suppose a4 = 1. Thus, X turns into (3).

For a4 = 0 and as # 0, the coefficients of X; can be disappeared by setting
s3 = —tan"'(a1/az). If needed, by scaling X, we suppose az = 1. Thus, X
turns into (2).

For ag = a4 = 0 and a; # 0, if needed, by scaling X, we suppose a; = 1.
Thus, X turns into (1).

For a1 = ag = 0 and a4 = 0, X turns into (4). O
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4. SIMILARITY REDUCTION OF EQUATION (@)

Here, we want to classify symmetry reduction of Eq(@) concerning sub-
algebras of Theorem B.1. We need to search for a new form of Equation ([L.1))
in specific coordinates so that it would reduce. Such a coordinate will be con-
structed by finding independent invariant &,n,h regarding the infinitesimal
generator. So, expressing the equation in new coordinates applying the chain
rule reduces the system. For 1-dimensional subalgebras in the Theorem

the similarity variables &;,7;, and h; are listed in Table §. Each similarity
variable is applied to find the reduced PDE of Eq(@) which, they are listed
in Table H

For instance, we compute the invariants associated with subalgebra Hs :=
X1 4+ X3 by integrating the following characteristic equation.

dv _dy _dt _ du
o 1 1 0
Hence, the similarity variables would be:
€:$7 U:y—t7 h:U,

Substituting the similarity variables in Eq(@) and applying the chain rule it
results that, the solution of Eq.([L.1)) is:

u=h(&,n)

where h(&,n) satisfies a reduced PDE with two variables as follows:
Iy + ahgey + alyyy + ahyyy — bhee — bheg — by — bhyy — g = 0. (4.1)

Subalgebra X + X3 and the reduced equation (@) are shown in Tables B and
@, by the case (5).

5. CONSERVATION LAWS

One of the important classes of partial differential equations is the law
of conservation, which is one of the important laws of nature. Due to its
importance, many methods have been proposed to study conservation laws,
and here we use a direct method to study conservation laws.

Let P {x;u} be differential equation of order k with n independent variables

x = (z',---2") and one dependent variable u, Which is given as follows

Plu] = P(x,u,du, ..., 0%u) = 0. (5.1)

Multiplying A(z,u, Ou, ..., Ou) in can give the conservation law Afu]P[u] =
D;p'[u] = 0 for the differential equation P {x;u} if and only if

Ey (A(x, U,oU, - ,0'U)P(z,U,dU, - -- ,akU)) —0, (5.2)
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that U(z) is an arbitrary function and Ey is the Euler operator with respect
to U as follows

Ey = 0U — D;oU + -+ (—=1)°Dy, - - D 0U;, ... (5.3)

Because the Viscoelastic equation depends on ¢ , as a result, the multipliers of
the local conservation law for Equation (@) are A = &(t, z,y, 2, U, 0;U, - - - 0LU)
that [ = 1,2,--- and we get all of its nontrivial local conservation laws from
multipliers.

It can be concluded that A = A(t, z.y,U, 0,U, 0,U,0,U), is a multiplier of
the law of conservation of Equation (@g iff

Ey [A(t,z,y,U, 00Uy, 0U,, 0Uy) (5.4)
U (x,y,t)  OAU(z,y,t
( (8to )_5 éty )—’)/AU(.Q?,y,t)—f)]EO,

that U(t,x,y) is an arbitrary function.

We search all multipliers A = A(t, z,y, U, 0U;, 0U,, OU,)), for Equation (@)
So, by splitting Equation (p.4) with respect to Uy, Uiz, -+, Uppax , We get
these equations

Avz,y=0,Api. =0,Au, yy = —2AUz, Avty = 0, Ay, 1y = 0, Ay = 0,

Ay b 9AU, yb 1
A - 2Ay __ vw = —(—2Ay,bU,
Ug,tt 1+ b’ Uy,t,t 140 ) , b( U,yPYy
— 20y obUy — 2UAprsb + Ay + 2U Ay — Ay yb — Apgb), Ay, o = 2A0,
Ay, 1(—1+b
AUy,x = _AUx,yaAUt,cc = _U7t(b)a
Ay, (=1 +0)

AUy:y = 2AU7AUt’y = - 7AUt,t = 2AU7

b
Ayuv =0,Apy, =0,Appy, =0,Avy, =0,Av, v, =0,Ay, v, =0,

Av,v, =0,Av, v, =0,Av, v, =0,Ay,u, = 0,e = 0.

Solving these equations leads to an infinite set of local multipliers:
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Az, y,t,U, Uy, Uy, Up) = (Cit + Cax + Coy + C3) U + (Crt*+
1‘201
b

1 bt(tCy + C
(—1 + 5)3/201 )Ut-i- <C4.CC2 + Q(Clt + Coy + 03)1’ — (—14—|J—rb7))_

2(Cazx + Coy + C3)t +

— 22Cy + Crz + Cs + Csy+

1
(—1+ b)emwe@y
C16)((eVPY)2Chy + Cr2)(—1 + ) cos(\/g\/fi—\/TClt)Jr

Ci3(C15(eVC12)? + Cm) ((e‘/@y)QC’u + Cr2)(b— 1) Sin(\/@)

C4y2 + ng + Cy ) U, + (014015(6mx)2+

_ /Ty, Vo (@(-1 4+ b)2® — 2(—1 + b)(Cay — %cg)x
+ ((—y2 + t2)b + y2)02 + ((—2y01 + C5)t —Cip — Qng)b

+2C3y + Cho + 2y01t>>.

Hence, using the Bluman-Anco homotopy formula, we obtain the conservation
components of ¢!, ¢*, ¢¥ with respect to A:

Case 1

A($’ Y, ta U7 UI) Uy) Ut) =
1
g(tUb + U2y + Uz — Upp2p + Uty2 — Utbe + 22tUp + 2Uyytb);

11
)
+ 2UUp2 + 2Up2, Uz + 2UpUyy — UpeUpz — UpUppga2 + UpeUpp2
— UpUpay2 + Up2Upgye — UppUyy2 — UpUyya2 + Up2Uyyp2 — UpUyy2
+ Up2Uyyy2 + Upzgzp — 2Up22p — 2Up22p — Upzpzpe + Upzg2p2
+ Upy2p2 — 2UtUoy — 2UyUgyp + 2UntUpgyz + 2U 1 U2
+ 2Utat Uz — 2Ut Uy, — 2U3at Uy — 20U y2 ),

(U?0? + UpUyz + UpUyz — U?b — 2Up, Uy — 2U, Uy,
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1 1
¢ =UpUy + U,Up — UpUyy + 5UUm2b + §UUtzz2

1 1 1
- iUUtmIQb + iUUmyQ - iUUtzgﬂb + Uythxy
1 1 1 1
+ iUmUtth - §U$Utm2 + §U$Utaj2b + iUIUtyQ
1
+ §UxUty2b — xtUp2p — UpUyyip + Ut Uy — Uz Uyy — Uzt U,

1 1
oY =UpUy + U,Uy — Uy Uy, + §UUtyt2b + §UUtyw2
1 1 1
— §UUty:p2b + iUUtny - gUUtyy% + UgtpUsy
1 1 1
—_ §UyUtt2b - §UyUta:2 "‘ dfT‘aleUyUtxzb + QUyUtyQ

1
-+ inUtbe — nytUmb — UyQytb + Uthtt - Uytha:x - ythtt‘

Case 2

1
A(l‘)y)ta Ua UZ‘) Uy> Ut) = -1 + b

+ 2ytUp — 2yxUy + 2yxUgp + Uype — Uya2p + Uyy2p — Upgzyy — Uyy2),

(=yU 4 yUp + Upyz — 2ytU,

1 1
¢t =ytUp — nyUt:c — ytUpy, + Uty:cU:c + §UyUtx2b - §UyUtyzb - Uthy_
1 1 1 1
UyUtb - iUUtthb - iUUtnyb + iUUtnyb + §UyUtt2 - UyUt

1 1 1 1
— iUUtyacz + iUUtny + inUth - inUtgﬁ + UyacUtxb - Uty;tUxb
- Uythyy + Utymbxa

1 1
— 5 1 T b(QUbyUx - 2Ub2yU$ - 2Ubny + 2Ub2Uyw — UbUzny

+ UppUpyezr — Up2Upyy2 + Up2Upypz + UpUpyyz — 2Up2py, + 2U 2424

+ UbUy2 — Up2Uyp2 + U2 Uype — Upy2Uyyz — UgpUyy2 + 20Uy U

= 2Upbyt Ut + 2U 2,y Ur — AUy Uyt — 2Uyap Uyy + 2Uy U2 + 22Uy U2
+ 2Upyt Ut — 2Uh2,4Uta),

¢ =
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Y =— ;_11“)(%22 — U} — 2U Uy, — 2Up Uy — 204Uy — UUpyy2y,
= 2UUyp2p + 2U U2 + 2UUppe + 2042, Ux + 2U2 Uy + UUy2p2
+ UUya2p2 — UUpy2p2 — Upzpe2 + Upzpzgz — Upzpzy2 + Uppzgz + Uy
+ Up2Upgyz — UpUpppz + U Uy + UpUyyye — Upe U2 + UUp,2
— UUyy2 — 2UbyaUry + 2U2y0 Usy + 2U by Up — 2U 240 Us
= 2Uy Uty + 2U Uz + 2UU 1, — 20U 2 )-
Case 3
Az, y,t,U, Uy, Uy, Up) = U + 2tU; + 22U, + 2U,,

¢t = - UUt - UzUtm - UyUty + UbUt + beUtm + UbyUty + tUt + Uthm
+ UiUyy — tUy — Upe Uz — UpUyy — tUpUpy — tUR Uy,

¢:c =UpUy + UnUt + UbyU:ch — Ut Ut — Umem - UxbUyy + U Uy
- UxbUyy - U(EbUtt7

¢y :UbUy =+ UbtUty + beny - betUt - bexe - bey + yUUtt
- yUmbx - yUbUt-
Case 4

—tbU, — b
A(z,y,t,U,Uy, Uy, Up) = Uy_lyft; yUib

1 1 1 1 1 1
¢' = — SUbUy = 5UnlUty + SUpne Ut + SyUsz = SyUsp = 5yUsUsa
1

- §UbyUyyv
o101
(b :5 1+ b(b(_UyUt:c + beUt:v - Ubth + Uxthy + U:cyUt - UfcyUtb))u
1 1
Y =57 T b(b(—UUt + UpUr — UyUsy + UpyUsy + t0U, 2 + UrUyy — Uy Uy
— UUy + tUpUsy + Upi Uyt
Case 5
A(‘T7 Y, ta U7 Ux’ Uy, Ut) = Ut,
1 1 1 1
¢t :§UT2 - §UT2b - iUmbx _ §UbUyy,

o1 1
¢ —iUbUm - anzUtm
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1 1
¢y :§UbUty - inUtb-
Case 6
—tbU, — xU, U.b
Az, y,t,U, Uy, Uy, Up) = xU + zUy

~1+b ’
1 1 1 1 1 1
¢t = — 5UbUe = 5UnUte + SUatUt + 52Uz — SaU2b = SUpUsza

1

— iUzUyy’

6" = L ((—UU, + U, — UsUse + UnaUse + 80U
_2—1—|-b t bUt zUtzx bxVtx 2

+ U Uy — Upa Uy — UpUy + tUyUyy + Uy Uy)),
y 1 1
¢ 91+ b(b(_UxUty + UnbUty — UntUzy + UztnUy + UyaUp — UyaUs)).

Case 7
A(:C?y7t7 U, Uy, va Ut) =yU; — Uyl',

1 1 1 1 1 1
¢ =— 5 Ul + 5UpUie + 5UnUty = 5 UnUty + 5 Uy Ui = 5 Usy U,

1 1
- §nyUt + inxUtb)

L1 1 1 1 1 1
¢ = — §UbUy — §beny — iUIZby + inber + §yUUtt — §UbyUyy
1
+ iyUbUtta
1 1 1 1 1 1 1
¢y :iUmb + iUbyny — §U$bUyy — EUbex - iUxUtt + ibele + iULEbUtt'
Case 8
A(-T,y,t, Uv UCEaUyaUt) = Uxa (55)
1 1 1 1
t_ - _ _ _
"= 2UUt:p + 2UbUtx + 2UtUx 2U2Utba
| 1 1 1
¢ =— §Ux26 + iUUtt — §UbUyy - iUUttby
1 1
¢y = - iUbUzy - inUmb-

Case 9
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A(ﬁ, Y, ta U) U1‘7 Uy) Ut) = Uy7
1
¢' =5 (Ul = UiUy) (=1 +b),

. 1
) :§(UUzy — U,Uy)b,

1 1 1 1
Y = — 5Uyzb + §UUtt - §UbU:13x - QUUttb-

Therefore, for all these cases we detected the local conservation law of Equa-
tion ([L.1]) as follows:

Di¢' + Dy¢™ + Dy = 0.
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