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ABSTRACT. We investigate 2-dimensional viscoelastic equations
with a view of Lie groups. In this sense, we answer question of
the symmetry classification. We provide the algebra of symmetry
and build the optimal system of Lie subalgebras. Reductions of
similarities related to subalgebras are classified. In the end by
using Bluman-Anco homotopy formula, we find local conservation
laws of the viscoelastic equation.
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1. INTRODUCTION

Viscoelastic equations are important mathematical models that have
many applications in various sciences. Recently, the calculation of vis-
coelastic equations has been considered by different methods. We check
out the following model
2

0 U(ai;y’ t) _EaAuE;;y’t) —’}/AU(CC,y,t) = f7 (11)
where f is a function. The Equation (Ell) has several applications,
for example, it is applied to describe the heat transfer with memory
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materials, viscous elastic mechanics, loose medium pressure [5], nuclear
reaction kinetics [14], Li et al. [10], used a proper orthogonal decom-
position (POD) technique to reduce the finite volume element (FVE)
method for two-dimensional (2D) viscoelastic equations. Error estimates
of the reduced-order fully discrete FVE solution and its implementation
are also provided in Ref. [10] for solving the reduced-order fully dis-
crete FVE algorithm. Performing the Lie symmetry group procedure,
the problem of symmetry classification for different equations is widely
considered in various spaces [L, 2, [, 8, 9]. On the other hand, the sym-
metry group approach or Lie’s approach itself, which is a computational
method algorithmic for finding group-invariant solutions, is significantly
used in the resolution of differential equations. Using this procedure, one
can find appropriate solutions through known ones, study the invariant
solutions, and even decrease the order of ODEs [11, B, 6, 4, 12]. Our
aim in this paper is to investigate two-dimensional viscoelastic equations
from Lie’s point of view. Because Lie’s theory is one of the useful and
effective methods for solving nonlinear equations. Then we apply this
method and obtain specified the symmetry algebra infinitesimal gen-
erators of Eq(@) According the optimal system of symmetry algebra
can detect invariant solutions,which is relevant one-dimensional Lie alge-
bra. In Lie’s method Using symmetric algebra, the optimal 1-parameter
device for viscoelastic equations can be found. In the following, more
details are given in different sections of the article. This paper is di-
vided into four sections. The second section are specified the symmetry
algebra infinitesimal generators of Eq([l.1)). In the next Section by using
the symmetry group We obtain the one-parameter optimal system of
Eq(ﬂ) . We find in section 4 similarity reduction corresponding to the
infinitesimal symmetries of Eq([L.1}) by using one-dimensional subalge-
bras. In the last section, we obtain the associated conservation laws for
the equation using the direct method and provide conclusion remarks.

2. THE SYMMETRY ALGEBRA OF EQ.(EI)

Generally,
AQ(X,UP) =0, a=1,..,t, (2.1)

is a system of PDE of order pth, where X = (z!,...,2™) and U =
(u',...,u") are m independent and n dependent variables respectively,
and U® is the i— order derivative of U with respect to z, 0 < i < p.
Infinitesimal transformations Lie group acts on both X and U, is:

=2+ e(X,U) + o(e?), i=1,..,m,
W = +edi(X,U)+o(e?), j=1,.,n,



156 Y. AryaNejad, N. Zandi

where ¢' and ¢/ represent the infinitesimal transformations for
{z!,...,2P} and {u!,...,u?}, respectively. An arbitrary infinitesimal gen-
erator corresponding to the group of transformations (R.2) is

p q
V=> (X, 0)0:+ > ¢;(X,U)d,. (2.4)
=1

— =
Now in order to apply the Lie group procedure for Eq.(@)7 an infinites-
imal transformation’s one parameter Lie group is considered: (we use z,
y and t instead of 2!, z? and > respectively in order not to use index.
SO, 1131 = CC,{EQ = y,ﬂj‘?) = t’ul = u’u2 = f),

T =zxz+ efl(ﬂs,y,t,u, f) + 0(62)7

§ = y+e(z,y,t,u, ) +o(e?),

i = t+e(x,y,t,u, f)+o(e?), (2.5)

i = u+tedi(x,yt,u f)+o(c?)
f = Ftesi(z,ytu f)+oe?).

The corresponding symmetry generator is as follows:
V= 51 (l’, Y, t, u, f)ax + fz(ma Y, t? u, f)ay + 53(1‘, Y, ta u, f)at+

2.7
¢1($,y,t,U,f)au—{—QZ)Q(CL’,y,t,U,f)af. ( )
The proviso of being invariance corresponds to the equations:
2 t A t
Pr(3)V[8 uf;t,?y, ) _ 58 u(aa:t,y, ) _ yAu(z,y,t) — f] =0, whenever
Pu(x,y,t)  dAu(z,y,t)
St SR A,y t) — f = 0.

Since €1, €2, €3,¢1 and ¢ are only dependent on z,y, t ,uand f, setting
the individual coefficients equal to zero, we have the following system of
equations:

(—a&l =0, —a& =0,
a{} =0, —agtl =0,
aftl =0, afgf =0,
agp =0, &y =0,
atl, =0, —2af} =0,

—3ag}; =0, —apfs; =0,

The total number of these equations is 227. By solving these PDE
equations, we earn the following result:
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TABLE 1. Lie algebra for Eq(@)

L1 Xe Xo X3 Xy X
X110 0 0 —Xo O
X | % 0 0 Xi 0
X3 | * * 0 0 0
X4 XQ —X1 * 0 0
X5 | % * * * 0

Theorem 2.1. The point symmetries Lie group of equation (@) POS-
sesses a Lie algebra generated by (R.1), whose coefficients are the follow-
ing infinitesimals:

¢ =cry + coy,
&2 =—c1y+cs,
& =cu,
¢1 =csu+ Fo(z,y,t),
2= = a5 Fo(r )+ €51 — al g o, .1) >
0?2 0?
- b(@Fﬂw?y?t» - b(aiygFé(xv yvt))
9?2 93 0?2
+ @Fﬂ%y?t) - a(m&(%ya t) — (@FQ(‘x?y?t))v

where ¢; € R, i =1,...,5 and a(u) is a function satisfying Eq(@)

Corollary 2.2. Every point symmetry’s one-parameter Lie group of
Eq.(L.1)) has the infinitesimal generators as follows:

Xl = 81'7

Xy = 8y,

X3 = 8ta

Xy = yd, — 20, (2:9)
X5 = w0y, + faf,

X, = ad,.

We provide Lie algebra for Eq(@) by Table (1). The expression
[Xi, X;] = X;X; — X;X; determines the entry in row it" and column
gthoi,i=1,..,5.

For example, the flow of vector field X4 in Corollary @ is shown by
O, = (ysin(e) + zcos(e), ycos(e) — wsin(e),t).
The flow ®. is plotted in Figures 1 and 2.
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FIGURE 1. The plot of flow ®..
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FIGURE 2. The projection of flow ®, into the (x,y, 0)-plane.

3. CLASSIFICATION OF ONE-DIMENSIONAL SUBALGEBRAS

Using the symmetry group, we can determine the one-parameter opti-
mal system of Eq (Ef)l It is important to obtain those subgroups which
present different kinds of solutions. Thus, we need to search for invariant
solutions that are not linked by a transformation in the full symmetry
group. This subject leads to the notion of an optimal set of subalgebras.
The problem of classifying one-dimensional subalgebras would be the
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TABLE 2. Adjoint representation of the Lie algebra

Ad X1 X5 X3 X4 Xjs
X1 X1 X2 — SX4 X3 X4 X5
X2 X1 + SX4 X2 X3 X4 X5
X4 X, X, Xy X4 Xs
Xy | cos(s) X1 — sin(s)Xa sin(s)X1 +cos(s) X2 X3 X4 X5
X X, X, Xy X4 Xs

same as the question of classifying the adjoint representation orbits. An
optimal set of subalgebras problem is solved by considering one repre-
sentative from every group of corresponding subalgebras [[13] and [11].
The definition of the adjoint representation of each Xy, t =1, ...,5 would
be:

2
Ad(exp(s.X:).X,) = X, — s.[Xp, X,] + %.[Xt, (X0, X, )=, (3.1)

where s is_a parameter and [Xy, X,| is defined in Table (1) for t,r =
1..--,5 ([11],page 199). Let g, be the Lie algebra that produced by
(@) We obtain the adjoint action for g in Table (2).

Theorem 3.1. One-dimensional subalgebras of Eq(@) are as follows:

1) X1+ a1 X3+ X5,
2) X3+ c1 X3+ c2X5,
3) X4+ a1 X3+ 2 X5,
4) X3+ c1Xs,

where ¢; € R are arbitrary numbers fori=1,--- 5.

Proof. From Table (1), it is clear that the center of Lie algebra is
(X3, X5). Hence, it would be sufficient to determine the sub-algebras
of

<X17X27X4>-

Fort=1,---,5, the map:

Frg—g
X — Ad(exp(sX;).X)
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TABLE 3. Lie invariants and similarity solution.
i H; & i w; Ui fi
1 X Y t u h(&,m) 9(&m)
2| X x t u h(&;m) 9(&,m)
3] X3 x y u h(&;m) 9(&m)
4 Xi+X3 x—t y u h(&;m) 9(&,m)
is a linear function. Considering basis {X1,---, X5}, the matrixes M}
of F¥,t=1,---5 are given by:
100 0 O 1 0 0 s32 O
01 0 —s1 O 010 0 O
Mi=0 01 0 O, M5=/0 01 0 O
000 1 0 000 1 O
000 0 1 0 00 0 1
10000 cos(s4) —sin(sg) 0 0 0O
01000 sin(sq) cos(sy) 0 0 0O
Mi=|0 0 1 0 0|, Mi= 0 0 10 01,
00010 0 0 010
00 001 0 0 0 01
100 00
01 000
M= 0 0 1 0 O
00010
00 0 01

By applying these matrixes on a vector field X = 215:1 a; X; alterna-
tively, we can simplify X as follows:

For ay # 0, the coefficients of X7 and X5 can be disappeared by setting
sg = —(as/a1) and s; = (as/az) respectively. If needed, by scaling X,
we suppose a4 = 1. Thus, X turns into (3).

For a4y = 0 and as # 0, the coefficients of X; can be disappeared
by setting s3 = —tan~!(a1/az). If needed, by scaling X, we suppose
az = 1. Thus, X turns into (2).

For as = a4 = 0 and a; # 0, if needed, by scaling X, we suppose
a; = 1. Thus, X turns into (1).

For a; = ag = 0 and a4 = 0, X turns into (4).

(]
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TABLE 4. Reduced equations regarding infinitesimal symmetries.

Reduction of equations
hoy — aheen — ahyyy — bhee — bhyy — g =0,
hoy — aheen — ahyyy — bhee — bhyy — g =0,
by — ahgen — ahyyy — bhee — bhyy — g =0,
hee + aheen + ahyne + ahgee — bheg — bhyy — bhee — g =0,
hnn + ahggn + ahmm + ahnm, — bhé*g — bh& — bhm] — bhm] —g=0.

Ul W DN =

4. SIMILARITY REDUCTION OF EQUATION (@)

Here, we want to classify symmetry reduction of Eq(@) concerning
subalgebras of Theorem B.1. We need to search for a new form of Equa-
tion (h) in specific coordinates so that it would reduce. Such a coordi-
nate will be constructed by finding independent invariant &, 7, h regard-
ing the infinitesimal generator. So, expressing the equation in new coor-
dinates applying the chain rule reduces the system. For 1-dimensional
subalgebras in the Theorem the similarity variables &;,n;, and h; are
listed in Table B. Each similarity variable is applied to find the reduced
PDE of Eq.([L.1) which, they are listed in Table H

For instance, we compute the invariants associated with subalgebra
Hs := X1 + X3 by integrating the following characteristic equation.

dr dy dt du
o 1 1 0
Hence, the similarity variables would be:
§=ux, n=y-—t, h =u,

Substituting the similarity variables in E (EI) and applying the chain
rule it results that, the solution of Eq(@) is:

u = h(&;n)
where h(&,n) satisfies a reduced PDE with two variables as follows:
hm] + ahggn + ahmm + ahnm, — bhgg — bhf& — bhm, — bhnn —g=0. (4.1)

Subalgebra X + X3 and the reduced equation (@) are shown in Tables
E and W, by the case (5).

5. CONSERVATION LAWS

One of the important classes of partial differential equations is the law
of conservation, which is one of the important laws of nature. Due to its
importance, many methods have been proposed to study conservation
laws, and here we use a direct method to study conservation laws.
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Let P {x;u} be differential equation of order k with n independent vari-
ables z = (x!,---2") and one dependent variable u, Which is given as

follows
Plu) = P(z,u,du, ...,0%u) = 0. (5.1)
Multiplying A(‘x,u,[)u,...,@lu) in can give the conservation law
Alu]Plu] = Dj¢'lu] = 0 for the differential equation P {z;u} if and
only if

Ey (A(:c, U,au,- -, 8'U)P(z,U,U, - -- ,8kU)> — 0, (5.2)

that U(z) is an arbitrary function and Ey is the Euler operator with
respect to U as follows

Ey=0U —-D;oU +---+ (_1)3Di1 ce DzsaU“Zs (53)

Because the Viscoelastic equation depends on t , as a result, the
multipliers of the local conservation law for Equation ([L.1}) are A =
E(t,x,y,2,U,0:U,---0lU) that | = 1,2,--- and we get all of its nontriv-
ial local conservation laws from multipliers.

It can be concluded that A = A(¢t,x,y, U, ﬁ], 0.U,0,U), is a multi-

plier of the law of conservation of Equation (Jl.1)) iff
Ey [A(t,z,y,U, 0U;, 0U,, 0U,) (5.4)
0?U (z,y,t OAU (x,y,t
) OBUEID Ay (e 1) - 1)) =0,

that U(t,x,y) is an arbitrary function.

We search all multipliers A = A(t.x,y, U, Uy, 0U,, 0U,), for Equation
(@) So, by splitting Equation (Q) with respect to Uy, Ui, -+, Ugzza
, we get these equations

AU:L" y = O’ AU,t,.’E = 07 AUvay7y = 72AU7'T7 AU7t7y = O’ A'Uzytvy = 0’ AUatzt = 07

2Ay b 2AU, yb 1

A =—— "7 = - Acca: = —(=2Apy b
Uz, t,t 1+ b’ Uy, t,t 140 y , b( Uy Uy
— 20y bU; — 22U Ay + Avy + 2UiAug — Ay yb — Ageb), Au, 2 = 2A0,
Ay, +«(—=1+D
Avax = _AUzay7AUt7-77 = _U7t(b)7
Ay, (=140

Ay,y =2Ay, Ay, y = —M,Am,t = 2Ay,

b
Avyv =0,Avy, = 0,Avy, =0, Avy, =0,Ay, v, =0,Ap, v, =0,

AUz,Uz =0, AUy,Uy =0, AUt,Uy = 0>AUt,Ut =0,e=0.

Solving these equations leads to an infinite set of local multipliers:
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Az, y,t,U, Uy, Uy, Uy) = (Cit + Cax + Coy + C3) U + (Cit*+

1‘201

b

1
(—1 + g)y201 )Ut-i- <C4CE2 + Q(Clt + Coy + 03)1’

2(Cazx + Coy + C3)t +

— 22C1 + Crz + Cs + Csy+

bt(tCy + Cr)
T e
1
(=1 +b)eVCizeVCay

C4y2 + ng + Cy ) U, + (Cl4C15(€mx)2+

C16)((eV72)?Cr1 + Cha) (—1 4 b) Cos(\/@)—&-

Ci3(C15(eV12)? + Clﬁ) ((e@y)2011 + Cr2)(b— 1) Sin(\/@)

_ /Ty, Vo <c2<—1 +b)2% — 2(—1 + b)(Cay — %cg)x
+ ((—y2 + t2)b + y2)02 + ((—2:{/01 + C5)t —Chp — Qng)b

+2C3y + Cho + 2y01t>>.

Hence, using the Bluman-Anco homotopy formula, we obtain the con-
servation components of ¢, %, ¥ with respect to A:

Case 1

A(I) Y, ta U7 UZ‘) Uy’ Ut) =
1
g(tUb + U2y + Uz — Upp2p + Uty2 — Utyzb + 22tUp + 2Uyytb)7

¢ :%%(U%Q + UpUyz + UpUyz — U?b — 2Up, Uy — 2U, Uy,
+ 2UUp2 + 2Up2, Uz + 2Up2Uyy — UpUpyz — UpUpga2 + UpUpp2
— UpUpay2 + Up2Upgye — UppUyyy2 — UpUyya2 + Up2 U2 — UpUyy2
+ Up2Uyyy2 + Upzgzp — 2Up22p — 2Up22p — Upzpzpe + Upzg2p2
+ Upzy2pz — 2UntUpey — 2UyUpyy + 2UtUpgpe + 20Uy U2
+ 2Uat Uz — 2UUyytyy — 2U3at Uy — 20U 2 ),
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N 1 1
¢ =UnUs + UsUt — UaUsp + SUUzg2p + 5U U

1 1 1
= 5UUge2p + iUUmyQ - §UUtzy2b + Uythzy

2
1 1 1 1
+ iUmUtth - §UxUt12 + §U$Utx2b + iUzUtQQ
1
+ §UxUty2b - xtUbe - Unyytb + Ua:tUtt - Uxthyy - Uacthttv

1 1
¢V =UpUy + UyUy — UyUy, + §UUtyt2b + §UUtyx2
1 1 1
— iUUtya:Qb + §UUtyy2 — §UUtyy2b + Uxthxy
1 1 1
- §UyUtt2b - §UyUta:2 + dfTaleUyUtxzb + §UyUty2

1
-+ inUtbe — UyaztUmb — UyQytb + Uthtt - Uythmx - ythtt‘

Case 2

A('CC7 Y, tu U7 UJ)? va Ut) =

Erpn b(—yU +yUp + U2 — 2ytU;

+ 2ytUp — 2yxUy + 2yzUgp + Uyp2 — Uya2y + Uyy2p — Upgzyy — Uny),

1 1
¢ =ytUp — UyaUtz — ytUpp + Urya Uy + inUm?b - inUtgﬂb = UnUy—
1 1 1 1
UyUtb — iUUtthb - aUUtyr% + §UUtyy2b + inUttQ - UyUt

1 1 1 1
- 5UUtyx2 + iUUtyy2 + §UyUtz2 - §UyUty2 + nyUtccb - UtyzUa:b
- Uythyy + UtybUa:a:,

1 1
0" = = 5175 QUnUs — 202, Uz — 203Uy + 202 Uy = UplUy2

+ Up2Upye2 — Up2Upyyz + Up2Upyiz + UpUpyy2 — 2Up2py + 2Up2p2y

+ UsbUya2 — Upp2Uyp2 + Upp2Uye — U2 Upyz — UppU,y2 + 20Uy U

= 2Ugbyt Ut + 2U 20 Ut — AUy Upt — 2UyapUyy + 20Uy Uy + 22Uy Uy
+ Wiy Uie — 2y Ui,
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11
@Y = — §T+b(Ub% — UE — 2U Uy — 2Up Uy — 20Uy — UUpy2y,

WUy + 20U, + 20Uz + 2y, Uy + 2032 Uyy + Ul e
+ UUp2p2 — UUgy2p2 — Upzpez + Upzpagz — Upzpzg2 + Upzp2i2 + Uy
+ UpeUpgyz — UpUpp2 + UpeUpyp2 + UpUp e — Upe U2 + UUy,2
— UUyy2 — 2UbyaUny + 2U32y0 Usy + 2U iy Ur — 2U 20 Us
— 2UyUpyp + 2U Uy + 2U1 Ui — 20Uy p2).-
Case 3
Az, y,t, U, Us, Uy, Up) = U + 24Uy + 22U + 20y,

¢t = - UUt - UzUtm - UyUty + UbUt + beUtx + UbyUty + tUt + UtxUm
+ Uthy —tUpy — Uppp Uy — Uthyy —tUyUpgpz — tUbUyy,
¢:c =UpUy + UnUt + UbyUchy — Ut Up — Umea: - UxbUyy + U Uy
- UxbUyy - UxbUtt7
¢y :UbUy =+ UbtUty + beny - betUt - bewa - bey + yUUtt
- yUmbac - yUbUt-
Case 4

—tbU, — b
Az,y,t,U,Uy, Uy, Up) = l@_ﬁ%;yw’

1 1 1 1 1 1
P =— §UbUy - §UbtUty + §betUt + iyUﬂ - §yUt2b - §yUbUmz

1
- §UbyUyy’

11
T 2-1+40b
1

1
=5 155 U+ DUt = UyUty + Uy Uty + 80U + Utlyy — UnUyy

— UUys + tUpUyr + Up Uyt
Case 5
A(‘T7 Y, 1, U7 Ux) Uy7 Ut) = Utv

1 1
§UbUmx - §UbUyya

(bét

(b(_UyUt:v + beUtz - Ubth + Uxthy + U:vat - U:vatb))7

qﬁZJ

¢ :%Urz - %Uﬁb -

o1 1
¢ —§UbUtm - §UxUtb7
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1 1
¢y :iUbUty - inUtb.
Case 6

—tbU, — 22U, Ub
A(xayatan UI’Uy’Ut) = _]_x_|_tb+x t

)

1 1 1 1 1 1
o' =— SUbUe = 5UnUte + 5UasitUt + 52Uz — 52U = SUkUsa

1
- iUway7

R
214D
+ U Uy — Upa Uy — UpUy + tUpUyy + Uy Uye)),

(Z)x (b(_UUt + UbUt - UzUtw + szUtz + thxQ

1

1
5 1+ b(b(—UxUty + Uszty - Ubtny + Urthy —+ nyUt — nyUtb))-

Case 7
A(.CU, y,t, U, Uy, Uya Ut) =yU; — Uy377

1 1 1 1 1 1
¢ =— Sl + Ul + 5UnUty = 5 UnUty + 5 Uy Ui = 5 Usy U,

1 1
- §nyUt + inxUtb’

1 1 1 1 1 L
¢:c — _ §UbUy — §beny — §Ux2by + §bemUx + §yUUtt - §UbyUyy
1
+ iyUbUtta
1 1 1 1 1 L =
& :§UbUa: + §UbyUacy _ iUszyy — §Uy2bx — §UxUtt + ibeUm + §UaxbUtt.
Case 8
A(xvyaty U7 UI?Uy’Ut) = Ux’ (55)
1 1 1 1
d)t = — §UUt:p + §UbUt:r + iUtUx - iUzUtb’
1 1 1 1
¢* = — §Ux2b + iUUtt - §UbUyy - §UU“b’
1 1
¢y = — §UbU1‘y - inUmb'

Case 9
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A($’ Y, ta U) UI) Uy) Ut) = Uy7
P
o) :§(UUty —UUy)(—1+0),

1

o =3

5 (UUgy — UUy),

1 1 1 1
oY =— inzb + §UUtt - §Umbx - QUUttb-

Therefore, for all these cases we detected the local conservation law
of Equation ([L.1)) as follows:

Di¢' + Dy¢" + Dy = 0.

REFERENCES

[1] Y. AryaNejad, Ezact solutions of diffusion equation on sphere, Comput. Methods
Differ. Equ., 10(3) (2022), 789-798.

[2] Y. AryaNejad, Symmetry Analysis of Wave Equation on Conformally Flat Spaces
J. Geom. Phys. 161(2021), 104029.

[3] Y. Aryanejad, Some geometrical properties of the Oscillator group Caspian Jour-
nal of Mathematical Sciences (CJMS), 9(2), (2020) 266-275.

[4] Y. Aryanejad, Some geometrical properties of Berger Sphere, Caspian Journal of
Mathematical Sciences (CJMS) 10.2 (2021): 183-194.

[5] R. Bagley, P. Torvik, A theoretical basis for the application of fractional calculus
to viscoelasticity, J. Rheol. 27 (1983) 201-210.

[6] G.W. Bluman and S. Kumei, Symmetries and Differential Equations, Springer,
New York, 1989.

[7] G.W. Bluman, S. Kumei, On invariance properties of the wave equation, J. Math.
Phys. 28 (1987) 307-318.

[8] M.L. Gandarias, M. Torrisi, A. Valenti, Symmetry classification and optimal
systems of a mon-linear wave equation, Internat. J. Non-Linear Mech. 39 (2004)
389-398.

[9] N.H. Ibragimov (Ed.), CRC Handbook of Lie Group Analysis of Differential Equa-
tions, 3, New Trends in Theoretical Developments and Computational Methods,
CRC Press, Boca Raton, 1996.

[10] H. Li, Z.D. Luo, J. Gao, A new reduced—order FVE algorithm based on POD
method for viscoelastic equations, Acta Math. Sci. 33 (2013) 1076-1098.

[11] P.J. Olver, Applications of Lie Groups to Differential Equations, Springer, New
York, 1986.

[12] A. Oron, P. Rosenau, Some symmetries of nonlinear heat and wave equations,
Phys. Lett. A 118 (4) (1986) 172-176.

[13] L.V. Ovsiannikov, Group Analysis of Differential Equations, Academic Press,
New York, 1982.

[14] Y.R. Yuan, Finite difference method and analysis for three-dimensional semi-
conductor device of heat conduction, Sci. China, Ser. A 11 (1996) 21-32.



	1.  Introduction
	2. The symmetry algebra of Eq.(1.1)
	3. Classification of one-dimensional subalgebras
	4. Similarity reduction of Equation (1.1)
	5. Conservation laws 
	References

