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Abstract. In this paper we consider the notion of quasi-multipliers
on an ℓ−algebra. We prove that, for a Banach ℓ−algebra A with
an ultra approximate identity, the set ℓQM(A) of all order con-
tinuous ℓ−quasi-multipliers on A is a Banach f−algebra. Further,
we establish the relationship between the space ℓQM(A) and the
space ℓM(A) of all ℓ−multipliers on A. It is shown that, for certain
Banach ℓ−algebra A, there exists a map φ : ℓM(A) → ℓQM(A)
which is a positive, isometric and an algebraic lattice isomorphism.

Keywords: Multiplier, Quasi-multiplier, ℓ−space, Banach ℓ−algebra.

2000 Mathematics subject classification: 46A40; Secondary 46B42,
47B65.

1. Introduction

The notion of a quasi-multiplier is a generalization of the notion of a
multiplier on a Banach algebra and was introduced by Akemann and
Pedersen [4] for C∗-algebras. McKennon [13] extended the definition to a
general complex Banach algebra A with a bounded approximate identity
(b.a.i., for brevity) as follows. A bilinear mapping m : A×A → A is a
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quasi-multiplier on A if
m(ab, cd) = am(b, c) d (a, b, c, d ∈ A).

Let QM(A) denote the set of all separately continuous quasi-multipliers
on A. It is shown in [13] that QM(A) is a Banach space for the norm
∥m∥ = sup{∥m(a, b)∥; a, b ∈ A, ∥a∥ = ∥b∥ = 1}. For some classical
Banach algebras, the Banach space of quasi-multipliers may be identified
with some other known space or algebras. For instance, by [13, Corollary
of Theorem 22], one can identify QM(L1(G)) with the measure algebra
M(G), where G is a locally compact Hausdorff group.

After McKennon’s seminal paper the theory of quasi-multipliers on
Banach algebras was developed further by many authors for example
Kassem and Rowlands [10], Lin [12], Argün and Rowlands [7].

In [1, 3], we extended the notion of quasi-multipliers to the dual of a
Banach algebra A whose second dual has a mixed identity. We consid-
ered algebras satisfying a weaker condition than Arens regularity.

In [2], we extended the notion of quasi-multipliers to complete k-
normed algebras (0 < k ≤ 1), and studied their bilinearity and joint
continuity under some suitable conditions.

Multipliers on semilattices and lattices have been previously studied
mainly from the point of view of interior operators by Szasz and Szendrei
[16], Kolibiar [11] and Cornish [9]. Further developments have been
made, among others, by Yilmaz and Rowlands [17] and Benamor[8].

The aim of this paper is to present a few new results for quasi-
multipliers on ℓ−algebras. We identify ℓQM(A), where A is a Banach
ℓ−algebra, as a Banch f−algebra. For unexplained terminology and the
basic results on ℓ−spaces (vector lattices) we refer to [6], [14], [18].

Definition 1.1. Let A,B and C be ordered vector spaces. A mapping
q : A×B → C is said to be positive whenever q(x, y) ∈ C+ holds for all
(x, y) ∈ A+ ×B+.

Definition 1.2. Let A,B and C be ordered vector spaces. A subset D
of A×B is called order bounded if there exist (a, b) and (ã, b̃) in A×B

such that (a, b) ≤ (x, y) ≤ (ã, b̃) holds for all (x, y) ∈ D. A bilinear
mapping φ : A × B → C is said to be order bounded if φ maps order
bounded subsets of A × B onto order bounded subsets of C. In other
words, φ : A×B → C is order bounded if there exist u, v ∈ C such that

u ≤ φ(x, y) ≤ v

for all (x, y) ∈ A×B satisfying

(a, b) ≤ (x, y) ≤ (ã, b̃)

for some (a, b), (ã, b̃) ∈ A×B.
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Let B(A × B,C) denote the vector space of all bilinear mappings
φ : A×B → C and Bb(A×B,C) the subset of B(A×B,C) consisting of
all order bounded mappings. It is not difficult to see that Bb(A×B,C)
is an ordered linear subspace of B(A×B,C).

Definition 1.3. An ℓ−space (or a Riesz space or a vector lattice) is an
ordered vector space A with the additional property that for each pair
of vectors x, y ∈ A the supremum and the infimum of the set {x, y} both
exist in A. Following the classical notation, we shall write

x ∨ y := sup{x, y} and x ∧ y := inf{x, y}.

Definition 1.4. A net {xα} in an ℓ−space A is order convergent to
some vector x ∈ A, denoted xα

o
−→ x, whenever there exists another net

{yα} ⊆ A with the same index set satisfying |xα − x| ≤ yα ↓ 0.

Definition 1.5. An operator T : E → F between two ℓ−spaces is said
to be order continuous, if xα o

−→ 0 in E implies T (xα)
o

−→ 0 in F.

Definition 1.6. An ℓ−space A is called Dedekind complete (or order
complete) if for every nonempty subset D of A that is ordered bounded
in A, supD and infD both exist and are elements of A.
Theorem 1.7. Let A,B and C be ℓ−spaces, with C Dedekind complete.
For every φ ∈ B(A×B,C) and (x, y) ∈ A×B, the following statements
hold:

(1) Every positive bilinear mapping φ : A×B → C is order bounded.
(2) A bilinear mapping φ : A × B → C is order bounded if and only
if there exist positive bilinear mappings φ1, φ2 : A × B → C such that
φ = φ1 − φ2. In the usual notation, we write φ1 = φ+ and φ2 = φ−,
and so φ = φ+ − φ− holds in Bb(A×B,C).

(3) φ+(x, y) =
∨

0≤a≤x
0≤b≤y

φ(a, b).

(4) φ−(x, y) =
∨

0≤a≤x
0≤b≤y

−φ(a, b).

(5) |φ(x, y)| ≤ |φ|(x, y).
(6) |φ(x, y)| ≤ |φ|(|x|, |y|).
(7) |φ|(x, y) =

∨
|a|≤x
|b|≤y

φ(a, b) =
∨

|a|≤x
|b|≤y

|φ(a, b)|.

Definition 1.8.
(a) The real algebra A is called an ℓ−algebra or (a lattice-ordered algebra)
if A is an ℓ−space such that ab ∈ A whenever a, b are positive elements
in A.

(b) An ℓ−algebra A is called an f−algebra if A satisfies the condition
that a ∧ b = 0 implies ac ∧ b = ca ∧ b = 0 for all 0 ≤ c ∈ A.

(c) An ℓ−algebra A is called a d−algebra if c(a ∨ b) = ca ∨ cb and
(a ∨ b)c = ac ∨ bc for all a, b ∈ A and c ∈ A+.
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2. Main results

Definition 2.1. For an algebra A, a mapping q : A×A → A is said to
be a quasi-multiplier on A if it satisfies

q(xy, zt) = x q(y, z) t for all x, y, z, t ∈ A.

Definition 2.2. For an ℓ−algebra A, a quasi-multiplier q : A×A → A
is said to be an ℓ−quasi-multiplier on A if it satisfies

q(x∧y, z∧t) = x∧q(y, z)∧t and q(x∨y, z∨t) = x∨q(y, z)∨t (2.1)

for all x, y, z, t ∈ A.

Let ℓQM(A) denote the set of all bilinear and order continuous ℓ−quasi-
multipliers on A.

Proposition 2.3. If A is a d−algebra, then ℓQM(A) is a lattice.

Proof. We show that for all p, q ∈ ℓQM(A), p ∨ q exists in ℓQM(A)
under the ordering

p ≤ q ⇐⇒ ∀x, y ∈ A, p(x, y) ≤ q(x, y),

and

(p ∨ q)(x, y) = p(x, y) ∨ q(x, y) , (p ∧ q)(x, y) = p(x, y) ∧ q(x, y).

Let x, t ∈ A+ and y, z ∈ A. Then
(p ∨ q)(xy, zt) = p(xy, zt) ∨ q(xy, zt)

= x p(y, z) t ∨ x q(y, z) t (since p, q ∈ QM(A))

= x (p(y, z) t ∨ q(y, z) t) (since A is a d−algebra)
= x (p(y, z) ∨ q(y, z)) t

= x ((p ∨ q)(y, z)) t.

i.e., p ∨ q ∈ QM(A).
Moreover,
(p ∨ q)(x ∧ y, z ∧ t) = p(x ∧ y, z ∧ t) ∨ q(x ∧ y, z ∧ t)

= (x ∧ p(y, z) ∧ t) ∨ (x ∧ q(y, z) ∧ t) (since p, q satisfying 2.1)
= x ∧ [(p(y, z) ∧ t) ∨ (q(y, z) ∧ t)] (since A is a distributive lattice)
= x ∧ [(p(y, z) ∨ q(y, z)) ∧ t]

= x ∧ [(p(y, z) ∨ q(y, z)] ∧ t.

It is easy to see that p ∨ q is order continuous as well. Hence p ∨ q ∈
ℓQM(A). A similar reasoning gives p ∧ q ∈ ℓQM(A). □
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Definition 2.4. Let A be a Banach algebra. A bounded approximate
identity {eα : α ∈ I} in A is said to be an ultra approximate identity
if, for all m ∈ QM(A) and a ∈ A, the nets {m(a, eα) : α ∈ I} and
{m(eα, a) : α ∈ I} are Cauchy ([13], p. 110).

If A is a Banach algebra with a minimal ultra approximate identity
{eα : α ∈ I}, then the equation

(p⊙ q)(x, y) := p(x, lim q(eα, y))

defines a multiplication in QM(A) and QM(A) becomes a Banach alge-
bra ([7], p. 219).

Definition 2.5. Let A be an ℓ−algebra. An ultra approximate identity
{eα : α ∈ I} in A is said to be an ℓ−ultra approximate identity if it
satisfies

lim
α
(eα ∧ x) = lim

α
(x ∧ eα) = x for all x ∈ A.

Proposition 2.6. If A is a Banach d−algebra with an ℓ−ultra approx-
imate identity {eα : α ∈ I}, then ℓQM(A) is a Banach f−algebra.

Proof. By the Proposition 2.3, ℓQM(A) is a lattice and it is not diffucult
to see that under the norm |||p||| = sup{||p(x, y)|| : x, y ∈ A, ||x|| =
||y|| = 1}, ℓQM(A) is a Banach ℓ−algebra. In fact, let p, q ∈ ℓQM(A).
Then:
(p⊙ q)(x ∧ y, z ∧ t) = p(x ∧ y, lim

α
q(eα, z ∧ t))

= x ∧ p(y, lim
α

q(eα, z ∧ t)) (since p ∈ ℓQM(A))

= x ∧ p(y, lim
α
(q(eα, z) ∧ t))) (since q ∈ ℓQM(A))

= x ∧ p(y, lim
α

q(eα, z) ∧ t) (since meet and join are continuous)

= x ∧ p(y, lim
α

q(eα, z)) ∧ t

= x ∧ (p⊙ q)(y, z) ∧ t.
(2.2)

Now, we show that ℓQM(A) is an ℓ−algebra, as follows.
Let p, q ∈ (ℓQM(A))+. We prove that (p ⊙ q) ∈ (ℓQM(A))+. So let
(x, y) ∈ A+ × A+. As q ∈ (ℓQM(A))+, we have q(eα, y) ≥ 0. Also
p ∈ (ℓQM(A))+, then

(p⊙ q)(x, y) = p(x, lim
α

q(eα, y)) ≥ 0.

To see that ℓQM(A) is an f−algebra, let p, q ∈ ℓQM(A) with p∧ q = 0,
and let 0 ≤ h ∈ ℓQM(A). If (x, y) ∈ (A× A)+, then p(x, y) ∧ q(x, y) =
[p ∧ q](x, y) = 0 implies [(h ⊙ p) ∧ q](x, y) = (h ⊙ p)(x, y) ∧ q(x, y) =
0, and so (h ⊙ p) ∧ q = 0. On the other hand, if hn = h ∧ nI, then
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hn(x, y) ↑ h(x, y) holds for all (x, y) ∈ (A × A)+, and so (by the order
continuity of p) it follows that (p⊙ hn) ↑ (p⊙ h) ∈ ℓQM(A). Therefore,
(p⊙hn)∧ q ↑ (p⊙h)∧ q likewise holds in ℓQM(A). Now since p∧ q = 0
and 0 ≤ (p⊙ hn) ≤ np, we see that (p⊙ hn) ∧ q = 0 holds for all n, and
therefore (p⊙ h) ∧ q = 0. □

Definition 2.7. For an algebra A, a map T : A → A is said to be a
multiplier on A if it satisfies

T (ab) = aT (b) = T (a)b for all a, b ∈ A.

Definition 2.8. For an ℓ−algebra A, a multiplier T : A → A is said to
be an ℓ−multiplier on A if it satisfies

T (a ∧ b) = T (a) ∧ b for all a, b ∈ A. (2.3)

Clearly,
T (a ∧ b) = T (b ∧ a) = T (b) ∧ a = a ∧ T (b) for all a, b ∈ A.

The space of all bilinear and order continuous ℓ−multipliers on A is de-
noted by ℓM(A). It is obvious that for each a ∈ A, the left multiplication
operator ξa(x) = a ∧ x is an ℓ−multiplier on A. If A has an identity,
then each ℓ−multiplier on A is a left multiplication operator. Indeed,
let e be an identity for A and T ∈ ℓM(A) be arbitrary. Then equalities

T (x) = T (e ∧ x) = T (e) ∧ x = ξT (e)(x)

hold for x ∈ A, which means T = ξT (e).
For arbitrary lattices, essentially nothing is known concerning ℓ−multipliers;
but for faithful lattices a considerable number of their properties are
readily deduced. A lattice A is faithful if for all x ∈ A, x ∧ A = {0}
implies x = 0. Obviously if A has an identity, it is faithful.

Proposition 2.9. Let A be a faithful d−algebra. Then each ℓ−multiplier
on A is a lattice homomorphism on A.

Proof. Let T ∈ ℓM(A). Then for any x, y, z ∈ A,

T (x ∨ y) ∧ z = (x ∨ y) ∧ T (z) = T (z) ∧ (x ∨ y) (since T is an ℓ−multiplier)
= (T (z) ∧ x) ∨ (T (z) ∧ y)

= (z ∧ T (x)) ∨ (z ∧ T (y))

= (T (x) ∧ z) ∨ (T (y) ∧ z)

= (T (x) ∨ T (y)) ∧ z.
(2.4)

By faithfulness of A, T (x ∨ y) = T (x) ∨ T (y).
Now, let us show that T (x ∧ y) = T (x) ∧ T (y). Indeed, let T ∈ ℓM(A)
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and x ∈ A, then
T 2(x) = T (T (x ∧ x)) = T (x ∧ T (x))

= T (x) ∧ T (x) = T (x),
(2.5)

i.e., T 2 = T. So
T (x ∧ y) = T (T (x ∧ y)) = T (x ∧ T (y))

= T (x) ∧ T (y).
(2.6)

□

Proposition 2.10.
(i) If A is a (distributive) d−algebra then (ℓM(A),∨,∧) is a distributive
lattice with the identity function I as its unit and

(T1 ∧ T2)(x) = T1(x) ∧ T2(x) (x ∈ A),

(T1 ∨ T2)(x) = T1(x) ∨ T2(x) (x ∈ A).

(ii) If A is a faithful d−algebra, then
σ(a) = ξa (a ∈ A)

defines a lattice isomorphism σ : A → ℓM(A).

Proof.
(i) ℓM(A) is evidently closed under ∨ and ∧, and because these opera-
tions are defined pointwise, it follows that ℓM(A) is itself a distributive
lattice.

(ii) Each ℓ−multiplier on A is a left multiplication operator, So σ is
clearly onto.
Let a ∈ A be arbitrary such that σ(a) = 0. Then for each x ∈ A,

σ(a)(x) = ξa(x) = a ∧ x = 0.

Faithfulness of A concludes that a = 0; that is σ is one to one.
Moreover, σ is a lattice homomorphism, as follows.

σ(a∧b)(x) = ξ(a∧b)(x) = (a∧b)∧x = (a∧x)∧(b∧x) = σ(a)(x)∧σ(a)(x)

σ(a∨b)(x) = ξ(a∨b)(x) = (a∨b)∧x = (a∧x)∨(b∧x) = σ(a)(x)∨σ(a)(x)

for all a, b, x ∈ A. □

Theorem 2.11. If A is a d−algebra with a minimal ℓ−ultra approximate
identity {eα : α ∈ I}, then

φT (x, y) = x ∧ T (y) (T ∈ ℓM(A), x, y ∈ A)

defines an isometric and algebraic lattice isomorphism φ : ℓM(A) →
ℓQM(A). Moreover, φ is positive if A is Dedekind complete.
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Proof. A simple computation shows that φT (x∧y, z∧t) = x∧φT (y, z)∧t,
so φT ∈ ℓQM(A). Let m ∈ ℓQM(A) be arbitrary. Define

T (x) = lim
α

m(eα, x) (x ∈ A).

It is obvious that T ∈ ℓM(A). Since m is continuous, for any x, y ∈ A,
we have

m(x, y) = m(lim
α
(x ∧ eα), y) = lim

α
m(x ∧ eα, y)

= x ∧ lim
α

m(eα, y) = x ∧ T (y) = φT (x, y).
(2.7)

This means that φ is onto. Next, we prove that φ is isometry. Let
T ∈ ℓM(A) and ϵ > 0 be arbitrary. If x ∈ A is such that ||x|| ≤ 1 and
||T || − ϵ < ||T (x)||, then

||φT || ≥ lim
α

||φT (eα ∧ x)|| = lim
α

||eα ∧ T (x)||

= ||T (x)|| > ||T || − ϵ.
(2.8)

Thus φ is an isometry.
We check the multiplicativity of φ : for any T1, T2 ∈ ℓM(A) and x, y ∈ A,

(φT1 ⊙ φT2)(x, y) = φT1(x, limα
φT2(eα, y))

= x ∧ T1(lim
α

φT2(eα, y))

= T1(x ∧ lim
α

φT2(eα, y))

= T1(lim
α
(x ∧ eα) ∧ T2(y))

= T1(x ∧ T2(y))

= x ∧ T1(T2(y))

= φT1T2(x, y),

(2.9)

which implies that φ is an algebraic homomorphism.
We note that φ is a lattice homomorphism, as follows.

φT1∨T2(x, y) = x ∧ (T1 ∨ T2)(y) = x ∧ (T1(y) ∨ T2(y))

= (x ∧ T1(y)) ∨ (x ∧ T2(y)) = (φT1 ∨ φT2)(x, y).
(2.10)

In the similar way we have φT1∧T2(x, y) = (φT1 ∧ φT2)(x, y). Thus φ is
a lattice homomorphism. Finally, if A is Dedekind complete, then by
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Theorem 1.7

(φT )
+(x, y) =

∨
0≤a≤x
0≤b≤y

φT (a, b) =
∨

0≤a≤x
0≤b≤y

(a ∧ T (b))

=
∨

0≤a≤x

a ∧
∨

0≤b≤y

T (b) = x ∧ T+(y) [[5],Theorem 3.3]

= φT+(x, y).
(2.11)

□

Remark. If A is a Dedekind complete lattice with a minimal ℓ−ultra
approximate identity, then Theorem 2.11 allows a natural definition of
multiplication in ℓQM(A). Namely, for arbitrary m1,m2 ∈ ℓQM(A), let
T1, T2 ∈ ℓM(A) be uniquely determined multipliers satisfying m1 = φT1

and m2 = φT2 . Then
m1 ⊙φ m2 = φT1 ⊙φ φT2 := φT1T2

gives a well defined multiplication in ℓQM(A).
Acknowledgements: The author is very grateful to the referee for

his helpful comments and suggestions.
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