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1. Introduction

The study of symmetries in general relativity has long been considered
due to they are interesting both from the mathematical and the physical
point of view (see for example [7]). The symmetry is a one-parameter
group of diffeomorphisms of the pseudo-Riemannian manifold (M, g),
which leaves a special mathematical or physical quantity invariant. This
statement is equivalent to the Lie derivative of the geometry quantity
under the vector field X vanishes, i.e., LXS = 0. If S has geometrical
or physical significance, then those special vector fields under which S is
invariant will also be of significance. Isometries, homotheties, and con-
formal motions are well-known examples of symmetries. Recently, other
types of symmetries including curvature collineations (S = R being the
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curvature tensor), Ricci collineations (S = ρ being the Ricci tensor),
and etc., have been studied. Some examples may be found in [1, 2].

On the pseudo-Riemannian manifold (M, g) a matter collineation is
a vector field X, which preserves the energy-momentum tensor S =

ρ− τ

2
g, where τ displays the scalar curvature. Since the Ricci tensor is

constructed from the connection of the metric tensor, Ricci collineations
have geometrical importance [8]. However, matter collineations are more
related to a physical viewpoint [4, 5]. These physical and geometric
concepts give a single meaning in a particular case, for example, when
the meter tensor has a zero scalar curvature.

The concept of product manifolds plays very important roles in differ-
ential geometry and mathematical physics. In the meantime, the prod-
uct of the real line spaces of constant Gaussian curvature is of special
importance. Hence, in this article, we study symmetries of the pseudo-
Riemannian manifold H2×R. We present a complete classification of its
Ricci and matter collineations. Obviously, any Killing vector field (re-
spectively, any affine vector field and curvature collineation) is an affine
vector field (respectively, any curvature and Ricci collineation) but the
inverse is always not true. Also, a homothetic vector field (i.e., a vec-
tor field that holds in relation LXg = κg, where κ is a real number) is
a Ricci collineation and so is a Yambe soliton with constant curvature
[3]. Therefore, we analyze the existence of proper Ricci and curvature
collineations, which are not Killing and homothetic. So, we also re-
quire to determine which are the killing, affine and homothetic vector
fields, which is an interresting problem on its own, due to the natural
geometric meaning of such symmetrics. Maple16© is used to check all
computations.

2. The pseudo-Riemannian manifold H2 × R

Assume H2 be expressed by the upper half-plane model {(x, y) ∈ R2 |
y > 0} equipped with the metric gH2 = 1

y2
(dx2 + dy2). Therefore, the

left-invariant product metric on the pseudo-Riemannian manifold H2×R
is given by

g =
1

y2
(dx2 + dy2)− dz2. (2.1)

We will denote by ∇ the Levi-Civita connection of (H2×R, g), by R its
curvature tensor, taken with the signed contract R(X,Y ) = [∇X ,∇Y ]−
∇[X,Y ] and by ρ the Ricci tensor of (H2 × R, g), which is defined by
ρ(X,Y ) = tr{Z 7→ R(Z,X)Y }. The Ricci operator Ric is given by
ρ(X,Y ) = g(Ric(X), Y ) and the scalar curvature τ = trg ρ is the metric
trace of the Ricci tensor.
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The non-zero components of the Levi-Civita connection ∇ of the
pseudo-Riemannian manifold H2 × R are given by

∇∂x∂x = 1
y∂y, ∇∂x∂y = − 1

y∂x, ∇∂y∂x = − 1
y∂x, ∇∂y∂y = − 1

y∂y.

(2.2)
The non-zero component of the curvature tensor R is given by

R(∂x, ∂y)∂x = 1
y2
∂y, R(∂x, ∂y)∂y = − 1

y2
∂x, (2.3)

and the non-zero components of the Ricci tensor are ρ11 = ρ22 = − 1
y2

.

3. Symmetries of H2 × R

A conformal Killing vector field X with the conformal function ψ
satisfying LXg = 2ψg which reduces to homothetic or Killing vector
field when ψ is non-zero constant or zero constant respectively. A vector
fieldX is called proper conformal Killing vector field if ψ is non-constant.
We begin by examining the existence of the Killing, homothetic, and a
proper conformal Killing vector fields on (H2×R, g). In general, we have
the following theorem.

Theorem 3.1. Assume X = X1∂x+X
2∂y+X

3∂z be an arbitrary vector
field and ψ be a smooth function on the pseudo-Riemannian manifold
(H2 × R, g). Then

(i) X is a Killing vector field if and only if

X1 =
1

2
c1(x

2 − y2) + c2x+ c3, X
2 = (c1x+ c2)y, X

3 = c4.

(ii) X is a homothetic, non-Killing vector field if and only if

X1 =
1

2
κ(1 + ln(y))x+ c1y

2z + f1(x) + f2(y),

X2 = (
1

2
κ ln(y) + f

′
1(x))y, X

3 =
1

2
κz + c1x+ c2,

where κ 6= 0 is a real constant and f1, f2 are smooth functions
on H2 × R, satisfying

(2f
′′
1 (x) + 4c1z)y

2 + 2yf
′
2(y) + κx = 0.

(iii) X is a proper conformal Killing vector field if and only if

X1 = y(2c1x+ c2)e
z − y(2c3x+ c4)e

−z +
1

2
c5(x

2 − y2) + c6x+ c7,

X2 = (c1(y
2 − x2)− c2x− c8)e

z + (c3(x
2 − y2) + c4x+ c9)e

−z + y(c5x+ c6),

X3 =
1

y
(c1(x

2 + y2) + c2x+ c8)e
z + (c3(x

2 + y2) + c4x+ c9)e
−z + c10y,
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and ψ is given by

ψ(x, y, z) =
1

y
((c1(x

2 + y2) + c2x+ c8)e
z − (c3(x

2 + y2)− c4x− c9)e
−z).

In the above expressions, ci is an arbitrary real number, for any indices
i.

Proof. A straightforward computation shows that the Lie derivative of
g is given by

LXg =
2

y3
(y∂xX

1 −X2)dxdx+
2

y2
(∂xX

2 + ∂yX
1)dxdy

− 2

y2
(y2∂xX

3 − ∂zX
1)dxdz +

2

y3
(y∂yX

2 −X2)dydy

− 2

y2
(y2∂yX

3 − ∂zX
2)dydz − 2∂zX

3dzdz.

By putting all the coefficients of the LXg equivalent to zero and solving
the system of partial differential equations, the Killing vector fields are
obtained which gives the case (i).

Now, we need to put LXg = κg, for any real constant κ 6= 0. Solv-
ing the corresponding system of partial differential equations gives the
homothetic vector fields as in the case (ii).

Next, assume ψ be a smooth function on the pseudo-Riemannian man-
ifold (H2 × R, g). Then, X holds LXg = 2ψg if and only if:

y2∂xX
3 − ∂zX

1 = 0, y2∂yX
3 − ∂zX

2 = 0, ∂xX
2 + ∂yX

1 = 0,

ψ(x, y, z)y − y∂xX
1 +X2 = 0, ψ(x, y, z)y − y∂yX

2 +X2 = 0,

ψ(x, y, z)− ∂zX
3 = 0.

The solutions to the above system give case (iii) and end the proof.
□

Note that the set of all isometries of M forms a group under the
composition of mapping. In relativity, groups of isometries are known
as isometric symmetry groups. In general, symmetry groups arise as
groups of transformations of M or local G-transformation groups acting
on M which have some special property respect to a geometric object
on M . A physical example is the isometry of a spacetime such that g is
invariant in time, that is, LT g = 0, where we take a time coordinate t
for which T = ∂t. Such spaces are called static spacetimes [7].

Now, we classify affine vector fields of (H2 × R, g). The results are
reported in the following theorem.

Theorem 3.2. Assume X = X1∂x + X2∂y + X3∂z be an arbitrary
vector field on the pseudo-Riemannian manifold (H2×R, g). Then X is
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an affine, non-Killing vector field if and only if
X1 = c1(y

2 − x2) + c2x+ c3, X
2 = (−2c1x+ c2)y, X

3 = c4z + c5.

where ci is an arbitrary real number, for any indices i.

Proof. To obtain the affine vector fields, we require to compute the Lie
derivative of the Levi-Civita connection ∇. Using

LX∇(Y, Z) = ∇Y ∇ZX −∇∇Y ZX +R(X,Y )Z,

and (2.2) we prove that the components of the LX∇ are given by

LX∇(∂x, ∂x) = −1

y
(2∂xX

2 − y∂2xxX
1 + ∂yX

1)∂x

+
1

y2
(2y∂xX

1 + y2∂2xxX
2 − y∂yX

2 −X2)∂y

+
1

y
(y∂2xxX

3 − ∂yX
3)∂z,

LX∇(∂x, ∂y) =
1

y2
(−y∂yX2 + y2∂2yxX

1 +X2)∂x +
1

y
(∂yX

1 + y∂2yxX
2)∂y

+
1

y
(∂xX

3 + y∂2yxX
3)∂z,

LX∇(∂x, ∂z) = −1

y
(∂zX

2 − y∂2yxX
1)∂x +

1

y
(∂zX

1 + y∂2zxX
2)∂y + ∂2zxX

3∂z,

LX∇(∂y, ∂y) =
1

y
(−∂yX1 + y∂2yyX

1)∂x +
1

y2
(−y∂yX2 + y2∂2yyX

2 +X2)∂y

+
1

y
(y∂2yyX

3 + ∂yX
3)∂z,

LX∇(∂y, ∂z) =
1

y
(−∂zX1 + y∂2zyX

1)∂x −
1

y
(∂zX

2 + y∂2zyX
2)∂y + ∂2zyX

3∂z,

LX∇(∂z, ∂z) = ∂2zzX
1∂x + ∂2zzX

2∂y + ∂2zzX
3∂z.

Now, it suffices to put the coefficients of the above Lie derivative of the
Levi-Civita connection ∇ and solve the corresponding system of partial
differential equations to obtain the affine vector fields.

□
Next, we will focus on symmetries of (H2×R, g) relative to curvature.

The results are reported in the following theorem.

Theorem 3.3. Assume X = X1∂x+X
2∂y+X

3∂z be an arbitrary vector
field on the pseudo-Riemannian manifold (H2 × R, g). Then

(i) X is a Ricci collineation if and only if X3 is arbitrary and

X1 =
1

2
c1(x

2 − y2) + c2x+ c3, X
2 = (c1x+ c2)y.
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(ii) X is a curvature collineation if and only if

X1 =
1

2
c1(x

2 − y2) + c2x+ c3, X
2 = (c1x+ c2)y, X

3 = f(z),

where f(z) is an arbitrary smooth function on H2 × R.

Proof. The Lie derivative of the Ricci tensor in the direction X is de-
termined by

(LXρ) = − 2

y3
(y∂xX

1 −X2)dxdx− 2

y2
(∂xX

2 + ∂yX
1)dxdy

− 2

y2
∂zX

1dxdz − 2

y3
(y∂yX

2 −X2)dydy − 2

y2
∂zX

2dydz.

To determine the Ricci collineations, we need to put the coefficients of
the LXρ equivalent to zero and solve the system of partial differential
equations. The solutions to this system give case (i).

Next, we investigate curvature collineations, beginning from an arbi-
trary Ricci collineation and apply the extra condition LXR = 0. Thus

X =
1

2
c1(x

2 − y2)∂x + (c1x+ c2)y∂y +X3∂z,

is also a curvature collineation if and only if

∂xX
3 = ∂yX

3 = 0,

which gives the result case (ii). □

Now, we classify matter collineations on the pseudo-Riemannian man-
ifold (H2 × R, g).

Theorem 3.4. Assume X = X1∂x+X
2∂y+X

3∂z be an arbitrary smooth
vector field on the pseudo-Riemannian manifold (H2 × R, g). Then, X
is a matter collineation if and only if X1, X2 are arbitrary and X3 = c,
where c is a real constant.

Proof. A straightforward computation displays that only the non-zero
component of the tensor field S is S(∂z, ∂z) = −1. Now, we compute
the Lie derivative of the tensor field S. We have

LXS = −2∂xX
3dxdz − 2∂yX

3dydz − 2∂zX
3dzdz.

Requiring that LXS = 0. So, we attain the system of partial differential
equations, which solutions specify the matter collineations of (H2×R, g).
Thus, X is a matter collineation if and only if X1, X2 are arbitrary and
X3 is a real constant and this completes the proof. □
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