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THIS PAPER ADVANCES A NEW APPLICATION OF ¢-HOMOTOPY ANAL-
YSIS METHOD (g-HAM) TO SOLVE NON-LINEAR OPTIMAL CONTROL
PROBLEMS(NOCPS). FIRST, THE NOCP WAS TRANSFORMED INTO
A NON-LINEAR TWO-POINT BOUNDARY VALUE PROBLEM BY US-
ING THE PONTRYAGINS MAXIMUM PRINCIPLE (PMP). THEN, WE
APPLIED THE ¢-HAM TO SOLVE THIS SYSTEM. THE PROPOSED
METHOD IS BASED ON THE HAM BUT THE ¢-HAM, HAS AN IN-
CREASED INTERVAL OF CONVERGENCE THAN THE HAM. THREE
EXAMPLES ARE PROVIDED TO DEMONSTRATE THE RELIABILITY AND
EFFICIENCY OF THE METHOD. NEXT, THE NUMERICAL RESULTS OF
THE PROPOSED METHOD ARE COMPARED WITH THOSE OF OTHER
METHODS. AS CAN BE SEEN FROM THE TABLES, THE MAXIMUM ER-
ROR IN THE SECOND AND THIRD EXAMPLES IS MUCH BETTER THAN
OTHER METHODS.
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1. INTRODUCTION

Optimal control problems are widely used in various fields such as
biomedicine [1l], robotics [2], aircraft systems [3], physics [4], and eco-
nomics [p]. Optimal control of non-linear systems has been one of
the most challenging issues which have been extensively studied by re-
searchers over the years. Since there is no analytical solution for non-
linear optimal control problems (NOCPs), considerable attention has
been devoted to such problems. Many approaches have been proposed
to solve these equations, The so-called measure theory is one exam-
ple proposed by Rubio [6]. This technique transforms NOCPs to lin-
ear programming problems and provides a piecewise constant control
law. In [[], optimal control problems were solved using the spectral
homotopy analysis method. More recently, a hybrid parametrization
approach was introduced by [8] for solving NOCPs. In this paper, an
effective technique is developed for control parametrization and state
variables are computed using homotopy analysis method (HAM). Ef-
fati et al. [9] used HAM to present an analytic-approximate solution
for these equations. The optimal homotopy perturbation method was
used by Jajarmi et al.[10] for answering a class of NOCPs. Hwang et al.
[11] constructed a computational approach to unravel optimal control
problems using differential transformation. Legendre approximations
were suggested by El-Kady et al. [12] to respond to optimal control
problems governed by higher-order ordinary differential equations. Jia
et al. [13] introduced a new method based on optimal HAM and Pon-
tryagins maximum principle (PMP) for solving linear optimal control
problems. A numerical approach based on the Boubaker polynomials
expansion scheme was suggested by Kafash et al. [14] to make answer
optimal control problems. Lin et al. [L5] introduced the fundamentals
of the control parameterization method and examined its various ap-
plications to non-standard optimal control problems. The radial basis
function (RBF) collocation method was proposed by Mirinejad et al.
[16] to deal with OCP, robotics, and autonomous systems. Nazemi et
al. [17] developed an algorithm capable of solving a class of NOCPs. A
combination of the hybrid spectral collocation technique and HAM was
used by Saberi et al. [18] to construct an iteration algorithm for solving
a class of NOCPs. He’s variational iteration method was proposed by
Shirazian et al. [19] to investigate a class of NOCPs. The modified
variational iteration method (MVIM) and the advantages of using this
method are discussed in that paper. Chen et al. [20] provided a new
spectral method based on Galerkin approximation solutions of the non-
linear optimal control systems. Overwhelming research has been done
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on developing applications of fractional iteration algorithm in engineer-
ing fields and physical models [21, 22, 23]. The authors studied new
modified variational iteration algorithmsl, modified variational iteration
algorithmsII and Riccati transformation methods in [24, 25, 26, 217, 2§]
to approximate the solutions of kind of the problems.

HAM is a semi-exact method for solving non-linear equations which
does not need small/large parameters proposed by Liao [29]. This is
an efficient method to solve highly linear and non-linear problems in
various fields [30]. Onme of the strengths of HAM, compared to other
analytical methods, concerns its great freedom to choose the initial ap-
proximation. Besides, it contains a specific auxiliary parameter which
facilitates adjusting and controlling the convergence region and the rate
of convergence of the series solution.

El-Tawil and Huseen [31] formulated a method called ¢-HAM which
is a more general method of HAM. This method has been successfully
applied to solve many types of non-linear problems [32, B3, B4, 85, B6,
37, B8, B9, 40].

In this work, an indirect method based on ¢-HAM is introduced to
solve NOCPs. One of the main preference of g-HAM is that it contains
an auxiliary parameter n same as h such that the case of n = 1 (¢-HAM;
n = 1) the standard HAM can be reached. But, this fraction factor n has
much flexibility to adjust and control the convergence region and rate of
convergence of the series of solution compared to auxiliary parameter h
in HAM. To show the efficiency of the method and its effectiveness, three
practical examples have been solved and compared with other methods.

The paper is organized as follows: Section2 introduces ¢-HAM to solve
optimal control problems; In Section 3, three examples are presented to
show the efficiency of the method; In the last Section, some conclusions
are drawn based on the findings.

1.1. The basic concepts of the g-HAM. In order to understand the
fundamentals of -HAM, consider the following differential equations:
Nfw(®)] =0, (1.1)

where N represents a non-linear operator and w(t) is stands for an un-
known function[41]. It is possible to formulate the zero-order deforma-
tion equation thus:

(1 = nq)L{p(t; q) — wo(t)] = F(n)gN[o(t; )], (1.2)

1
q € [0, —] signifies an embedding parameter, n denotes a non-zero aux-

iliary parameter, F'(n) represents a non-zero auxiliary function n > 1,
L is an auxiliary linear operator with the property L(c1) = 0 where ¢;
denotes an integral constant, wg(t) shows an initial guess of w(t), and
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¢(t; q) stands for an unknown function. We have great freedom to take
auxiliary objects such as ¢ and L in HAM. Obviously, when ¢ = 0 and
1

q=—,
n

P(t;0) =wo(t),  B(t;1) =w(?), (1.3)
respectively. Thus, as ¢ rises from 0 to 1, the solutions ¢(t;q) alter
from the initial guess wy(t) to the solution w( ). By expanding ¢(t; q) in
Taylor series with regard to ¢, we will have

P(t;q) = wo(t) + Z W (t)q™, (1.4)
where
1 0™e(t;
wn(®) = D, (15)

Let’s suppose that F'(n), wy(
1
the series converges at ¢ = —

n

t), and L are accurately selected such that

and we have

w(t) = 9l ) = wolt) + 3 wn(B)( )" (1.6)
m=1
Defining the vector w,(t) = {wo(t), w1 (t), wa(t), ..., w,(t)}. Differentiat-
ing equation ([L.9) m times with regard to ¢ and then setting ¢ = 0 and
eventually dividing them by m!, we will obtain the m!" order deforma-
tion equation:

Llwn(t) = kpwm-1(t)] = F(n) Ry (wp,_1), (1.7)
where
Lo _ 1 9™ IN[g(tq)]
Rm(wm—l) - (m — 1) 8qm_1 |q 0, (18)
and
Fim = { 2,, Z;therix;ise (1.9)

It needs to_be stressed that w,,(t) for m > 1 is governed by the linear
equation (@) with linear boundary conditions which are related to the
original problem. Let

+0o0
DY wnlt)(C)" (111)
m=1
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represents the square residual error of the m*-order approximation of
the equation (d) which is integrated into the whole domain Q. Theo-
retically, if the square residual error tends /\,, to zero, then

+0o0 1
wit) = walt)()" (1.12)
m=1

will serve as a series solution for the original equation (EI) Besides,
the optimal value of the auxiliary parameter n is given by solving the
following non-linear algebraic equation

A,
) 1.13
= (1.13)

1.2. Non-linear optimal control problems. Consider the following
non-linear dynamical system

B(t) = f(t,x(t) + gt x(t))u(t), € [to,tg],

x(to) = xo, z(ty) = xy, (1.14)
where u(t) € R™ is the control variable, z(t) € ¢ indicates the state
variable, zo and xz; are the given initial and final states at ¢y and ty,
respectively. Moreover, f(t,z(t)) € R® and g(t, z(t))u(t) € ™ are
two continuously differentiable functions in all arguments. We have the
quadratic objective functional as follows:

Tz, = % /t Y T (0)Qu(t) + uT () Ru(t) dt, (1.15)

which should be minimized subject to the non-linear system (), for
Q € R and R € R™*™ positive semi-definite and positive definite
matrices, respectively. Since the performance index (ﬁ) is convex, the
following extreme necessary conditions are also sufficient for optimality:

&= [t x(t) + g(t, 2(t))u’,
A= —Hy(xz,u",\),
u* = argmin,Hy(z,u, \), (1.16)
a(to) = o, x(ty) =y,
where Hy(z,u,\) = 3[27Qz + uT Ru] + AT [f(t,z) + g(t, z)u] is referred

to as the Hamiltonian. Equivalently, (\1.1@) can be written in the form
of:

&= f(ta ‘7:) + g(t, $)[*R_19T(tv :L‘))\],
s= @+ (T S AR e 2Ty 1)
=1

oz
x(to) = o, x(ty) = vy,
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where \(t) € R is the co-state vector with the " component, \;(t),i =
1,..,sand g(t,x) = [g1(t,x), ..., gs(t, 2)]T, with g;(t,z) € R™,i =1, ..., s.
Also, the optimal control law is obtained by

u* =R g7 (t, 2)\ (1.18)

For solving the system (), we can solve the following system with
g-HAM method

T = f(t’ $) + g(t, x)[_R_lgT(tv :c))\],
= e+ (Y g’ DN+ MR, @A]Mggi “1.19)
i=1

x
.%'(to) = 2o, /\(to) = Q,

where a € R is an unknown parameter. Which is obtained after suffi-
cient iterations of ¢-HAM, as discussed hereinafter. We can change the
equation () as follows:

T =01(t,z, ) (1.20)

A =0x(t,z,\) € [to,ty]

x(to) = X, )\(to) = Q,

1.3. The basic idea of ¢-HAM for NOCPs. To solve the non-linear
system ([L.19) by means of ¢-HAM method, consider these following ini-
tial approximations:

xo(t) =0,
)\O(t) = Q,
Besides, we consider the linear operators as follows:
99i(t; q)
L 7 ta = )
Biltsa)] = <2
based on equation (), the following non - linear operators will obtain:
0¢1(t,q
Mot = 229D g,4.6,(0,0), 00t 0).
Opa(t,q
Nolos(t:0)] = 220D ,(4.01(t.0). (1. 0)).

We also constructed the following zero-order deformation equations:

(1 = nq)L{¢p1(t;q) — zo(t)] = F(n)gN1[¢:i(t; @), (1.21)
(1 —ng)L[ga(t; q) — Ao(t)]

I
=
S

Y
5
3
o
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Obviously, when ¢ = 0 and ¢ = %, we will have
1
1
P2(t;0) = Ao(?), P2 (t; ﬁ) = A(t),

respectively. Therefore, as ¢ rises from 0 to %, the solutions ¢;(t; q)
changes from the initial guesses (%), Ao(t) to the solutions x(t), A(¢).

+o0 1

2(t) = zo(t) + Y Zm (1)), (1.22)
m=1
+o0

M) = Ro(t) + X An(B)(5)™,
m=1

where
1 0"ga(t;q)

Am(t) = Dild2(t; )] = —y WM:O,

in which D,, denotes the m*"-order g-homotopy-derivative of ¢;.

) = {$0(t)7x1(t)7 "'7xk(t)}a
Ak = {)‘O(t)7)‘1(t)7 7)‘k(t)}

By differentiating equation() m times with regard to the embedding
parameter ¢ and setting ¢ = 0 and ultimately dividing them by m!, the
so-called m*"-order deformation equations will obtain as follows

Lz (t) = kmxm—1(t)] = F(n) Ry (Zm—1), (1.24)
L[/\m(t) - k’m)\mfl(t)] = F(n)Rm(mel)a (1'25)
where
Rm(-fm—l) = x;n—l - le—l(ta Tm—1, )\m—l)y (126)
Rm(xmfl) = )‘{m—l - 92m71(ta Tm—1, )\mfl)a (127)
and
0, m<1,
Fom = { n, otherwise (1.28)

Theorem 1.1. If the series solution defined in is convergent,
then it converges to an exact solution of the non-linear problem )
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As the series is hypothetically convergent, it holds:
00 1
Vi) =) zm()( )™,
m=0

400 1
W) = > A"
m=0

Consequently, the necessary condition for the convergence of the series
is valid; in other words:

: 1 m __

im0 (1)) =0, (1.29)
: 1 m o __

i, AmBG)™ =0

—+00 “+00
F(n) Y Rn(ZFm-1) = Y Llzm(t) — kmTm-1(t)], (1.30)
m=1 m=1
400 . +o0
F(n) Y Rn(Am-1) = > LAm(t) = kmAm-1(1)]. (1.31)
m=1 m=1
1
We multiply the sides of equation () in Y F (=)m
n

m=1 m=1
L lllggo 5 () m(0) = (o)) | = Lllim (2 n(6) = (ol +
=1
(CP2a(t) = (P () 4 (G (t) = (Phaa(t) 4 o+ () i1 1)
1 1
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—+00

F@)}j@ﬁmRm@mA):o

m=1

On the other hand, according to the definition:

—&-oo1

Z (E)mRm(fm—l) =0,

m=1

based on equation (), we have

+o00 1
> ) @t = Ot (b1 A1) = 0
m=1
subsequently,
—+o00 —+00

D

m=1

and finally

1 1
(=)@ = Z(;)melmfl(taxmfla)\mfl)7

n
m=1

¥ =01(t,z,\).

In the case of X = 6,(t, 2, \), the proof is similar. This completes the

proof.

In this part,

2. APPLICATION

we solve three examples of NOCPs to demonstrate the

efficiency and accuracy of the proposed method.

Example 2.1.

We consider the following NOCP:

1
minJ:/ u?(t)dt,
0

m.i:%ﬁ@ﬁmao+mm re1] (@)
2(0) =0, (1) = 0.5.

By using PMP, we obtain the following equations:

.1 . 1

= 53;2(75) sinx(t) — 5)\(15), t €10,1]
A= —A(t)z(t) sinz(t) —
z(0) =0, X0)=a,

A(t)2?(t) cos x(t), (2.2)

N | =
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such that u(t) = —3A(t). Based on equation (), we have

1 1 omt ol 1
Rm(ajmfl) = Tm—1 5 (m — 1)‘ aqm_l 1( q Tk, q Ak)q:[) + 5)\m71a
k=0 k=0
_ m—1 m—1
1 om 1 A

By getting n = 3.695 and according to the final state condition, we must
have Z?:o z;(1) = 0.5, which yields a = —1.0053935951332145. Now,
we successively calculate the following:

ni(t) = 51— i,
xo(t) = —(%)(1 —n)(—1+n)ta+ %(1 — n)nta,

2a(t) = —(%)(1 ) (=14 n)ta+ n(—%(l C ) (=1 4 n)ta + %(1 — n)nta),

Al(t) =0,
Aa(t) =0,
Xs() = (1= m)(~1 + o’

By applying the proposed method, the numerical results of Jy and the
relative error of objective value will be as given in Table [ll. Table
compares the maximum absolute error of the proposed method with
that of other methods, which shows the proposed method has achieved
similar results with other methods. The obtained numerical solutions
for m = 4 and n = 3.695 are provided in Figure [l|.

Example 2.2. In this example, we consider the optimal maneuvers of a
rigid asymmetric spacecraft [44]. The Euler’s equations for the angular
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TABLE 1. Numerical results of various iterations (Exam-
ple P.1)
N JN JIN JiN71
1 ]0.252704 -
2 1 0.252704 0
3 1 0.246596 | 2.47692582 x 1072
4 10.237523 | 3.8198406 x 102
TABLE 2. Minimum objective value of J and the final
state error_of the proposed method and other methods
(Example @)
Method Objective value | Max error
Proposed method(m=4) 0.237523 3.5793 x 107F
Measure theory method [6] 0.2425 4.3 %1073
HAM (h = -1, m=5) [9J] 0.23533 4.2%1078
VIM (m=5) [19] 0.2353 4.2%1075
HPM [42] 0.23533 4.2%10°F
Modal series method [43] (m=>5) 0.2353 2.8%107°
velocities of the spacecraft are given by:
L h mesw] [ 0 o
(1) L Loy ui (t)
x= |iat)| = |- (W)zs()| + |0 = 0] |ua(t)], (2.3)
. IQ 12
xg(t) I — I 1 U3(t)
- x1(t)xa(t) 0 0 —
I3 1L I3 ]

where x1, x2, and x3 are the angular velocities of the spacecraft, uy,

usy, and ug represent the control torques, and Iy = 86.24, Io, = 85.07
and I3 = 113.59 kgm? are the spacecraft principal inertia. The purpose
of optimal control is to find that control u(¢) which minimizes the cost
function

1 100
Tl =5 / (@ ()Qu(t) + uT (t) Ru(t))dt, (2.4)
0
000 1 00
where Q = [0 0 0|, R = |0 1 0. In addition, the following
000 0 01

boundary conditions should be satisfied:

{ 21(0) = 0.017/5, 22(0) = .005r /s, x3(0) = .0017/s,

21(100) = 2(100) = 23(100) = Or/s. (2.5)
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stste function x[t]

05

03}

x[t]

01}

00}

t
control function u[t]

0.50
0.49F

0.48}F

u[t]

047}
0.46

045}

0.44

FiGURrE_1.
ample R.1]).

Suboptimal state x(t) and control u(t) (Ex-

By using PMP, we obtain the following equations:

(

T1(t) =

M) LD

I%Q T 2(t)x3(t),
o x) LI
__1%_ (b)),
@@——ﬁ?—bghm@@@,
P atalt) + el
Is = I L =1
7 3(t) (1) 7 z1(t)A3(t),
Is I, L2,
Ji :L'Q(t))\l(t) Ji :L'l(t))\g(t),
1 2

(2.6)
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and the optimal control law is obtained by:

ut(t) = —A}(t), € [0,100]
uo(t) = Ajat), [0,100] (2.7)
us(t) = —A?’Iit), e [0,100]

To solve equation (@) using ¢-HAM, consider these initial conditions
x1(0) = —0.0001¢t+0.01 /s, x2(0) = —0.00005t+0.005 r/s, x3(0)=
—0.00001¢ + 0.001 r/s, )\1([‘5) = o, )\2(75) = a9, and )\3(75) = ag3. We
have used equation (ﬁ) to obtain the mth-order deformation equations
for m > 1. Based on the equation ([L.§), we have

" . A m—1(1 -73 — Iy
Ry (Z1m—1) = Z1,m—1 + W}Q ( ) Sy Lo kT3 m 1k
1
. . A2.m—1(t
Ry (Zom—1) = Tom—1 + ’n}z ( ) Zk 0 LT1,kT3m—1—k;
2
- . A3, t I —I
Ry (Z3m—1) = T3m—1 + n};( ) + 213 ! T T T 1k
- I —I
Rp(Aym—1) = s A1k — S 0 kA3 1k
. . I .72 - 11
Riyn(A2,m—1) = A2m—1 — T Zkzo T3 kA m—1—k — S T kA3 1k
- . I3 — I [1 I3
Rin(A3,m—1) = A3m—1 — I T o A 1k — 7 P TR Az 1k
(2.8)

Similar to the previous example and getting n = 27.515, we gained a1 =
0.7437367602150743, gy = 0.361839861949632 and ag = 0.1289813901352318.
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Then
z11(t) = (1 —n)(0 — 1.65353 x 1032 + 5.51175 x 10~ 13 4 #(—0.0000983465 + 0.000134457c1)),
z12(t) = (1 — n)n(0. — 1.65353 x 1078 + 5.51175 x 101> 4 £(—0.0000983465 + 0.00013445701)) + ...
221(t) = (1 —n)(0. +3.215 x 1075% — 1.07167 x 1071% + ¢(—0.000053215 + 0.000138181cr2)),
222(t) = (1 — n)n(0. +3.215 x 10732 — 1.07167 x 107193 4 £(—0.000053215 + 0.00013818102)) + ...,
231(t) = (1 —n)(0 4+ 5.1501 x 107%% — 1.7167 x 10~ "3 4+ #(—0.000010515 + 0.00007750320:3)),
232(t) = (1 — n)n(0. + 5.1501 x 10792 — 1.7167 x 107143 + #(—0.000010515 + 0.00007750320:3)) + ...,
A1 (t) = (1 = n)t((0.0003215 — 1.6075 x 10~%)a + (0.000051501 — 2.57505 x 10~ "t)az3),
A12(t) = (1 — n)nt((0.0003215 — 1.6075 x 10-5¢)ay 4 (0.000051501 — 2.57505 x 10~ t)as) + ...,
A2.1(t) = (1 — n)t((—0.000330705 + 1.65353 x 10~%)a; + (0.000103002 — 5.1501 x 10~ "t)az),
A22(t) = (1 — n)nt((—0.000330705 + 1.65353 x 10~ %)ay + (0.000103002 — 5.1501 x 10~ "t)ag) + ...,
A31(t) = (1 — n)t((—0.00165353 4 8.26763 x 10~ 5¢)ay + (0.003215 — 0.000016075t)crs),
A32(t) = (1 — n)nt((—0.00165353 + 8.26763 x 10~ 5t)ay + (0.003215 — 0.000016075¢) ) + ...,

By applying the proposed method, the numerical results of Jy and the
relative error of objective value will be as given in Table §. The max-
imum absolute error of the proposed method is compared with that of
other methods in Table Y. It is noteworthy that the given method im-
proves the maximum absolute error which indicates the efficiency of the
method. The obtained numerical solutions for m = 4 and n = 27.515
are presented in Figures P to

TABLE_3. Numerical results for various iterations (Ex-

ample )
N Jn | Ia=Inot
1 | 0.00468836 -
2 10.00468813 | 4.90601 x 10~°
3 | 0.00468779 | 7.25288 x 10~°
4 | 0.00468776 | 6.3996 x 106

Example 2.3. Consider the nonlinear system described by
T = T2,
iy = —x1 + 29(1 — 23) + u,
z1(0) =1, x2(0) =0,
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TABLE 4. Minimum performance index value of J and
final state error of the proposed method and other meth-
ods (Example R.2)
Method Objective value Max error
Proposed method (m=4) 0.00468776 | 2.20699 * 10~ 17
Modified VIM[45] 0.004678 2.40484 x 10~
SHAM Chebyshev (m=6, n=50, h=-1.2) [46] 0.004687 1.0586 * 1077
SHAM Legendre (m=6, n=50, h=-1.2) [46] 0.004687 1.0589 1077
HPM (m=3) [L0] 0.00468779 -
stste function x1[t]
0010} T ]
0008} 1
0.006 - b
) 0004} b
0002} b
0000 ;\ L L L L L L L \7
0 20 40 60 80 100
stste funétion x2[t]
0.005 - ST ]
o.oo4f— ]
0.003; ]
) o.oozé b
0.001 b
0000 ;\ L L L L L L L \7
0 20 40 60 80 100

FIGURE 2. Suboptimal state 21(¢) and z2(t) (Example @)

and the cost functional
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stste function x3[t]

00010
0.0008 |
0.0006 |
0.0004 -

0.0002

0.0000 [

-0.00856

-0.00858

-0.00860

-0.00862

t
control function u1[t]

FIGURE 3. Suboptimal state 23(¢) and control ul(t) (Ex-
ample P.2)

By using PMP, we obtain the following equations:

T1 = @2,

To = —x1 + x2(1 — x%) — Ao,
)'\1 = —x1 + Ao + 22122 )\9,
/'\2 = —T9— A1 — Ao+ AQ.%'%,

we consider the initial condition 1 (0) = 1, 22(0) = 0, A1(1) = A2(1) =0,
and the optimal control is u = —M\9. Similar to the previous examples,
we gained o1 = 2.352709654003546 and ao = 0.48235132085840954.
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control function u2[t]

-0.00426 |-

-0.00428 |-
-0.00430 |

-0.00432 |-

u2ft]

-0.00434 |-
-0.00436 |-

-0.00438

100

o
N
o
N
o
[o2]
o
©
o

t
control function u3[t]

-0.001135F
-0.001140
-0.001145 |

-0.001150 |-

u3f]

-0.001155 |

-0.001160 |

-0.001165 |

Then
z1,1(t) =0,
712(t) = (1= m) (14 m) (1 + ),
221(8) = (1 —n) (1 + as),
229(t) = (1 — ) nt(1 4+ as) — ~(1 = n)(—1 +n) {2 + tas + 2as),

2

—n)n(t —tag) + %(1 —n)(=14+n)t(2(—1 4 az) + t(ar + 2a2(1 + a2))),

ntay — (I —n)(=1+n)t(t+ ay),
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Table a presents the numerical results for Jy and the relative error of
objective value as obtained by applying the proposed method. In Table

, the maximum absolute error of the proposed method is compared with
that of other methods. The obtained numerical solutions for m = 8 and
n = 2.7385 are depicted in Figures H to E

TABLE_5. Numerical results for various iterations (Ex-

ample P.3)

N TN N J]JVNfl

1 |3.94696 -

2 |2.53263 | 5.584431994 x 10!
3 | 1.56757 | 6.156407688 x 10!
4 | 1.24656 | 2.575166859 x 1071
5 | 1.27434 | 2.17995198 x 102
6 | 1.02859 | 2.389192973 x 10!
7 1 1.06416 | 3.34254247 x 1072
8 | 1.18127 | 9.91390622 x 102

TABLE 6. Minimum performance index value of J and
final state error of the proposed method and other meth-
ods (Example P.3)

Method Objective value Max error
Proposed method (m=8) 1.18127 2.17384 % 1079
SHAM Chebyshev(m=15, N=50, h=—0.5) 1.0472 4.2749 % 1077
SHAM Legendre (m=15, N=50, h=—0.5) 1.0472 4.2749 % 1077
DT (m=15) 1.0478 4.4380 x 1077

3. CONCLUSION

In this paper, we implemented the ¢-HAM to solve NOCPs. This
method has been applied for the first time for NOCPs and can also be
adapted to solving OCP with integral constraints and fractional prob-
lems. The ¢-HAM is a semi-exact method for solving linear and non-
linear equations which does not need small/large parameters. The g¢-
HAM contains an auxiliary parameter n that provides us a convenient
way to guarantee the convergence of solution series so that it is valid
even if non-linearity becomes rather strong. The accuracy and efficiency
of ¢-HAM are presented with some examples and the results of solving
OCP by ¢-HAM are compared with other methods. Comparing the pro-
posed method reveals that the accuracy of the ¢-HAM is better than
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stste function x1[t]

06l ]

x1[t]

04l ]
02l ]

00l ]

t
stste function x2[t]

x2[t]

0.0 0.5 1.0 1.5 2.0

t

FIGURE 5. Suboptimal state z1(¢) and 22(t) (Example @)

other methods. For example, as you can see in the table of example 3,
the ¢-HAM has performed better than the HAM and has a faster con-
vergence. Also, the ¢-HAM software programs are easily written with
any software. Mathematica software was used for the current study.
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