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Abstract. Kinematics studies the motion of a rigid object, such
as displacement, velocity, acceleration, etc. A general planar mo-
tion can be defined as a combination of translation and rotation.
Planar motion is widely used in many fields. Since most mobile
robots move on flat terrain, many grippers and kinematic linkages
use planar motion. The dual quaternion is the generalization of the
quaternion and is used in various fields. In this paper, we introduce
a new approach to planar motions by using the dual quaternion to
study the pole points and pole trajectories, the triple coordinate
system and the canonical system, and find the Euler-Savary equa-
tion.

Keywords: Dual quaternion, planar kinematic, velocity, pole tra-
jectory, Euler-Savary equation.
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1. Introduction

A rigid body can be expressed as a model of an object that does not
deform or change shape. This object has the property that the distance
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between each pair of points of a rigid body is constant. If all points of
a rigid body move along paths equidistant from a fixed plane, then this
rigid body is said to have planar motion. Dual quaternions are of great
importance in many fields such as computer graphics, robotics, etc., as
they provide a simpler and more robust solution for these areas. They
combine translation and rotation in a single state. Dual quaternions
are studied in computer graphics [7], [4], inverse kinematics [10] and
robotics [3], [13]. In [1] we represented a point and its velocities in
planar kinematics in terms of dual quaternions. In this study, we give
the pole points and pole trajectories, the triple coordinate system, the
canonical system, and the Euler-Savary equation in planar kinematics
based on dual quaternions. Our contribution is a novel approach to
planar kinematics with dual quaternions.

2. Dual Quaternions

Quaternions represent the rotation of a rigid body about an axis.
Quaternions, especially unit quaternions, are widely used because they
provide better opportunities for interpolation of key images. Moreover,
they do not suffer from singularity problems [5], [6] [8], [14].

A quaternion in R4 is a 4-tuple and a quaternion is defined as.
q = a+ bi+ cj + dk

with a, b, c, d real numbers, i, j, k are the standard orthonormal basis
in R3 and i2 = j2 = k2 = ijk = −1.

Dual quaternions, which are an extension of real quaternions, were
discovered by William Kingdon Clifford in 1873 [2]. They are used for
both rotations and translations. A dual quaternion can be represented
as follows.

Q̂ = Q+ εQ∗ (2.1)
where

Q = qr + q⃗ and Q∗ = q∗r + q⃗∗

and ε2 = 0. Alternatively, a dual quaternion whose four terms are dual
numbers can be interpreted as follows.

Q̂ = q̂r + q̂xi+ q̂yj + q̂zk (2.2)
or

Q̂ = s+ xi+ yj + zk + ε (sε + xεi+ yεj + zεk) .

When q̂r = 0, a dual quaternion is transformed into a dual vector. Dual
numbers and dual vectors are special cases of dual quaternions [12]. If
two dual quaternions can be taken as

Q̂1 = Q1 + εQ∗
1 and Q̂2 = Q2 + εQ∗

2.
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then the dual quaternion multiplication (⊗) can be written as

Q̂1 ⊗ Q̂2 = Q1.Q2 + ε (Q1.Q
∗
2 +Q2.Q

∗
1) .

The dual conjugate Q̂ and the dual quaternion norm are defined as

Q̂ = Q− εQ∗

and
||Q̂|| = ||Q||+ ε

< Q,Q∗ >

||Q||
.

A dual quaternion satisfying the conditions ||Q̂|| = 1 and . = 0 is
called an unit dual quaternion. A second conjugation operator for a
dual quaternion is given as

Q̂
∗
= (s,−x,−y,−z,−sε, xε, yε, zε) .

Transformations represented by dual quaternions can be combined to
form a dual quaternion. Suppose that Q̂ and P̂ are two transformation
dual quaternions and Qv is a position vector dual quaternion. The
combined transformation C can be applied to Qv as

Q̂′
v = P̂ ⊗

(
Q̂⊗Qv ⊗ Q̂

∗)
⊗ P̂

∗
=

(
P̂ ⊗ Q̂

)
⊗ (Qv)⊗

(
Q̂

∗
⊗ P̂

∗)
(2.3)

or
Ĉ = P̂ ⊗ Q̂⇒ Q̂′

v = Ĉ ⊗Qv ⊗ Ĉ
∗
.

The pure rotation about the vector n with angle θ and the pure trans-
lation can be written as follows using the unit dual quaternion.

Q̂R =

[
cos

(
θ

2

)
, nx sin

(
θ

2

)
, ny sin

(
θ

2

)
, nz sin

(
θ

2

)]
[0, 0, 0, 0] ,

(2.4)
and

Q̂T = [1, 0, 0, 0]

[
0,
tx
2
,
ty
2
,
tz
2

]
. (2.5)

Combining the rotation and translation transformations into a single
unit quaternion to represent rotation followed by translation, we obtain

Q̂ = Q̂T ⊗ Q̂R

=
(
1 + ε

2 [txi+ tyj + tzk]
)
⊗ Q̂R

= R+ εTR
2

(2.6)
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We can write its inverse as [9], [8](
R+ ε

TR

2

)−1

= R∗ − ε
R∗T

2
. (2.7)

3. Planar Kinematic using Dual Quaternions

Let be two planes M (moving) and F (fixed), and let us define the
orthonormal coordinate systems in these planes as M :{Om; e1m, e2m}
and F :{Of ; e1f , e2f} (see Figure (1)).

Figure 1. Planar kinematic of two planes M and F

First, we can assume that these two frames coincide in their points of
origin (Om) and (Of ) (see Figure (2)) and we can take the same point
X (x1, x2) in both frames. Next, we rotate and translate the moving

Figure 2. Planar kinematik of two frames M and F
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frame using dual quaternions and denote the point X (x1, x2) as Xm in
the moving frame and Xf in the fixed frame. We can define the point
X (x1, x2) in dual quaternion form as

Q̂X = [1 + ε (x1, x2, 0)] . (3.1)

We can apply the equation (2.6) to QX , then we obtain the final position
of the point X (x1, x2) according to the fixed frame F with the following
equation:

Q̂
′
X = Q̂⊗QX ⊗ Q̂

∗
= (1, 0, 0, 0)

+ ε
2 (0, 2x1 cosφ− 2x2 sinφ+ 2d1,

2x1 sinφ+ 2x2 cosφ+ 2d2, 0)

(3.2)

where (d1, d2) denotes the coordinates of the origin (Om) of the moving
frame M in the fixed frame F and φ denotes the angle of rotation of M
relative to F , i.e. i.e., φ is the angle between vectors e1m and e1f and is
called the angle of rotation. Finally, we can write the point X (x1, x2)
in the fixed frame F as

Xf = (x1 cosφ− x2 sinφ+ d1) e1f

+(x1 sinφ+ x2 cosφ+ d2) e2f

(3.3)

On the other hand, we can use the following equations obtained via dual
quaternions,

e1f = e1m cosφ− e2m sinφ

e2f = e1m sinφ+ e2m cosφ

we can define the point Xf in the moving frame M with the following
equation:

Xf = (x1 + d1 cosφ+ d2 sinφ) e1m

+(x2 − d1 sinφ+ d2 cosφ) e2m

(3.4)

We can also express the point Xm in the moving frame M as

Xm = x1e1m + x2e2m (3.5)

3.1. Evaluation of Velocities. We determined the relative, absolute,
and drift velocities in [1] respectively as follows:

vr = Ẋ = ẋ1e1m + ẋ2e2m, (3.6)
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va = ẋ1e1m + ẋ2e2m

+
(
ḋ1 cosφ+ ḋ2 sinφ− x2φ̇

)
e1m(

−ḋ1 sinφ+ ḋ2 cosφ+ x1φ̇
)
e2m,

(3.7)

and
vd =

(
ḋ1 cosφ+ ḋ2 sinφ− x2φ̇

)
e1m

+
(
−ḋ1 sinφ+ ḋ2 cosφ+ x1φ̇

)
e2m.

(3.8)

where we denote the derivative by dot.

3.2. Pole Points and Pole Trajectories. First, the following theo-
rem can be expressed for pole points.
Theorem 1: There is only one point (pole point) that remains station-
ary in both planes at any instant of the motion with a non-zero angular
velocity.

Let us determine the pole point P (p1, p2) that satisfies the equation
vd = 0. Using the equation (3.8) for vd = 0, we can write

ḋ1 cosφ+ ḋ2 sinφ− x2φ̇ = 0

−ḋ1 sinφ+ ḋ2 cosφ+ x1φ̇ = 0.

Then we can find the pole point P (p1, p2) using the unit dual quaternion
as follows.

p1 =
ḋ1 sinφ− ḋ2 cosφ

φ̇

p2 =
ḋ1 cosφ+ ḋ2 sinφ

φ̇

(3.9)

The drift velocity of point X can be written using the pole point P (p1, p2)
with the following equation:

vd = [−e1 (x2 − p2) + e2 (x1 − p1)] φ̇. (3.10)
Therefore, the following results and theorems based on dual quaternions
can be written as in [11] as follows:

i) PXvd = 0, i.e. PX ⊥ vd.

ii) |vd| =
√
(x1 − p1)

2 + (x2 − p2)
2 = |PX| φ̇.
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Theorem 2: Each point X of the moving plane M performs a ro-
tational motion with pole point P -centered and angular velocity (φ̇) at
each instant.
Theorem 3: A one-parameter planar motion is the rotation of the
moving plane M about the instantaneous rotation pole P with angular
velocity φ̇.
Theorem 4: In a planar motion with one parameter, the points X of
the moving plane M draw paths on the fixed plane F . The geometric
position of the pole point P in the moving plane M is called the trajec-
tory of the moving pole (pm), and in the fixed plane F the trajectory
of the fixed pole (pf ).
Theorem 5: In a one-parameter planar motion, the curve of the moving
pole (pm) rolls without sliding on the curve of the fixed pole (pf ).

4. Triple Coordinate System and Planar Kinematic Based
on Dual Quaternions

We have studied planar kinematics using dual quaternions with mov-
ing and fixed planes M and F , respectively. In this section we take
three planes M ( moving ), F (fixed) and the other plane A which is
moving plane according to planes M and F . Let us represent the or-
thonormal coordinate systems in these planes as M : {Om; e1m, e2m},
F : {Of ; e1f , e2f} and A :

{
Ō; ē1, ē2

}
. We assume that the motion will

be examined according to the frame A :
{
Ō; ē1, ē2

}
. Next, the following

equations can be defined as follows.
OmŌ = am = am1ē1 + am2ē2

Of Ō = af = af1ē1 + af2ē2

and
dθm = ωm dθf = ωf

dam1 − am2dθm = µm1 daf1 − af2dθf = µf1

dam2 − am1dθm = µm2 daf2 − af1dθf = µf2

(4.1)

where d is used to denote the differential form. Therefore, we can obtain
the linear differential forms, called Pfaff forms, as follows.

i) The motion A with respect to M (A/M):
dmē1 = ē2ωm, dmē2 = −ē1ωm, dam = ē1µm1 + ē2µm2 (4.2)

ii) The motion A with respect to F (A/F ):
dmē1 = ē2ωm, df ē2 = −ē1ωf , daf = ē1µf1 + ē2µf2 (4.3)

where dm and df are used to denote differential forms with respect to
M and F , respectively. Let us determine the velocities of the point X
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with respect to the frame A. Using the following equations below via
dual quaternions

e1f = ē1 cos θf − ē2 sin θf

e2f = ē1 sin θf + ē2 cos θf

and
e1m = ē1 cosψm − ē2 sinψm

e2m = ē1 sinψm + ē2 cosψm

we can write the point X in the moving plane M with respect to the
basis vectors of the frame A as

Xm = (x1 + am1 cosψm + am2 sinψm) ē1

+(x2 − am1 sinψm + am2 cosψm) ē2.
(4.4)

The differential of the point X about to moving frame M can be written
with the following equation:
dXm = dm (x1 + dmam1 cosψm + dmam2 sinψm − x2ωm) ē1

+dm (x2 − dmam1 sinψm + dmam2 cosψm + x1ωm) ē2.
(4.5)

Then we can write the relative velocity vector of the point X with
respect to the moving frame M as vr =

dXm

dt
. If vr = 0 or dXm = 0,

then the condition of fixing the point X in the moving frame M as
dmx1 = −dmam1 cosψm − dmam2 sinψm + x2ωm

dmx2 = dmam1 sinψm − dmam2 cosψm − x1ωm.
(4.6)

Using the equations in (4.1), the equation (4.6) can be expressed as
dmx1 = − (µm1 + am2ωm) cosψm

− (µm2 − am1ωm) sinψm + x2ωm

dmx2 = (µm1 + am2ωm) sinψm

− (µm2 − am1ωm) cosψm − x1ωm.

(4.7)

On the other hand, we can write the point X in the fixed plane F with
respect to the basis vectors of the frame A as

Xf = (x1 + af1 cos θf + af2 sin θf ) ē1

+(x2 − af1 sin θf + af2 cos θf ) ē2.
(4.8)
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The differential of the point X about to fixed frame F can be expressed
by the following equation:

dXf = (dfx1 + dfaf1 cos θf + dfaf2 sin θf − x2ωf ) ē1

+(dfx2 − dfaf1 sin θf + dfaf2 cos θf + x1ωf ) ē2.
(4.9)

Then we can write the absolute velocity vector of the point X about to
fixed frame F with va =

dXf

dt
. If va = 0 or dXf = 0, then the condition

of fixing the point X in the fixed frame F is as follows.

dfx1 = −dfaf1 cos θf − dfaf2 sin θf + x2ωf

dfx2 = dfaf1 sin θf − dfaf2 cos θf − x1ωf .
(4.10)

Using the equations in (4.1), the equation (4.10) can be written using
the following equation:

dfx1 = (−µf1 + af2ωf ) cos θf + (µf2 − af1ωf ) sin θf + x2ωf

dfx2 = (µf1 − af2ωf ) sin θf + (µf2 − af1ωf ) cos θf − x1ωf .
(4.11)

We can define the vector of the drift velocity of the point X if the point
X remains fixed in the moving plane M according to the fixed plane F
with vd =

ddX

dt
. Using equations (4.5) and (4.9), we can express the

ddX as

ddX = [(µf1 cos θf − µm1 cosψm)− am2 (ωf cos θf − ωm cosψm)

+ (µf2 sin θf − µm2 sinψm)− am1 (ωf sin θf − ωm sinψm)

−x2 (ωf − ωm)] ē1

+ [− (µf1 sin θf − µm1 sinψm) + am2 (ωf sin θf − ωm sinψm)

+ (µf2 cos θf − µm2 cosψm)− am1 (ωf cos θf − ωm cosψm)

+x1 (ωf − ωm)] ē2
(4.12)
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Let us now determine the pole point P (p1, p2) from ddX = 0 as

p1 =
(µf1 sin θf − µm1 sinψm)− am2 (ωf sin θf − ωm sinψm)

(ωf − ωm)

−
(µf2 cos θf − µm2 cosψm)− am1 (ωf cos θf − ωm cosψm)

(ωf − ωm)

p2 =
(µf1 cos θf − µm1 cosψm)− am2 (ωf cos θf − ωm cosψm)

(ωf − ωm)

−
(µf2 sin θf − µm2 sinψm)− am1 (ωf sin θf − ωm sinψm)

(ωf − ωm)
(4.13)

If the point X is a fixed point in the plane A, since dmx1 = dmx2 = 0
with respect to the frame M , we can define the pole point R (r1, r2) as
follows:

r1 =
(µm1 + am2ωm) sinψm − (µm2 − am1ωm) cosψm

ωm

r2 =
(µm1 + am2ωm) cosψm + (µm2 − am1ωm) sinψm

ωm

(4.14)

If the point X is a fixed point in the plane A, since dfx1 = dfx2 = 0
with respect to the frame F , we can define the pole point S (s1, s2) as
follows:

s1 =
(µf1 − am2ωf ) sin θf − (µf2 − af1ωf ) cos θm

ωf

s2 =
(µf1 − af2ωf ) cos θf + (µf2 − af1ωf ) sin θm

ωf

(4.15)

4.1. Canonical System. In this section, we will use the system A :{
Ō; ē1, ē2

}
as a special system with the following restrictions:

i) The origin point Ō of the frame A coincides with the pole point P ,
since A = P .

ii) A :
{
Ō; ē1

}
axis coincides with the common pole tangent vector

of the pole curves (pm) and (pf ). From the first constraint it follows
that p1 = p2 = 0 is written, then the relations µm1 = µf1 and µm2 = µf2
are true. From the second constraint the relation µm2 = µf2 = 0 can
be written. The differential of the point X with respect to the mov-
ing frame M and the fixed frame F can be written with the following
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equations:
dXm = (dmx1 + (µ+ am2ωm) cosψm − am1ωm sinψm − x2ωm) ē1

+(dmx2 − (µ+ am2ωm) sinψm + am1ωm cosψm − x1ωm) ē2
(4.16)

and
dXf = (dfx1 + (µ− am2ωm) cos θf − am1ωm sin θf − x2ωm) ē1

+(dfx2 − (µ− am2ωm) sin θf + am1ωm cos θf − x1ωm) ē2
(4.17)

So we can express the condition of fixing the point X in the moving
frame M and in the fixed frame F as follows:

dmx1 = − (µ+ am2ωm) cosψm + am1ωm sinψm + x2ωm

dmx2 = (µ+ am2ωm) sinψm − am1ωm cosψm + x1ωm

(4.18)

and
dfx1 = − (µ− am2ωf ) cos θf + am1ωm sin θf + x2ωf

dfx2 = (µ− am2ωf ) sin θf − am1ωm cos θf + x1ωf

(4.19)

In addition, the following equation can be written as follows:
ddX = [−am2 (ωf cos θf + ωm sinψm)− am1 (ωf sin θf − ωm cosψm)

−x2 (ωf − ωm)] ē1

+ [am2 (ωf sin θf + ωm sinψm)− am1 (ωf cos θf − ωm cosψm)

+x1 (ωf − ωm)] ē2
(4.20)

4.2. The Curvature of The Trajectory Curves. Let us determine
the curvatures of the trajectories in the fixed plane F drawn from the
points of the moving plane M . We will use the canonical system. The
points Xf , Xm and the pole point P located on the instantaneous
trajectory normal belong to the Xm at every moment t. Therefore, the
following vectors have the same direction through the point P as:

PXm = x1mē1 + x2mē2

PXf = x1f ē1 + x2f ē2

Therefore, the following relationships apply to the coordinates:
x1m : x2m = x1f : x2f
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or

x1mx2f − x1fx2m = 0. (4.21)

If we now take the differential of equation (4.21) and substitute equations
(4.18) and (4.19), we obtain the following equation as:

µ (−x2f cosψm + x1m sin θf + x2m cos θf − x1f sinψm)

+am2 (x2fωm cosψm − x1mωf sin θf − x2mωf cos θf + x1fωf sinψm)

+am1 (x2fωm sinψm + x1mωf cos θf − x2mωf sin θf − x1fωm cosψm)

+ (x1mx1f + x2mx2f )ωm −
(
x2m1 + x2m2

)
ωf = 0.

(4.22)
We can use polar coordinates as follows:

x1m = λm cosα x2m = λm sinα

x1f = λf cosα x2f = λf sinα

Therefore, we can express the equation (4.22) as

λf sinα [(−µ+ am2ωm) cosψm + am1ωm sinψm]

+λf cosα [(−µ+ am2ωf ) sinψm − am1ωm cosψm]

+λm sinα [(µ− am2ωf ) cos θf − am1ωf sin θf ]

+λm cosα [(µ− am2ωf ) sin θf + am1ωf cos θf ] = 0.

(4.23)

So, using the above equation, we can determine the Euler-Savary formula
as follows:[

1

λm
(∗1) +

1

λf
(∗3)

]
sinα+

[
1

λm
(∗2) +

1

λf
(∗4)

]
cosα =

1

λf
(λmωf − λfωm)

(4.24)
where

(∗1) = (−µ+ am2ωm) cosψm + am1ωm sinψm

(∗2) = (−µ+ am2ωf ) sinψm − am1ωm cosψm

(∗3) = (µ− am2ωf ) cos θf − am1ωf sin θf

(∗4) = (µ− am2ωf ) sin θf + am1ωf cos θf .
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5. Conclusion

In this study, we have developed a new approach by using dual quater-
nions to study the pole points and pole trajectories, the triple coordinate
system, the canonical system, and the Euler-Savary equation in planar
kinematics. Thus, we have given a new perspective to planar motion.
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