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ABSTRACT. Assume that A and B are unital C*-algebras and ¢ :
A — B is a unital positive linear map. We show that if B is
commutative, then for all z,y € A and o, 5 € C

1 1
lo(zy) — p(@)ey)| < [(la” = alal)]? [o(ly - B1a]*)]?
= lp(@™ — ala)lle(y — Lla)l.
Furthermore, we prove that if 2 € A with [2| = 1 and A, ;1 € C are
such that Re(p((z* —5z")(az—x))) > 0 and Re(o((y" — pz")(Az—
y))) > 0, then
lp(z"y) — (2" 2)p(2"y)| < ilB—allp —al-
- 1 1
[Re(p((a” — B2")(az — 2)))] * [Re(e((y" — az")(\z = y)))]? .
The presented bounds for the Griiss type inequalities on C*-algebras
improve the other ones in the literature under mild conditions.

As an application, using our results, we give some inequalities in
L*°([a, b]), which refine the other ones in the literature.
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1. INTRODUCTION

In 1935, Griiss [13] proved the following complement of Chebyshev’s
inequality:

[k 2 Foyde— ey 2 F(e)de ey [ gle)de] < 3(M —m)||(N —n)],

where f and g are real integrable functions on [a, b] such that there exist
m,n, M, N € R for which m < f(z) < M and n < g(z) < N for all
x € [a,b]. Tt is well-known that the constant % can not be replaced by a
smaller one and is derived for f(z) = g(x) = sgn(x — (a+0b)/2). This in-
equality is known as Griiss inequality in the literature and attracted the
attention of many mathematicians, for more information about Griiss
inequality see [18, chapter X]. The goal of these researches is to inves-
tigate and to generalize the various types of the Griiss inequality in
the different area of mathematics and to obtain improved bounds for
these inequalities by assuming suitable conditions, for more details see
[9, 10, 22, 23]. Moreover, Griiss type inequalities have some important
applications in integral arithmetic mean, difference equations, coding
theory and statistics [[l. 8, 17].

Recently, Dragomir [9] generalized the Griiss inequality in the setting
of inner product spaces and also Ilesevi¢ and VaroSanec [14] presented
some results about the Griiss type inequalities in the framework of inner
product modules. Also, many mathematicians are interested to study
the Griiss type inequalities for positive linear maps. In 2000, Bhatia and
Davis [2], presented a reverse to the so-called Kadison inequality [15].
More precisely, for a positive unital linear map ¢ between C*- algebras,

they proved that
p(2?) = p(2)® < (M —m)

for all self-adjoint element z with m < x < M. Moreover, Bhatia and
Sharma [B] proved the following extension of the above inequality:

p(a"z) — () p(z) <infreclle = Al (1.1)

for all . Moslehian and Raji¢ [19] extended (EI) and presented the
following inequality for unital n—positive (n > 3) linear map ¢:

|

lo(zy) — o(2)e(y)| < infacclle — Alinfucclly — pl, (1.2)

for all x,y.

Ghazanfari and Dragomir [11] introduced a simple formulation of the
Griiss type inequality in inner product C*-modules. They also pre-
sented some generalization of the Griiss type inequalities in inner prod-
uct modules. Also, Ghazanfari [12] investigated Griiss type inequality
for vector-valued functions in Hilbert C*-modules.
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Very recently, Dadkhah and Moslehian [, Theorem 3.5] for n—positive
(n > 3) linear map ¢ : A — B between two C*-algebras A and B pre-
sented the following refined Griiss type inequality:

lp(zy) — p(@)e)] < lle(la* — a2 lle(ly — BIZ  (1.3)

forall z,y € A and for all a, 8 € C. Also they proved that the inequality
(IL.2)) is true for all unital n-positive linear maps and

o) — o(@)p@)] < 1A — plla— B, (1.4)

for all z,y and all a, 8 € C.

In this paper, motivated and inspired by Dadkhah and Moslehian [[],
assuming a mild condition, we present two improved bounds for the
left sides of the inequalities ([l.2) and ([l.4). As an application, we give
sharpened Griiss inequalities in C*-algebra L*°([a, b]).

2. PRELIMINARIES

Let A and B be unital C*-algebras. An element a € A is said to be
positive and is denoted by a > 0, if a is self-adjoint and o(a) C RT. If
in addition a is also invertible, then it is called strictly positive and is
denoted by a > 0. The set of self-adjoint and positive elements of A are
denoted by Ay, and AT, respectively. It is well known that |a|? = a*a
and Re(a) = ‘H'T“ The linear map ¢ : A — B is said to be unital if
©(14) = 1p. Furthermore, if p(zy) = ¢(x)p(y) and p(z*) = @(x)* for
all z,y € A, then ¢ is called a x-homomorphism. For any positive inte-
ger n, we define @y, : Mn(A) - Mn(B) by @n((%’j)nxrz) = (‘P(aij))ana
where M,,(A) denotes the C*-algebra of all n x n matrices with entries
in A. The map ¢ is called positive if p(a) > 0 for all @ € AT, and
n—positive if ¢, is positive. Moreover, ¢ is called completely positive
if ¢ is n—positive for all n. It worth noting that, every positive linear
map is not completely positive, for example if ¢ : My(C) — My(C) is
defined by ¢(A) = A?, then ¢ is positive but is not completely positive.
Also, every x—homomorphism on a *-algebras is completely positive [4,
Example 11.6.9.3], but the converse is not true in general, for example
if ¢ : My(C) — C is defined by ¢((aij)ax2) = > 7, as, then ¢ is com-

1
pletely positive but ¢ is not a homomorphism because ¢( [0 g] 2 =9

and o [(1) g} Yos,

It should be noted that, if B is commutative, using Theorem V.35.4 of
[6], Theorem 3.9 of [21] and Theorem 3.11 of [21], we can conclude that
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every unital positive linear map from A to a commutative C*-algebra
B, is completely positive.

Lemma 2.1. Assume that A is a commutative unital C*-algebra and
a,b,c,d € Agq. The following statements hold:

i) If b is strictly positive and a < c¢b™!, then ab < c.
ii If0<a<b(md0<c<d thenac<bd

i)

i)
i) (02— 2)(c — ) < (ac — b o
iv) If a,b,c,d € AT, then ac + bd < (a® + b*)2(c? + d?)2.

3. GRUSS TYPE INEQUALITIES ON C*-ALGEBRAS

In this section, we improve the bounds of the Griiss type inequalities
for a positive linear map ¢ : A — B between two C*-algebras. More
precisely, assuming the commutativity of B, we obtain sharpened results
for the Griiss type inequalities. For this purpose some elementary results
have been proven.

Lemma 3.1. Assume that A and B are unital C*-algebras, B is com-
mutative and @ : A — B is a unital positive linear map. Then

(™) — p(@*2)p(*y)1> < [p(|2?) = [o(z"2)1?] [(y[*) = le(z"y) 7] ,
for all x,y,z € A with |z| = 1.
Proof. Let z,y,z € A with |z| = 1. Utilizing [7, Lemma, 3.4], we deduce
eal) — le(=a)l”  p(a™y) ~p(eye(a2)] 5 o
e(y'z) —e(z"z)p(y™z)  e(lyl*) —lez'y)l* |~

Without lose of generality, we may suppose that o(|y|?) —|¢(z*y)|? > 0,
then using [, Lemma, 2.1], we obtain

p(|2*) = le(z"2)]> > [p(x*y) — p(z"y)p(@*2)] [p(y*) — [o(z"y) ]
x [p(y" @) — p(z"z)p(y"2)] -
On the other hand Lemma @ implies that

[o(2?) = le(z"2) ] [p(lyl) = lo(z")P)] 2 lp(a"y) — p(a"2)p("y)[*.

1
The positivity of o(|y|*) —|¢(z*y)|* implies that (|y|*)—|e(z*y)[*+= >
n
0 for all n € N. Also since

*

-1

we have

p(la?) = lp(z"0)?  wla'y) —e(zy)ea2)] o

oyz) —o(z*x)e(y*z)  o(lyl®) —le@)*++ | =



Improvement of the Griiss type inequalities 85

Therefore

[90) = [p("2)P) [oll) = [ D) + 1| > lola"n)=ola"2)p("0)
(3.1)

Taking the limits as n — oo in (@), we deduce
[o(l2*) = le(z"2)[?] [(y?) = le(z")P)] = le(z™y) — pla*2)e(z*y) .
(]

Theorem 3.2. Assume that A and B are unital C*-algebras, B is com-
mutative and @ : A — B is a unital positive linear map. Then

l(zy) — p@)e(z"y)] < [p(la” — azP)]* [olly - 7] (3:2)
for all x,y,z € A with |z| =1 and for all a, 5 € C,

Proof. Let x,z € A with |z] =1 and «, 8 € C. Utilizing Lemma @, we
deduce

lo(zy) — p(z2)p(z*y) > < [o(|2*1?) = [p(z*2")?] [(lyl*) = le(z"y)[*)] -
Also, using [, Lemma 3.1], we can derive that
0 < p(ja*?) = |p(z"a")* < p(|z* — az?
and
0 <o(lyl*) — le(z*y)I> < e(ly — B2[%),
so, it follows from Lemma @ that
[o(l2*1%) = le(z"a) ] [e(lyl?) = 1e(z*9)1?] < p(la* —az*)o(ly —B2[?).

Since B is commutative, by using [4, Proposition I1.3.1.2], we can con-
clude that

[o(|2*?) = lp(z"2") ] [(1yI?) = le(z"y)[P] > 0.
Applying Theorem 2.2.6 of [20], we get
[p(l2*]?) - \w(z*fc*)\Q]% [e(ly*) = lo(z*y) ]

< [p(lz* — az?)]? ey — B=2)]? .

NI

Thus

p(ay) — p(@2)o(z )| < [p(la” — az2)] [o(ly — B22)] .
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Theorem 3.3. Assume that A and B are unital C*-algebras, B is com-
mutative and @ : A — B is a unital positive linear map. Then

1 1
o(zy) — p(@)e)| < [p(la” — alal?)]? [e(ly — B1a]*)] 2
— (™ — ala)lle(y — BLla)l,
for all x,y € A and for all o, B € C.
Proof. Letting x,y € A, o, € C and z = 14 in Lemma @, we get

o(ay) — (@) ey)® < Lol ?) = le®)?] [e(lyl?) = le)*)] -
Also, it is readily seen that
{@(!x* —alal?) = le(@* = ala)? = p(|lz*?) — o),
e(ly — BLal?) = lo(y — BLAP = o(ly1*) — le(y)I?,
lo(zy) — p(2)p(y)]” <
[p(lz" = af?) = (@ — )] [e(ly = BI%) — lely — B)I] -
Thus using Lemma @, we can conclude that

lp(zy) — p(x)ey)* <

But

. 1 1 .
(e(|a = )z (plly — B1*)7 — (@ — a)lle(y - B)] = 0,
because it is self-adjoin and if

xe o([(w(la* = al2)E(p(ly — B2)E = le(a* — )llvly - B)I]),

then there exist v € o((¢(ja* — af?))2), p € o((o(ly — B2))7), ¢ €
o(|e(z* — a)]) and n € o(|e(y — B)]), such that A = yu — ¢n. Since
p(la* — alal?) > p(a* — ala)® and o(|ly — B*) = |¢(y — B)I?, we can
conclude that v > ¢ > 0 and 4 >n > 0. Thus yu > Cu > (n, so A > 0.
Therefore

o(ay) — p(@)p@)] < [p(* — ala?)]? [p(ly — A1aP)]?
— lo(a* — ala)lle(y — ALa)l-
]

Now, we prove some lemmas to obtain another Griiss type inequality
for a positive linear map by considering a mild conditions.

Lemma 3.4. Suppose that A is a unital C*-algebras and a,b € A. Then
la + b]> > 4Re(a*D).
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Proof. Since (a — b)*(a — b) > 0, we can conclude that a*a + b*b >
a*b + b*a. Hence

a*b+ b*a

la+b|? = a*a+b*b+a*b+b*a > 2(a*b+b*a) = 4( 5

) = 4Re(a”b).
(]

Lemma 3.5. Suppose that A and B are unital C*-algebras and ¢ : A —
B is a unital positive linear map. Then

p(l2]*)~lp(z"x) | = Re((a—p("2))(p(2"2) = B))—Re(p((¢* —B2") (az—x))),
forall x,y,z € A with |z| =1 and for all a,, B € C.
Proof. Let x,y,z € A with |z| = 1 and suppose that a, 8 € C. Then

Re((a — ¢(2"2))(p(2"2) — B)) — Re(o((a” — B2")(az — x)))
1

=5 @ —¢(E2)(p(2"2) = B) + ((a = p("2))(p(z"2) = B)"]

O
Using [[7, corollary 3.8], we can easily conclude the following theorem.

Theorem 3.6. Suppose that A and B are unital C*-algebras. Assume
that ¢ : A — B is a unital positive linear map. If for x,y,z € A with
|z| =1 and for a, B, A\, € C,
Re(p((z* = Bz*)(az — x))) = 0,
& (3.3)
Re(p((y* — pz")(Az —y))) = 0,
then )
[ela*y) — pla*2)e(="w)] < gla— BlIA— sl (3.4)

Now, utilizing the above theorem, we preset a sharper bound for the
left side of (B.4), which is different the other ones in the literature.

Theorem 3.7. Suppose that A and B are unital C*-algebras and B is
commutative. Assume that ¢ : A — B is a unital positive linear map.
If for x,y,z € A with |z| = 1 and for a, B, \, pu € C,

Re(p((z* — Bz*)(az —x))) > 0
& (3.5)
Re(p((y* — pz*)(A\z — y))) > 0,



88 Golfarshchi-Khalilzadeh-Moradlou

then
lo(z*y) — p(x*2)p(2"y)|
1
SZW—MM—M

— [Re(p((az — z)(@" — B="))] [Re(p((Az — y)(y" — =)

Proof. Assume that x,y, z € A with |z| = 1 and assume that a, 8, A\, pu €
C such that the conditions (B.5) are satisfied. Using [[7, Lemma 3.1], we
can derive

o(z*y) — p(a*2)p(z*y)* < [p(e*) = |e(z*2)*] [(lyl*) — le(z*y) 7] -
(3.6)

Also it follows from Lemma @ that

() - o)) = )

Re((a — ¢(z"2))(p(2"2) = B)) — Re(p((z* — B2")(az — 2))),

&
[e(ly?) = le(z*y) ] =
Re((A — ¢(z"y))(¢*(2"y) — 1)) — Re(p((y" — p2")(Az — y))).

Furthermore, using Lemma @, we can conclude that

{Re((a — (")) (p(a*z) = B)) < jla — B = 116 — af

&
Re((A = o("9)(p(y*z — 1) < §IA = Al = flu— AP
Thus, utilizing Lemma @, we have

[o(2?) — (o)) [elyl?) — l9(="9)P] <
[iw — allA = ul = [Re(g((a" — B=")(az — 2))]

so, it follows from (@) that

SIS

[Re(p((y" — az")(Az —y)))]

lo(zy*) — p(x*2)p(2*y)]? <

118~ allA =l - [Re(e((a” = ")z~ )]

N|—=

[Re(o((y" — 2"))(Az — y))]
Now we prove that

%IB—@IIA—#I— [Re(p((z" — B2")(az — x)))]

Evidently,

ilﬁ—allk—ul— [Re(p((z" = B2")(az — )]

[N

[Re(o((y* — az")(Az — y)))]% > 0.

Wl
[T

[(Re(p((y™ — nz")(Az — )]
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is self-adjoint. On the other hand, let

¢ € o(318—alA~pl~[Re(p((&" - B=*)(az ~ 2))

=

[(Re(p((y* — a=") (A= —y)]?),

);

N

so there exist p € o(|f—al), q € a(])\—ul\), m € o([Re(p((z* — B2*)(az — 2)))]
and n € o([Re(o((y* — iz*)(Az — y)))]”) such that ¢ = +pg—mn. Since

* 0% 1
Re(p((z" — Bz")(az — 1)) < 1\5 —al,
we can conclude that

* 0% 1 1
[Re(p((a" ~ B=")(az — 2))]? < 518~ ol
o) %p — m > 0. Similarly, we can prove %q —-—n>
Therefore

0. Thus ¢ > 0.

lp(zy™) — p(z*2)p(2"y)|
< 18— allr—

— [Re(p((z" = B2")(az — 2)))]

N|=
N[

[Re(o((y™ — az")( Az —y)))]
0

Corollary 3.8. Suppose that A and B are unital C*-algebras, B is
commutative, and ¢ : A — B is a unital positive linear map. If for
z,y € A and o, B, \, € C,

Re(p((z — B)(@—2))) >0 & Re(e((y* —p)(A—y)) >0,
then
lp(zy) — w(2)e(y)]
< {18~ allu— A

— [Re(p((x — B))(@ — )2 [Re(o((y" — 1)) (A — 9))]? -

Proof. Letting z = 14 in Theorem @, we can conclude the desired
results. (]

4. GRUSS INEQUALITY IN L*(]a,b]).

Now, using the obtained results in pervious section, we get refined
bounded for Gruss inequality in L*°([a, b]).

Remark 4.1. Let A = L*°([a,b]) which is the usual C*-algebra of essen-
tially bounded functionals defined on [a,b]. Assume that ¢ : A — C is

defined by ¢(h) = ;= f; h(x)dz. Let m,n, M and N be positive real
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numbers and o = ™M and g = 2tX. Suppose that f,g € L=([a,b])
which satisfy in the following conditions

m < f(z) < M,
n < g(x) <N,

for all z € [a,b]._It is easily seen that ¢ is positive unital linear map.
Using Theorem B.3, we can derive

i [ Gowe -t [ rwa [ g
<[ /\f—m“”) ]Z[bia[fqg—r‘?“)(x)dmf
e [ D [ "5 e

Therefore

o [Uowi - ot [ s [

< Z(M—m)(N—n)

- ‘bia /ab(f— m—;M)(x)dl“ }b_la/ab(g— n—;N)(x)dx .
(4.1)

It is readily seen that

Re(o((f — m)(M — f))) = —

b—a

b
[ ¢ =mor - piayde = o
and
b
Re(o((g = m(N = 9) = 5 [ (9= (N = g)(w)ds >0,

S0, it follows from Corollary @ that

o [owi - ot [ [

< Z(M—m)(N—n)

i [ - f)(ﬂf)dwr [a-me g
(4.2)

Now, we give two inequalities which are sharper than the Griiss in-
equality obtained by Mercer [16, Theorem 1.1].

=
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Remark 4.2. Assume that f,g € L*([a,b]) which satisfy the conditions
0 < f(z),9(z) <1 for all x € [a,b] and S(z) = max{f(z),g(z)} and
T(x) = min{f(z),g(x)}. Suppose that P ={z : f(z) > g(x)} and Q =

gﬁz f(z) < g(x)}. Tt is easy to see that [*(fg)(z)dz = [(ST)(x)dz.

/bf dx/b dyc—/bS dm/b
[/f dac—i—/f dxH/ dx+/ ()da:]
[/S m+/s MH/ m+4Tmm]
= [ =0z [ (g @

SO

b b b
s | U@ - = [ 1w [ g

1
+(b_)/(f 9)(z)d /< 1) ()dz (4.3)

—1/5Txdx /S dx/
b—a J,

Using inequality (@), we have

1
—_ xba/Sda:/

(
1
Z de/ T—f x)dx

and also utilizing inequality (@), we get

= (ST) )i | ' S(a)da / ' P)da

=/ ‘) S| | [ "1y - (e

(4.4)

( _

<

=~ =



92 Golfarshchi-Khalilzadeh-Moradlou

Therefore, using the inequalities (@) and (@), we can conclude

= " foe)dr - ) oy / e
Si—(b_la)[/(f a@is) | [ (5= }
il [ 6= ]| [ = Hioyas|,

and also utilizing the inequalities (@) and (@), we can deduce

/ Fole)ds — = / ' fa)de / " (o)
<i- (b_la) L =aes | [ o= e

[ ea-swa] [ @a- ] g
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