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1. Preliminaries

Let E be a real Banach space with norm ∥.∥ and E∗ denote the dual
of E. We denote the value of v ∈ E∗ at x ∈ E by ⟨x, v⟩. When {xn}
is a sequence in E, we denote strong convergence of {xn} to x ∈ E by
xn → x and weak convergence by xn ⇀ x. The duality mapping J from
E into 2E

∗ is defined by

Jx = {v ∈ E∗ : ⟨x, v⟩ = ∥x∥2 = ∥v∥2}

for x ∈ E. A Banach space E is said to be strictly convex if ∥x+y
2 ∥ < 1

for all x, y ∈ E with ∥x∥ = ∥y∥ = 1 and x ̸= y. It is also said to be
uniformly convex if for each ε ∈ (0, 2], there exists δ > 0 such that for
all x, y ∈ E with ∥x∥ = ∥y∥ = 1 and ∥x−y∥ ≥ ε, then ∥x+y

2 ∥ < 1− δ. It
is known that a uniformly convex Banach space is reflexive and strictly
convex. A Banach space E is said to be smooth if the limit

lim
t→0

∥x+ ty∥ − ∥x∥
t

(1.1)

exists for all x, y ∈ U = {z ∈ E : ∥z∥ = 1}. It is also said to be uniformly
smooth if the limit (1.1) is attained uniformly for x, y ∈ U .

Let E be a smooth Banach space. We use the following function
studied in Alber [1], Kamimura and Takahashi [11] and Reich [18]:

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2 (1.2)

for all x, y ∈ E. It is obvious from the definition of ϕ that (∥x∥−∥y∥)2 ≤
ϕ(x, y) for all x, y ∈ E. Notice that the duality mapping is the identity
operator in Hilbert spaces. Therefore, if E is a Hilbert space, then
ϕ(x, y) = ∥x− y∥2.

Proposition 1.1. [11] Let E be a uniformly convex and smooth Banach
space and let {xn} and {yn} be two sequences of E. If limn→∞ ϕ(xn, yn) =
0 and either {xn} or {yn} is bounded, then limn→∞ ∥xn − yn∥ = 0.

Proposition 1.2. [11] Let E be a reflexive, strictly convex and smooth
Banach space, C be a nonempty closed convex subset of E and x ∈ E.
Then there exists a unique element x̄ ∈ C such that

ϕ(x̄, x) = inf{ϕ(z, x) : z ∈ C}.

Regarding Proposition 1.2, we denote the unique element x̄ ∈ C by
PC(x), where the mapping PC is called the generalized projection from
E onto C. It is obvious that in Hilbert spaces, PC is coincident with the
metric projection from E onto C. We also need the following proposition
to prove strong convergence in Section 3.
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Proposition 1.3. [11] Let E be a smooth Banach space, C be a convex
subset of E, x ∈ E and x̄ ∈ C. Then

ϕ(x̄, x) = inf{ϕ(z, x) : z ∈ C}
if and only if

⟨z − x̄, Jx− Jx̄⟩ ≤ 0, ∀z ∈ C.

Throughout this paper we assume that E is a real Banach space which
is uniformly convex and uniformly smooth unless otherwise specified.
Let f : E × E → R. f is called a bifunction. Let K ⊂ E be nonempty,
closed and convex. An equilibrium problem for f and K as briefly
EP (f ;K) consists of finding x∗ ∈ K such that

f(x∗, y) ≥ 0, ∀y ∈ K. (1.3)
x∗ is called a solution of the problem or an equilibrium point. We de-
note the set of all equilibrium points for (1.3) by S(f ;K). Equilibrium
problems extend and unify many problems in optimization, variational
inequalities, fixed point theory, complementarity problems, Nash equi-
libria and many other problems in nonlinear analysis.

The following conditions on bifunctions may be used throughout the
paper, therefore we exhibit them as:
A1: f is pseudo-monotone, i.e. whenever f(x, y) ≥ 0 with x, y ∈ E it
holds that f(y, x) ≤ 0;
A2: f is ϕ-Lipschitz-type continuous, i.e. there exist two positive con-
stants c1 and c2 such that

f(x, y) + f(y, z) ≥ f(x, z)− c1ϕ(y, x)− c2ϕ(z, y), ∀x, y, z ∈ E;

A3: f(·, y) is upper semicontinuous for all y ∈ E;
A4: f(x, ·) : K → R is convex and lower semicontinuous for all x ∈ E.
Equilibrium problems for monotone and pseudo-monotone bifunctions
studied extensively in Hilbert, Banach as well as in topological vector
spaces by many authors (see [2, 3, 4, 7, 8, 9, 12, 14, 15]). Recently the
extragradient method for equilibrium problems in Hadamard spaces has
been studied in [12]. Also in [6], Hieu studied the solutions of equilibrium
problems and proved strong convergence of the sequence generated by
extragradient method to a solution of the problem in Hilbert spaces.

The strong convergence of the sequence generated by the hybrid prox-
imal point method to a common fixed point of a family of quasi ϕ-
nonexpansive mappings have studid in [10] by Jahed, Vaezi and Piri.

In this paper, we will deal with the extragradient method for equilib-
rium problems in Banach spaces. The results of this paper improve the
results in [6] in three senses:

a) We will deal with a rather general class of Banach spaces, while
[6] only considers Hilbert spaces.
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b) Convergence analysis of the method in [6] requires weak continu-
ity of f(·, ·), which seldom holds in infinite dimensional spaces,
but our continuity assumptions (lower semicontinuity of f(x, ·)
and weak upper semicontinuity of f(·, y) for all x, y ∈ E) are
much less demanding, and covers the important concave-convex
case.

c) We will deal with an infinite family of pseudo-monotone bifunc-
tions, while [6] only considers a finite family of bifunctions.

This paper is organized as follows. In Section 2, we prove weak con-
vergence of the sequence generated by extragradient method to a com-
mon equilibrium point of an infinite family of pseudomonotone equilib-
rium problems. In Section 3, we study strong convergence of a Halpern
type regularization of the extragradient method to a common solution of
the equilibrium problems for an infinite family of bifunctions in Banach
spaces.

2. Weak convergence by extragradient method

In this section, we use the extragradient method for equilibrium prob-
lems in Banach spaces. This method first introduced by Korpelevich in
[17]. After him, the extragradient method were studied extensively for
approximating solutions of variational inequalities and equilibrium prob-
lems by many authors (see for example [6], [8] and references therein).
Now we study convergence analysis of the sequence generated by the
extragradient method to a common solution of an infinite family of
equilibrium problems. We first introduce the algorithm, then we prove
that the generated sequence converges weakly to a common solution of
the problem. We suppose that the sequence {fn} of bifunctions satisfy
A1, A2, A3, A4 and

∩
k S(fk;K) ̸= ∅.

In order to prove optimality of weak cluster points of the sequence
generated by Algorithm 2.1, we need the following assumption, which
has been introduced in [12]. We recall it in the following

{
For each arbitrary sequence {zk} and each subsequence {zkn} of {zk},
if zkn ⇀ z and lim sup fkn(z

kn , y) ≥ 0, ∀y ∈ K, then z ∈
∩

k S(fk;K).

(2.1)
When fn ≡ f , it is easy to see that if f(., y) is weak upper semicontinu-
ous for all y ∈ K then f satisfies the condition (2.1). But, the converse
is not hold in general (see [13]). It is enough to take E = l2, K = {ξ =
(ξ1, ξ2, ...) ∈ l2 : ξi ≥ 0, ∀i = 1, 2, ...} and f(x, y) = (y1 − x1)

∑∞
i=1(xi)

2.
Then, Remark 2.1 in [13] shows that the condition (2.1) is a suitable
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condition which is weaker than the weakly upper semicontinuity of bi-
functions {fn} respect to the first arguments.

Algorithm 2.1.

Initialize: Take n = 0, 0 < α ≤ λk ≤ β < min{ 1
2c1

, 1
2c2

} for all k and
x0 ∈ E.
Step 1: Solve the minimization problem and let yn be its solution, i.e.

yn ∈ Argminy∈K{fn(xn, y) +
1

2λn
∥y∥2 − 1

λn
⟨y, Jxn⟩}. (2.2)

Step 2: Solve the minimization problem and let xn+1 be its solution, i.e.

xn+1 ∈ Argminy∈K{fn(yn, y) +
1

2λn
∥y∥2 − 1

λn
⟨y, Jxn⟩}. (2.3)

Step 3: Take n := n+ 1 and go back Step 1.
In order to prove the weak convergence of the sequences generated by

Algorithm 2.1, we need the following lemmas.

Lemma 2.2. The sequences {xn} and {yn} generated by Algorithm 2.1
are well defined.

Proof. We define φ : E → R ∪ {+∞} as

φ(y) =

{
fn(x

n, y) + 1
2λn

∥y∥2 − 1
λn

⟨y, Jxn⟩ y ∈ K

+∞ y ̸∈ K.
(2.4)

It is clear that φ is proper, convex and lower semicontinuous. Therefore
by Rockafellar’s theorem [19, 20], the subdifferential of φ is maximal
monotone operator and hence onto, by virtue of Minty’s theorem. Thus,
∂φ has some zero, which is a minimizer of φ. Hence yn exists in (2.2).
Now, the result is trivial. □

Lemma 2.3. Assume that {xn} and {yn} generated by Algorithm 2.1
and x∗ ∈

∩
k S(fk;K), then

ϕ(x∗, xn+1) ≤ ϕ(x∗, xn)− (1− 2c1λn)ϕ(y
n, xn)− (1− 2c2λn)ϕ(x

n+1, yn).
(2.5)

Proof. Since xn+1 solve the minimization problem in (2.3), we have:

xn+1 ∈ Argminy∈K{fn(yn, y) +
1

2λn
∥y∥2 − 1

λn
⟨y, Jxn⟩}.

Therefore,

0 ∈ ∂{fn(yn, ·) +
1

2λn
∥ · ∥2 − 1

λn
⟨·, Jxn⟩}(xn+1) +NK(xn+1),
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where NK(xn+1) is the normal cone for K at xn+1 ∈ K, i.e.
NK(xn+1) = {v ∈ E∗ : ⟨y − xn+1, v⟩ ≤ 0,∀y ∈ K}.

Thus, there exist wn ∈ ∂fn(y
n, ·)(xn+1) and w̄ ∈ NK(xn+1) such that

0 = wn +
1

λn
Jxn+1 − 1

λn
Jxn + w̄.

Therefore, we have ⟨y − xn+1,−wn − 1
λn

Jxn+1 + 1
λn

Jxn⟩ ≤ 0. Hence,
1
λn

⟨y− xn+1, Jxn − Jxn+1⟩ ≤ ⟨y− xn+1, wn⟩ ≤ fn(y
n, y)− fn(y

n, xn+1).
Therefore,

fn(y
n, xn+1)− fn(y

n, y) ≤ 1

λn
⟨y − xn+1, Jxn+1 − Jxn⟩. (2.6)

Similar to this argument, since yn solve the minimization problem in
(2.2), we have:

fn(x
n, yn)− fn(x

n, y) ≤ 1

λn
⟨y − yn, Jyn − Jxn⟩. (2.7)

Now, take x∗ ∈
∩

k S(fk;K). Note that, since fn(x
∗, yn) ≥ 0, pseudo-

monotonicity of fn implies that fn(yn, x∗) ≤ 0. Then set y = x∗ in (2.6)
and y = xn+1 in (2.7), we obtain respectively

fn(y
n, xn+1) ≤ 1

λn
⟨x∗ − xn+1, Jxn+1 − Jxn⟩ (2.8)

and
1

λn
⟨yn − xn+1, Jyn − Jxn⟩ ≤ fn(x

n, xn+1)− fn(x
n, yn). (2.9)

On the other hand, since fn is ϕ-Lipschitz-type continuous, we have:
−c1ϕ(y

n, xn)−c2ϕ(x
n+1, yn)+fn(x

n, xn+1)−fn(x
n, yn) ≤ fn(y

n, xn+1).
(2.10)

Note that by (2.8), (2.9) and (2.10), we obtain
−c1λnϕ(y

n, xn)− c2λnϕ(x
n+1, yn) + ⟨yn − xn+1, Jyn − Jxn⟩ ≤

⟨x∗ − xn+1, Jxn+1 − Jxn⟩. (2.11)
From (2.11) and the definition of ϕ, it is easy to see
ϕ(x∗, xn+1) ≤ ϕ(x∗, xn)− (1− 2c1λn)ϕ(y

n, xn)− (1− 2c2λn)ϕ(x
n+1, yn).

□
In order to prove uniqueness of the weak limit point in the following

theorem, we need the following condition on Banach space E:
If {yn} and {zn} are sequences in K that converge weakly to y and z,
respectively and y ̸= z, then

lim inf
n→∞

|⟨y − z, Jyn − Jzn⟩| > 0. (2.12)
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For example, it is known that ℓp spaces for 1 < p < ∞ satisfies in the
above condition.

Theorem 2.4. Assume that {fn} satisfy A1, A2, A3 and A4. In addition
the solution set

∩
k S(fk;K) is nonempty. Then all weak cluster points of

the sequence {xn} generated by Algorithm 2.1 belong to
∩

k S(fk;K). In
addition, if E satisfies (2.12), then the sequence {xn} converges weakly
to a point of

∩
k S(fk;K).

Proof. Let x∗ ∈
∩

k S(fk;K). From Lemma 2.3, we conclude that
ϕ(x∗, xn+1) ≤ ϕ(x∗, xn). (2.13)

Therefore, limn→∞ ϕ(x∗, xn) exists and {xn} is bounded. Also, by Lemma
2.3, we have:

lim
n→∞

ϕ(yn, xn) = lim
n→∞

ϕ(xn+1, yn) = 0. (2.14)

Now, Proposition 1.1 implies that
lim
n→∞

∥yn−xn∥ = lim
n→∞

∥xn+1− yn∥ =n→∞ lim ∥xn+1−xn∥ = 0. (2.15)

In the sequel, by (2.8), (2.9) and (2.10),
−c1λnϕ(y

n, xn)−c2λnϕ(x
n+1, yn)+⟨yn−xn+1, Jyn−Jxn⟩ ≤ fn(y

n, xn+1) ≤

⟨x∗ − xn+1, Jxn+1 − Jxn⟩ ≤ 1

2
(ϕ(x∗, xn)− ϕ(x∗, xn+1)− ϕ(xn+1, xn)).

(2.16)
Taking limit from (2.16) and using (2.14) and (2.15), we have

lim
n→∞

fn(y
n, xn+1) = 0. (2.17)

Note that by (2.6),
−1

λn
∥y − xn+1∥∥Jxn+1 − Jxn∥ ≤ fn(y

n, y)− fn(y
n, xn+1). (2.18)

Uniform smoothness of E implies uniform norm-to-norm continuity of
J on each bounded set of E. Therefore, from (2.15), we get

lim
n→∞

∥Jxn+1 − Jxn∥ = 0. (2.19)

Now, since {xn} is bounded, by taking liminf from (2.18) and using
(2.17), we have

lim inf
n→∞

fn(y
n, y) ≥ 0, ∀y ∈ K. (2.20)

Also, since {yn} is bounded, there exists subsequences {xni} of {xn},
{yni} of {yn} and p ∈ E such that xni ⇀ p. Note that yni ⇀ p by
(2.15). Now, (2.1) and (2.20) imply that p ∈

∩
k S(fk;K).

In the sequel, we prove the uniqueness of the weak cluster point of {xn}
by condition (2.12). Let q be an other weak cluster point of {xn}. Then
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there exists subsequence {xnj} such that xnj ⇀ q . We have already
proved that q is an element of

∩
k S(fk;K), also limn→∞ ϕ(p, xn) and

limn→∞ ϕ(q, xn) exist by Lemma 2.3. Note that

2⟨p− q, Jxni − Jxnj ⟩ = 2⟨p, Jxni⟩ − 2⟨q, Jxni⟩ − 2⟨p, Jxnj ⟩+ 2⟨q, Jxnj ⟩
= −ϕ(p, xni) + ϕ(q, xni) + ϕ(p, xnj )− ϕ(q, xnj ).

Taking limit when i → +∞ and then when j → +∞, we obtain p = q,
i.e. {xn} weakly converges to a point of

∩
k S(fk;K). □

3. Halpern type of extragradient method

In this section, we perform a modification on Algorithm 2.1, which en-
sures strong convergence of the generated sequence to a common solution
of the infinite family of equilibrium problems. In Hilbert spaces, this pro-
cedure, called Halpern’s regularization (see [5, 13, 15, 22]). In order to
find a common equilibrium point of bifunctions {fn}, we propose the
Algorithm 3.1 and analyze the convergence of the iteration sequences.
In the sequel, we assume that the bifunctions {fn} satisfy A1, A2, A3,
A4, (2.1) and

∩
k S(fk;K) ̸= ∅.

Algorithm 3.1.

Initialize: Take u, x0 ∈ E, n := 0, {αi} ⊂ (0, 1) such that limi→∞ αi =
0 and

∑∞
i=0 αi = +∞, 0 < α ≤ λk ≤ β < min{ 1

2c1
, 1
2c2

}, for all k.
Step 1: Solve the minimization problem and let yn be its solution, i.e.

yn ∈ Argminy∈K{fn(xn, y) +
1

2λn
∥y∥2 − 1

λn
⟨y, Jxn⟩}. (3.1)

Step 2: Solve the minimization problem and let zn be its solution, i.e.

zn ∈ Argminy∈K{fn(yn, y) +
1

2λn
∥y∥2 − 1

λn
⟨y, Jxn⟩}. (3.2)

Step 3: Determine the next approximation xn+1 as

xn+1 = J−1(αnJu+ (1− αn)Jz
n). (3.3)

Step 4: Take n := n+ 1 and go back Step 1.
In order to prove the strong convergence of the sequences generated

by Algorithm 3.1, we need the following lemmas.

Lemma 3.2. The sequences {xn}, {yn} and {zn} generated by Algo-
rithm 3.1 are well defined.

Proof. See Lemma 2.2. □
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Lemma 3.3. Assume that {xn}, {yn} and {zn} are generated by Algo-
rithm 3.1 and x∗ ∈

∩
k S(fk;K). Then

ϕ(x∗, zn) ≤ ϕ(x∗, xn)−(1−2c1λn)ϕ(y
n, xn)−(1−2c2λn)ϕ(z

n, yn). (3.4)

Proof. It is enough to replace xn+1 by zn in the proof of Lemma 2.3. □

Lemma 3.4. [21] Let {sn} be a sequence of nonnegative real numbers,
{αn} be a sequence of real numbers in (0, 1) with

∑∞
n=1 αn = +∞ and

{tn} be a sequence of real numbers. Suppose that
sn+1 ≤ (1− αn)sn + αntn, ∀n ∈ N.

If lim supk→∞tnk
≤ 0 for every subsequence {snk

} of {sn} satisfying
lim inf
k→∞

(snk+1 − snk
) ≥ 0,

then limn→∞sn = 0.

Let E be a strictly convex, smooth and reflexive Banach space and J
be the duality mapping from E into E∗. Then J−1 is also single-valued,
one-to-one and surjective and it is the duality mapping from E∗ into E.

We make use of the following mapping V studied in Alber [1]

V (x, v) = ∥x∥2 − 2⟨x, v⟩+ ∥v∥2. (3.5)
for all x ∈ E and v ∈ E∗. In other words, V (x, v) = ϕ(x, J−1v) for all
x ∈ E and v ∈ E∗.

Lemma 3.5. [16] Let E be a strictly convex, smooth and reflexive Ba-
nach space and let V be as in (3.5). Then

V (x, v) ≤ V (x, v + w)− 2⟨J−1(v)− x,w⟩, (3.6)
for all x ∈ E and v, w ∈ E∗.

Theorem 3.6. Assume that {fn} satisfy A1, A2, A3, A4 and (2.1). In
addition the solution set

∩
k S(fk;K) is nonempty. Then the sequence

{xn} generated by Algorithm 3.1 converges strongly to P∩
k S(fk;K)u.

Proof. Let x∗ = P∩
k S(fk;K)u. By Lemma 3.3,

ϕ(x∗, zn) ≤ ϕ(x∗, xn). (3.7)
By (3.7) and (3.3) we have:

ϕ(x∗, xn+1) = ϕ(x∗, J−1(αnJu+ (1− αn)Jz
n))

= V (x∗, αnJu+ (1− αn)Jz
n) ≤ αnV (x∗, Ju) + (1− αn)V (x∗, Jzn)

≤ αnϕ(x
∗, u) + (1− αn)ϕ(x

∗, zn) ≤ αnϕ(x
∗, u) + (1− αn)ϕ(x

∗, xn)

≤ max{ϕ(x∗, u), ϕ(x∗, xn)} ≤ ... ≤ max{ϕ(x∗, u), ϕ(x∗, x0)},
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which follows {xn} is bounded. Thus, by (3.7), {zn} is also bounded.
On the other hand, by Lemma 3.5, we have

ϕ(x∗, xn+1) = V (x∗, αnJu+ (1− αn)Jz
n)

≤ V (x∗, αnJu+ (1− αn)Jz
n − αn(Ju− Jx∗))

− 2⟨J−1(αnJu+ (1− αn)Jz
n)− x∗,−αn(Ju− Jx∗)⟩

= V (x∗, (1− αn)Jz
n + αnJx

∗) + 2⟨xn+1 − x∗, αn(Ju− Jx∗)⟩
≤ (1− αn)V (x∗, Jzn) + αnV (x∗, Jx∗) + 2αn⟨xn+1 − x∗, Ju− Jx∗⟩
= (1− αn)ϕ(x

∗, zn) + 2αn⟨xn+1 − x∗, Ju− Jx∗⟩
≤ (1− αn)ϕ(x

∗, xn) + 2αn⟨xn+1 − x∗, Ju− Jx∗⟩.

We are going to prove that ϕ(x∗, xn) → 0. By Lemma 3.4, it suffices
to show that lim supk→∞⟨xnk+1 − x∗, Ju − Jx∗⟩ ≤ 0 for every subse-
quence {ϕ(x∗, xnk)} of {ϕ(x∗, xn)} satisfying lim infk→∞(ϕ(x∗, xnk+1)−
ϕ(x∗, xnk)) ≥ 0. Suppose that {ϕ(x∗, xnk)} is a subsequence of {ϕ(x∗, xn)}
such that lim infk→∞(ϕ(x∗, xnk+1)− ϕ(x∗ − xnk)) ≥ 0. Then

0 ≤ lim inf
k→∞

(ϕ(x∗, xnk+1)− ϕ(x∗, xnk))

= lim inf
k→∞

(V (x∗, αnk
Ju+ (1− αnk

)Jznk)− ϕ(x∗, xnk))

≤ lim inf
k→∞

(αnk
V (x∗, Ju) + (1− αnk

)V (x∗, Jznk)− ϕ(x∗, xnk))

= lim inf
k→∞

(αnk
ϕ(x∗, u) + (1− αnk

)ϕ(x∗, znk)− ϕ(x∗, xnk))

= lim inf
k→∞

(αnk
(ϕ(x∗, u)− ϕ(x∗, znk)) + ϕ(x∗, znk)− ϕ(x∗, xnk))

≤ lim sup
k→∞

αnk
(ϕ(x∗, u)− ϕ(x∗, znk)) + lim inf

k→∞
(ϕ(x∗, znk)− ϕ(x∗, xnk))

= lim inf
k→∞

(ϕ(x∗, znk)− ϕ(x∗, xnk))

≤ lim sup
k→∞

(ϕ(x∗, znk)− ϕ(x∗, xnk)) ≤ 0.

So,
lim
k→∞

(ϕ(x∗, znk)− ϕ(x∗, xnk)) = 0. (3.8)

Hence, by Lemma 3.3, we conclude that

lim
k→∞

ϕ(xnk , ynk) = lim
k→∞

ϕ(ynk , znk) = 0. (3.9)

In the sequel, by Proposition 1.1, we obtain

lim
k→∞

∥xnk − ynk∥ = lim
k→∞

∥ynk − znk∥ = lim
k→∞

∥xnk − znk∥ = 0. (3.10)
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Uniform smoothness of E implies uniform norm-to-norm continuity of
J on each bounded set of E. Therefore, from (3.10), we get

lim
k→∞

∥Jxnk − Jznk∥ = 0. (3.11)

Note that since yn and zn respectively solve the minimization problems
in (3.1) and (3.2), similar to (2.6) and (2.7), again we can obtain the
following relations:

fn(y
n, zn)− fn(y

n, y) ≤ 1

λn
⟨y − zn, Jzn − Jxn⟩ (3.12)

and
fn(x

n, yn)− fn(x
n, y) ≤ 1

λn
⟨y − yn, Jyn − Jxn⟩. (3.13)

Replacing y by x∗ in (3.12), since fn(y
n, x∗) ≤ 0, we have

fn(y
n, zn) ≤ 1

λn
⟨x∗ − zn, Jzn − Jxn⟩. (3.14)

Also, replacing y by zn in (3.13), we get
1

λn
⟨yn − zn, Jyn − Jxn⟩ ≤ fn(x

n, zn)− fn(x
n, yn). (3.15)

On the other hand, since f is ϕ-Lipschitz-type continuous, we have:
−c1ϕ(y

n, xn)−c2ϕ(z
n, yn)+fn(x

n, zn)−fn(x
n, yn) ≤ fn(y

n, zn). (3.16)
Hence, by (3.14), (3.15) and (3.16), we obtain
−c1λnϕ(y

n, xn)− c2λnϕ(z
n, yn) + ⟨yn − zn, Jyn − Jxn⟩ ≤ fn(y

n, zn) ≤

⟨x∗ − zn, Jzn − Jxn⟩ = 1

2
(ϕ(x∗, xn)− ϕ(x∗, zn)− ϕ(zn, xn)). (3.17)

Replacing n by nk in (3.17) and using (3.8), (3.9) and (3.10), we have
lim
k→∞

fnk
(ynk , znk) = 0. (3.18)

From (3.12), we get
−1

λn
∥y − zn∥∥Jzn − Jxn∥ ≤ fn(y

n, y)− fn(y
n, zn). (3.19)

Replacing n by nk in (3.19) and taking liminf, by (3.11) and (3.18), we
have

lim inf
k→∞

fnk
(ynk , y) ≥ 0, ∀y ∈ K. (3.20)

On the other hand, there exists a subsequence {xnkt} of {xnk} and p ∈ K
such that xnkt ⇀ p and
lim sup
k→∞

⟨xnk−x∗, Ju−Jx∗⟩ = lim
t→∞

⟨xnkt−x∗, Ju−Jx∗⟩ = ⟨p−x∗, Ju−Jx∗⟩.

(3.21)
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Since ynkt ⇀ p by (3.10), hence, (2.1) and (3.20) imply that p ∈∩
k S(fk;K). Now, since

∩
k S(fk;K) is closed and convex, xnkt ⇀ p

and x∗ = P∩
k S(fk;K)u. Therefore by Proposition 1.3, we have ⟨p −

x∗, Ju− Jx∗⟩ ≤ 0. Hence,
lim sup
k→∞

⟨xnk − x∗, Ju− Jx∗⟩ = ⟨p− x∗, Ju− Jx∗⟩ ≤ 0. (3.22)

Note that
ϕ(znk , xnk+1) = V (znk , αnk

Ju+ (1− αnk
)Jznk)

≤ αnk
V (znk , Ju) + (1− αnk

)V (znk , Jznk) = αnk
ϕ(znk , u).

Taking the limit, we get
lim
k→∞

ϕ(znk , xnk+1) = 0.

So, Proposition 1.1 implies that
lim
k→∞

∥znk − xnk+1∥ = 0.

Hence, lim supk→∞⟨xnk+1 − x∗, Ju − Jx∗⟩ ≤ 0 by (3.22). Now, by
Lemma 3.4, ϕ(x∗, xn) → 0 and Proposition 1.1 implies that xn → x∗ =
P∩

k S(fk;K)u.
□
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