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1. Introduction

What does it mean a mathematical game? a mathematical game deals
with players, strategies and explaination that why winers win the game.
Differential games are using diffrential equations this is the reason for
the terminology. Differential games and pursuit-evasion problems are in-
vestigated by many researchers. For example see, Isaacs [10], Petrosyan
[13] and Pshenichii [15]. Also A large part of literature has investigated
two person differential games and fundamental results were made by
researchers such as Blaquiere et al. [1], Krasovskii and Subbotin [11],
Pontryagin [14]. Important results were obtained by researchers such as
Friedman [6], Hajek [7], Nikol’skii [12], Pshenichnyi and Ostapenko [16],
and further new methods were developed in many works such as Chikrii
[2], Satimov and Rikhsiev [17].

The game of lion and man [3] is a generally known problem. Lion
wants to catch the man in a given set. So lion needs the strategy to
make this happen and we can interpret that as a pursuit-evasion game.
Mathematical catching means after a period of time say, T < ∞, the
distance between pursuer and evader is zero. Besicovitch proved that
evasion can happen in the game of lion. In [5] Flynn studied the game
for pursuer by imposing a condition on the speed bound of lion, say, 1
and lion tries to decrease the distance for getting man, with speed by
v ≥ 1.

In [8] Ibragimov and Salimi study a differential game for inertial play-
ers. They assume the control resource of the each pursuer is greater than
that of evader. Ibragimov et al. in [9] studied an evasion from many pur-
suers in a differential games by imposing integral constraints. Recently,
in [18] Salimi et al. study a differential game that countable objects
try to get one evader. All the players must have simple motions and
some pursuers have integral constraints and some other pursuers and
the evader have geometric constraints. In other line of research in the
field of pursuit-evasion game, authors in [19] investigates the problem of
spacecraft interception game with incomplete-information and proposes
switching strategies based on the differential game theory. In the in-
terception process, the target can switch among multiple strategies to
evade the interceptor. This leads to the formulation of switching strate-
gies pursuit problem for the interceptor. Also, authors in [20] considered
reach-avoid differential game with two evaders and one pursuer in the
plane which is divided into a play region and a goal region by a straight
line. Two evaders, starting from the play region, aim at reaching the goal
region protected by the faster pursuer who tries to capture the evaders.
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In the present paper, we study a differential game of pursuers and one
evader with integral constraints. Game must be done in a compact set
in R2 which is not necessarily convex.

2. Construction of the problem

We study a following differential game
dxi
dt

= pi, xi(0) = xi0, i = 1, ...m,
dy

dt
= e, y(0) = y0, (2.1)

where xi, pi, y, e ∈ R2, pi is control parameter of the pursuer xi
i = 1, ...,m and e is control parameter of the evader y. In R2, we are
given a nonempty compact set M ⊂ R2. According to the rule of the
game, all players must move in M . Suppose the nonempty compact
convex set N in [4] and the circle N ′ with radius r for which we have
N

′ ⊂ N are given. Let n be a center of N ′. We assume dist(n, ∂N) > r
(Figure1). For the rest we use assumption 1 for the dist(n, ∂N) > r.
Our nonconvex set M is N −N ′.

Figure 1. Nonconvex set

Definition 2.1. [4] A measurable function pi(t) = (pi1(t), pi2(t)) t ≥ 0,
is called admissible control of the pursuer xi if∫ ∞

0
|pij(s)|2ds ≤ ψ2

ij , (2.2)

where ψij , i = 1, ...,m, j = 1, 2, are given positive numbers.

Definition 2.2. [4] A measurable function e(t) = (e1(t), e2(t)) t ≥ 0, is
called admissible control of the evader if∫ ∞

0
|ej(s)|2ds ≤ φ2

j , (2.3)

where φj , j = 1, 2 are given positive numbers.
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Definition 2.3. [4] Let

xi(t) = xi0 +

∫ t

0
pi(s)ds ∈M,

y(t) = yi0 +

∫ t

0
e(s)ds ∈M.

We need the quantities wi(t), i = 1, . . . ,m, and k1(t) described by the
following equations

dwi1

dt
= −p2i1, wi1(0) = ψ2

i1,

dk1
dt

= −e21, k1(0) = φ2
1.

Clearly,

wi1(t) = ψ2
i1 −

∫ t

0
p2i1(s)ds,

k1(t) = φ2
1 −

∫ t

0
e21(s)ds,

which we call x-energies of the pursuer xi and evader y, respectively,
available at the time t.

Definition 2.4. [4] A measurable function
Pi(t, xi, y, k1, e) = (Pi1(t, xi, y, k1, e), Pi2(t, xi, y, q1, e))

,
Pi : R× R2 × R2 × R× R2 → R2

is called a strategy of the pursuer xi if for any control of the evader e(t),
t ≥ 0, the initial value problem

dxi
dt

= Pi(t, xi, y, k1, e), xi(0) = xi0,

dy

dt
= e, y(0) = y0,

dk1
dt

= −e21, k1(0) = φ2
1.

has a unique solution (xi(t), y(t), k1(t)) and the inequalities∫ ∞

0
P 2
i1(s, xi(s), y(s), k1(s), e(s))ds ≤ ψ2

i1,∫ ∞

0
P 2
i2(s, xi(s), y(s), k1(s), e(s))ds ≤ ψ2

i2.

hold.
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Definition 2.5. [4] We are given initial position {x10, . . . , xm0, y0} for
the time T in the game (2.1)-(2.3). Pursuit can be completed from the
initial position, if there exist strategies Pi, i = 1, ...m, of the pursuers
such that for any control e = e(t) of the evader the equality xi(t) = y(t)
holds for some i ∈ {1, . . . ,m} and t ∈ [0, T ].
Problem 2.6. For the completion of pursuit in the above game the goal
is to find a sufficient condition.

3. Main result

The following is the main theorem of the paper.
Theorem 3.1. If one of the following

ψ2
11 + ψ2

21 + ...+ ψ2
m1 > φ2

1, ψ2
12 + ψ2

22 + ...+ ψ2
m2 > φ2

2 (3.1)
holds, then pursuit can be completed in the above game for a finite time.

We need to provide a simple lemma which says that in our case con-
vexity is not important.

Let [a, b] and [d1, d2] be the projection of the given set N in [4] on the
x-axis and y-axis, respectively. Define the functions f(δ) = min(κ,δ)∈N κ
and F (δ) = max(κ,δ)∈N κ for all δ ∈ [a, b]. Now set g(δ) = min(κ,δ)∈M κ
and G(δ) = max(κ,δ)∈M κ for all δ ∈ [a, b].
Lemma 3.2. The functions f and g with assumption 1 are equal as a
funtion from [a, b] to [d1, d2]. The same is true for F and G.
Proof. It is obvious that when we project N and M on the x-axis and
y-axis (Figure1), the resulting sets which are closed and bounded, are
exactly the same in both cases. □

In general, the boundary of N − N ′ is divided by the points A =
(a, f(a)), B = (b, f(b)), C = (a, F (a)), and D = (b, F (b)), which lie on
the vertical lines δ = a and δ = b, into 4 arcs: the graphs of the functions
κ = f(δ) , κ = F (δ), δ ∈ [a, b], and the segments AC and BD as shown
in (Fig.2A). Note that the segments AC and BD may shrink to points
A and B, respectively, as shown in (Fig.2B).

Let the minimum value of the function f(δ) on [a, b] be m0 (Figure
2B). Set

J = min
δ

{f(δ) = m0}, O = max
δ

{f(δ) = m0}.

Since f(δ) is convex by Lemma 3.2, we have f(δ) = m0 for all δ ∈ [J,O].
Note that if the function f(δ) attains the value m0 at a unique point,
then J = O.

For a < J , set κ = l(δ) which is the restriction of the function κ =
f(δ), convex and continuous. For O < b, set κ = z(δ) which is the
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A. κ = f(δ) and κ = F (δ) B. κ = l(δ) and κ = z(δ).

Figure 2. Functions κ = f(δ), κ = F (δ), κ = l(δ), and
κ = z(δ).

restriction of κ = f(δ), convex and continuous (Fig.2B). Note that in
the cases a = J and O = b, the graphs of the functions κ = l(δ) and
κ = z(δ) will be the points (a, l(a)) and (b, r(b)), respectively.

Let
z′−(δ) = lim

h→0−

z(δ + h)− z(δ)

h
, δ ∈ (O, b),

z′+(δ) = lim
h→0+

z(δ + h)− z(δ)

h
, δ ∈ [O, b),

denote the left and right derivatives of the function z(δ), respectively.
Define z′−(O) = f ′−(O).

The following lists some properties of the function κ = z(δ).
Property 3.3. Let O < b. For the function κ = z(δ) we have:

Ω1. The functions z′−(δ) and z′+(δ) are increasing on [O, b). More-
over, for any δ1 < δ2 in [O, b)

z′−(δ1) ≤ z′+(δ1) ≤ z′−(δ2) ≤ z′+(δ2).

Ω2. The set of discontinuities of the z′+(δ), δ ∈ (O, b), is not of the
second kind.

Ω3. The set of discontinuous points of z′+(δ) is at most countable
subset of (O, b)

Ω4. The function z(δ) increases on [O, b].
Proof. Since for O < b, κ = z(δ) is the restriction of κ = f(δ), and by
Lemma 3.2, the function f with its projected doamin and codomain is
the same as a related function in the convex case, the proof is exactly
the same as of [4] Property 1. □
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Proof. We prove the theorem. Let ψ2
11 +ψ2

21 + ...+ψ2
m1 > φ2

1. Similarly
we have the second inequality. Denote

ψ1 = (ψ2
11 + ψ2

21 + ...+ ψ2
m1)

1/2,

φi1 =
φ1

ψ1
ψi1, i = 1, 2, ...,m.

Clearly, φi1 < ψi1. □

3.1. Construction of pursuers’ strategies. We construct the fol-
lowing strategies of pursuers for 0 ≤ t ≤ T , where T = L

β , L =

maxx,y∈M |x− y|,

β =
1

2L
min

{
ψ2
11 − φ2

11, ψ
2
m1 − φ2

m1, ψ
2
12, ..., ψ

2
m2

}
, 0 < u0 ≤

1

6L
min
i
{ψ2

i1−φ2
i1}.

(3.2)
Without any loss of generality, we assume that f(a) ≤ f(b). Set

pi1(t) =
β

L
(x̄1 − x0i1), pi2(t) =

β

L
(x̄2 − x0i2), 0 ≤ t ≤ T, (3.3)

where (x̄1, x̄2) = (a, f(a)). Then the position of all pursuers will be
(a, f(a)) at the time T . Indeed,

xij(T ) = x0ij +

T∫
0

β

L
(x̄j − x0ij)dt = x̄j , j = 1, 2.

Pursuers spent the total amount of energies on [0, T ] as follows. For
controls (3.3), using the

β ≤ 1

2L

(
ψ2
i1 − φ2

i1

)
, i ∈ {1, 2, ...,m},

following from (3.2), we have
T∫
0

p2i1(t)dt =

T∫
0

β2

L2
(x̄1 − x0i1)

2dt =
β

L
|x̄1 − x0i1|2 ≤ Lβ ≤ ψ2

i1 − φ2
i1

2
.

(3.4)
Then, obviously, by using (3.4) we have

wi1(T ) = ψ2
i1 −

T∫
0

p2i1(t)dt ≥
ψ2
i1 + φ2

i1

2
> φ2

i1.

This means that φ2
i1 is less than x-energy of pursuer xi at T . So we have

m∑
i=1

wi1(T ) >
m∑
i=1

φ2
i1 = φ2

1. (3.5)
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Similarly, by (3.2) Lβ ≤ 1
2ψ

2
i2 and hence

T∫
0

p2i2(t)dt =

T∫
0

β2

L2
(x̄2 − x0i2)

2dt =
β

L
|x̄2 − x0i2|2 ≤ Lβ ≤ 1

2
ψ2
i2,

and for the y-energy of pursuer xi we get

wi2(T ) = ψ2
i2 −

T∫
0

p2i2(t)dt ≥
1

2
ψ2
i2, i = 1, ...,m. (3.6)

Using (3.5) and (3.6) we have that at the time T the total amount of x-
energies of evader is still less than pursuers, and y-energy of all pursuers
is positive.

In the following we are going to explain roughly how the pursuers’
strategies have been constructed. For constructing the pursuers’ strate-
gies in subsection 3.1 we have to consider some factors for satisfying.
First we want that position of all pursuers will be (a, f(a)) at some
specific time, say, T . For this reason, based on Definition 2.3, Firstly
we want xij(T ) = a or f(a). So without determining any parameter
ahead of time, we put xij(T ) = x0ij +

∫ T
0 pij(t)dt, Which we would know

for satisfying xij(T ) = a or f(a), we should have pij = K(a − x0ij) or
pij = K(f(a)− x0ij) such that KT = 1. Second we want that x-energies
of pursuer xi becomes greater than the x-energy of each evader. This
tell us with related computations that how determine β to force that
the former condition happens and wi2(T ) becomes greater than φ2

ij .

Lemma 3.4. If

k1

(
T +

4L

u0

)
≥ k1(T )− φ2

11, (3.7)

then in the interval
[
T, T + 4L

u0

]
, we have the completion of pursuit by

pursuer x1.

Proof. In this proof, we use the temporary notations x = (x1, x2) for the
position x1 = (x11, x12) and p = (p1, p2) for the velocity p1 = (p11, p12).
Set

p(t) = (u0, 0), t ∈ Γ0 = {t > T | x1(t) < y1(t), x2(t) ̸= z(x1(t))}.
(3.8)

Since

x(t) = x(T ) +

t∫
T

p(s)ds = (a+ (t− T )u0, f(a)),
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by using (3.8) pursuer x moves along the straight line κ = f(a) starting
from the point A = x(T ) = (x̄1, x̄2) = (a, f(a)) with the velocity p =
(u0, 0) until one of the following

x1(t) < y1(t), x2(t) ̸= z(x1(t))

which are the conditions of the Γ0 fails to hold. Now Consider the
following two cases.
Case 1. x1(T1) = y1(T1), x1(T1) < s (Figure 3) at some T1 ≥ T , where
s = z−1(f(a)).
Case 2. z(x1(T1)) = f(a) (that is z(x1(T1)) = x2(T1)) and x1(T1) ≤
y1(T1) (Figure 4) at some T1 ≥ T .

It is easy to see that

T ≤ T1 ≤ T +
s− a

u0
≤ T +

L

u0
. (3.9)

A. x1(T1) = y1(T1) < s and
y2(T1) > f(a).

B. x1(T1) = y1(T1) < s and y2(T1) <
f(a).

Figure 3. Case 1. x1(T1) = y1(T1) < s

We seperate case 1 as follow:
Case 1a. x1(T1) = y1(T1), x1(T1) < s, y2(T1) < f(a) (Figure 3B).
Case 1b. x1(T1) = y1(T1), x1(T1) < s, y2(T1) > f(a) (Figure 3A).

For the strategy of pursuer x, we set
p(t) = (e1(t),−u0), t ≥ T1. (3.10)

which proves that pursuit is completed at some time τ ∈
[
T1, T + 2L

u0

]
.

In fact, using (3.10) for all t ≥ T1, we have

x1(t) = x1(T1) +

t∫
T1

p1(s)ds = y1(T1) +

t∫
T1

e1(s)ds = y1(t), (3.11)
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Figure 4. Case 2. f(a) = z(x1(T1) and x1(T1) ≤ y1(T1).

It means that, for any t ≥ T1, the positions of pursuer x and evader y
are on the same vertical line. Hence, we have the completion of pursuit
if only x2(τ) = y2(τ) at some τ ≥ T1. To prove this,

x2(t)− y2(t) = x2(T1)− y2(t) +

t∫
T1

p2(s)ds ≤ L− (t− T1)u0. (3.12)

It is obvious that the right hand side of (3.12) at t = T1 +
L
u0

is 0 , so
x2(τ) = y2(τ) at some T1 ≤ τ ≤ T1+

L
u0

, which proves that x(τ) = y(τ).
It means pursuit is completed at τ . By using (3.9) for the time τ we
have

T ≤ τ ≤ T1 +
L

u0
≤ T +

2L

u0
. (3.13)

Next, we prove admissibility of strategy (3.10). First, we prove

x(t) ∈ int(M), T1 < t < τ.

exactly we prove that x(t) is an interior point of the set bounded by
the lines κ = f(a) and κ = f(δ), a ≤ δ ≤ s. In fact, using (3.10)

x2(t) = f(a)− (t− T1)u0 < f(a), (3.14)

and so x(t) is under the straight line κ = f(a). Also, if O ≤ x1(t) ≤ s,
using (3.11) z(x1(t)) = z(y1(t)) ≤ y2(t) < x2(t) meaning that x(t) is
above the curve κ = z(δ), O ≤ δ ≤ s. Similarly, x2(t) > l(x1(t)) if
a ≤ x1(t) ≤ J .

Finally, if J < x1(t) < O, then m0 ≤ y2(t) < x2(t) < f(a). Thus,
x(t) ∈ int(M), T1 < t < τ , when pursuer x applies the strategy (3.10).
Hence, the boundary of the set M cannot be a barrier when pursuer
applies the strategy (3.10).
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We prove
t∫

0

p21(s)ds ≤ ψ2
11. (3.15)

Since
T+ 2d

u0∫
0

p21(s)ds =


T∫
0

+

T1∫
T

+

T+ 2L
u0∫

T1

 p21(s)ds

and by (3.4), (3.8) and (3.9)
T∫
0

u21(s)ds ≤ Lβ,

T1∫
T

p21(s)ds ≤ (T1 − T )u20 ≤ L · u0,

and by (3.7)
T+ 2L

u0∫
T1

e21(s)ds ≤

T+ 4L
u0∫

T

e21(s)ds ≤ φ2
11,

therefore by (3.2)
T+ 2L

u0∫
0

p21(s)ds ≤ Lβ + Lu0 + φ2
11 ≤

1

2
(ψ2

11 − φ2
11) +

1

6
(ψ2

11 − φ2
11) + φ2

11 < ψ2
11.

Thus, the strategy (3.10) is admissible.
Next, we study both Case 1b and Case 2. Let
Γ1 = {t ≥ T1 | x2(t) ̸= z(x1(t))},
∆1 = {t ≥ T1 | x1(t) = y1(t), x2(t) = z(x1(t))},
∆2 = {t ≥ T1 | x1(t) < y1(t), x2(t) = z(x1(t))}, ∆ = ∆1 ∪∆2,

and

P0(ξ) = (P10(ξ), P20(ξ)) =

{ (
u0, z

′
+(δ)u0

)
, z′+(δ) ≤ 1(

u0
z′+(δ)

, u0

)
, z′+(δ) ≥ 1

, s ≤ δ ≤ b.

(3.16)
For t ≥ T1, we set (Fig. 5)

p(t) =


(e1(t), u0), t ∈ Γ1,
(e1(t), u0), e1(t) < P10(x1(t)), t ∈ ∆1,
P0(x1(t)), e1(t) ≥ P10(x1(t)), t ∈ ∆1,
P0(x1(t)), t ∈ ∆2.

(3.17)
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A. e1(t) < P10(x1(t)), t ∈ ∆1 B. e1(t) ≥ P10(x1(t)), t ∈ ∆1

Figure 5. Structure of p(t) for t ∈ ∆1

Property 3.5. The strategy (3.24) has the following properties:
Σ1. Let x1(t1) = y1(t1) and for t1 ≤ t ≤ t2

p(t) =

{
(e1(t), u0), t ∈ Γ1,
(e1(t), u0), e1(t) < P10(x1(t)), t ∈ ∆1,

(3.18)

for some t1 < t2. Then x1(t) = y1(t) for all t ∈ [t1, t2].
Σ2. Let t1 ∈ ∆. If p(t) = P0(x1(t)), t1 ≤ t ≤ t2, for some t2 > t1,

then x2(t) = z(x1(t)), t1 ≤ t ≤ t2.
Σ3. Suppose pursuer x use the strategy (3.24) on [t1, t2) ⊂ ∆. If, for

some ε > 0, mes((t2, t2 + ε) ∩∆) = 0, then x1(t2) = y1(t2).
Σ4. Let x2(τ) = y2(τ) at some τ ∈ ∆. Then x(τ) = y(τ).
Σ5. Let t ≥ T1 be any time that we do not have the completion of

pursuit. Then t ∈ Γ1 ∪∆.
Σ6. mes(∆) ≤ 2L

u0
and mes(Γ0) ≤ L

u0
.

Proof. See Property 2 in [4]. □

We show the completion of pursuit. It is enough to prove that x2(τ) =
y2(τ) for T1 ≤ τ ≤ T + 4L

u0
to show x(τ) = y(τ) because if τ ∈ Γ1, then

x1(τ) = y1(τ); and if τ ∈ ∆, then by property Σ4, x1(τ) = y1(τ).
If x2(τ) = y2(τ) at some time τ when x2(τ) ≤ f(b), then the proof is

done. Let x2(t) ≠ y2(t) when x2(t) ≤ f(b). Prove that x2(τ) = y2(τ) at
some time τ , x2(τ) > f(b).

In fact, by property Σ5 any time t is in Γ1 ∪∆. Assume x2(t) > f(b),
t ≥ T1. Then x(t) is not on the curve z(δ) and so t /∈ ∆. Therefore
t ∈ Γ1. In particular, x1(t) = y1(t) and so we can use the similar proof
in Case 1a for proving that the boundary of the set M can not be a
barrier when pursuer applies the strategy (3.24). It is easy to see that
x2(t) < y2(t) ≤ F (x1(t)). Therefore, if the pursuer position’s can be
any point of the curve κ = F (δ), a ≤ δ ≤ b, at some time, then by
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that time we have x2(τ) = y2(τ) for some time τ . In fact, by using
Σ6, mes(∆) ≤ 2L

u0
and it means pursuer can move along the κ = z(δ),

s ≤ δ ≤ b, only a finite time not more than 2L
u0

.
Using Σ5 we have

x2(t)− x2(T1) =

t∫
T1

p2(s)ds =

 ∫
∆∩[T1,t]

+

∫
Γ1∩[T1,t]

 p2(s)ds. (3.19)

Since by (3.24), p2(t) ≥ 0, t ≥ T1, then∫
∆∩[T1,t]

p2(s)ds ≥ 0.

Therefore using (3.19) and the equation Γ1 ∩ [T1, t] = [T1, t] \∆ getting
from property Σ5 obtain that

x2(t)− x2(T1) ≥
∫

[T1,t]\∆

p2(s)ds = u0 ·mes([T1, t] \∆).

Finally, by using Σ6 we have

x2(t)−x2(T1) ≥ u0(mes([T, t])−mes(∆)) ≥ u0

(
t− T − 2L

u0

)
. (3.20)

However, x2(t)− x2(T1) ≤ L, so by (3.20) we have that at some time
τ ,

T1 ≤ τ ≤ T1 +
3L

u0
≤ T +

4L

u0
, (3.21)

we have x2(τ) = y2(τ) since by the time T + 4L
u0

the position of the
pursuer will be on the curve F (δ).

Therefore, we have the completion of pursuit at some time τ that
satisfy the (3.13) in Case 1a and (3.21) in Cases 1b and 2. Therefore, if
we have (3.7), then we have the completion of pursuit from the time T
within the time T + 4L

u0
− T = 4L

u0
.

We prove that strategy of x is admissible.
Now define the following set:

∆′
1 = {t ∈ ∆1|e1(t) < P10(x1(t))},

∆′′
1 = {t ∈ ∆1|e1(t) ≥ P10(x1(t))}
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because the sets Γ0, Γ1, ∆′
1, ∆′′

1, and ∆2 have mutually empty intersec-
tion,

τ∫
0

p21(s)ds =

 T∫
0

+

∫
Γ0

+

∫
Γ1∪∆′

1

+

∫
∆′′

1∪∆2

 p21(s)ds. (3.22)

We have the following estimation for these integrals.

T∫
0

p21(s)ds ≤ Lβ,

∫
Γ0

p21(s)ds = u20 mes(Γ0) ≤ Lu0 (see property Σ6),

∫
Γ1∪∆′

1

p21(s)ds =

∫
Γ1∪∆′

1

e21(s)ds =

T+ 4L
u0∫

T

e21(s)ds ≤ φ2
11,

∫
∆′′

1∪∆2

p21(s)ds ≤ u20mes(∆
′′
1 ∪∆2) ≤ 2Lu0 (see property Σ6). (3.23)

Thus, by (3.22), (3.23) and (3.2) we have
τ∫

0

p21(s)ds ≤ Lβ + φ2
11 + 3Lu0 ≤ ψ2

11,

therefore, admissibility of p(t) is proved for t ≥ 0. The proof of Lemma
3.4 is done. □

Let F (x, y, x̄, T, φ11) be the strategy of pursuer x on [0, T ] defined by
(3.8), (3.10) and (3.24), where x̄ = (x̄1, x̄2).

3.2. Proof for the completion of pursuit.
Proof. We now construct the strategies for pursuers x1, x2, ..., xm as
follows. If k1(T ) > φ2

1 − φ2
11, then we consider the strategy of pursuer

x1 as follows:

p1(t) =

{
F (x1, y, x̄, χ0, k1), χ0 ≤ t ≤ χ1,
0, t > χ1.

(3.24)

where χ0 = T and χ1 is the first time when k1(χ1) = φ2
1 − φ2

11. Note
that k1(t), t ≥ 0, is non increasing. By Lemma 3.4 if

k1

(
χ0 +

4L

u0

)
≥ q1(χ0)− φ2

11,
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then we have the completion of pursuit by x1 at some τ1 ∈
[
χ0, χ0 +

4L
u0

]
.

If pursuit is not completed in this interval, then

k1

(
χ0 +

4L

u0

)
< k1(χ0)−φ2

11 ≤ φ2
1 −φ2

11 and so χ1 ∈
[
χ0, χ0 +

4L

u0

]
.

Now, set

pi(t) =

 0, t < χi−1,
F (xi, y, x̄, χi−1, k1), χi−1 ≤ t ≤ χi,
0, t > χi,

(3.25)

which is strategy of pursuer xi, i = 2, ...,m, where χi is the first time
(not stated clearly) when k1(χi) = k1(χi−1)− φ2

i,1, i = 2, ...,m. If

k1

(
χi−1 +

4L

u0

)
≥ k1(χi−1)− φ2

i,1,

then by Lemma 3.4 we have the completion of pursuit by pursuer xi at
some τi ∈

[
χi−1, χi−1 +

4L
u0

]
. If pursuit is not completed in

[
χi−1, χi−1 +

4L
u0

]
,

then we must have

k1

(
χi−1 +

4L

u0

)
< k1(χi−1)− φ2

i,1, i = 1, 2, ...,m. (3.26)

Since the right hand side of this inequality at i = m is
k1(χm−1)−φ2

m,1 = k1(χm−2)−φ2
m−1,1−φ2

m,1 = φ2
1−φ2

1,1−· · ·−φ2
m,1 = 0.

Therefore, for i = m, (3.26) is equivalent to

k1

(
χm−1 +

4L

u0

)
< 0, or the same

χm−1+
4L
u0∫

0

e21(s)ds > φ2
1,

on the other hand we have the admissibility of the control of evader e(t)
and the above inequalities contradict this admissibility. So the inequality
(3.26) fails to hold at some i = r and then by Lemma 3.4 pursuit is
completed by the pursuer xr in

[
χr−1, χr−1 +

4L
u0

]
.

Let now k1(T ) ≤ φ2
1 − φ2

11 and let the number k is chosen to satisfy
the inequality

φ2
1 − φ2

11 − · · · − φ2
k,1 ≤ k1(T ) ≤ φ2

1 − φ2
11 − · · · − φ2

k−1,1. (3.27)
Then for the strategies of pursuers we set pi(t) = 0, t ≥ T , i = 1, ..., (k−
1). For i = k, the strategy of pursuer xk is defined as follows

pk(t) =

{
F (xk, y, x̄, χ0, k1), T ≤ t ≤ χk,
0, t > χk,

(3.28)
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where χk is the first time when k1(χk) = φ2
1 − φ2

11 − · · · − φ2
k,1.

Now consider the strategies of pursuers xi, k < i ≤ m by formula
(3.25). The rest of the proof that pursuit can be completed is the same
as above. The proof of the theorem is done. □

4. Conclusion

For the completion of the differential game of m pursuers and one
evader with the constraints we have got a sufficient condition. Pursuit
differential game has been investigated for any nonconvex set M . We ex-
actly gave the strategies of the pursuers and proved that the completion
of pursuit can be done from any initial state in M .

The following is the explanation that pursuers used. The pursuers by
using (3.3) want to reach to the point x̄ = (a, f(a)), so they use just their
initial states and x̄ when 0 ≤ t ≤ T . For getting whether xi1(t) = y1(t),
the pursuer xi uses xi(t) and y(t) when T ≤ t < T1. In the case t ≥ T1,
the pursuer xi uses xi(t), y(t), k1(t) and e(t).

we have displayed the equation k1(χi) = k1(χi−1)−φ2
i,1. For determin-

ing χi, there is no usage of χi−1. Indeed, to determine χi, i = 1, 2, ...,m,
we use the following

k1(χi) = k1(χi−1)− φ2
i,1 = φ2

1 − φ2
1,1 − · · · − φ2

i,1.

We gave the strategies with the detailed costruction in the proof of
Theorem 3.1. That being said, we used the numbers ψi2, i = 1, ...,m,
which are positive in the proof of Theorem 3.1.
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