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1. Introduction

Throughout the article, all rings are commutative with a nonzero
identity and all modules are unitary. We recall some definitions.

Definition 1.1. Let M be an R-module and N be a submodule of M .

(1) (N :R M) denotes the ideal {r ∈ R | rM ⊆ N} and the anni-
hilator of M , denoted by AnnR(M), is the ideal (0M :R M). If
there is no ambiguity, we will write (N : M) (resp. Ann(M))
instead of (N :R M) (resp. AnnR(M)).
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(2) N is said to be prime if N ̸= M and whenever rm ∈ N (where
r ∈ R and m ∈M), then r ∈ (N :M) or m ∈ N . If N is prime,
then the ideal p := (N : M) is a prime ideal of R. In this case,
N is said to be p-prime (see [13, 21]).

(3) The set of all prime submodules of M is called the prime spec-
trum of M and is denoted by Spec(M). Similarly, the collection
of all p-prime submodules of M for any p ∈ Spec(R) is desig-
nated by Specp(M). Recall that an R-module M is said to be
primeless if Spec(M) = ∅.

(4) The set of all prime submodules of M containing N is denoted
by V ∗(N) (see [22]). Following [16], we define V (N) as

{P ∈ Spec(M) | (P :M) ⊇ (N :M)}.

By N ≤ M (resp. N < M) we mean that N is a submodule
(resp. proper submodule) of M . Set Z(M) = {V (N)|N ≤ M}.
Then the elements of the set Z(M) satisfy the axioms for closed
sets in a topological space Spec(M). The resulting topology due
to Z(M) is called the Zariski topology relative to M and denoted
by τ (see [16]).

In recent decades, the theory of prime submodules has been widely
considered as a generalization of the theory of prime ideals in commu-
tative rings. There are many articles that seek to generalize the various
properties of the prime ideals of a ring to the prime submodules of a
module (see [3, 5, 7, 8, 9, 10, 13]). To see a common generalization
of the notion of prime submodule, we refer the reader to [11]. Also,
there are some interesting applications of prime submodule theory in
[10], where the authors show that an R-moduleM is Von-Neumann reg-
ular if and only if every submodule of M is an intersection of prime
submodules of M .

The prime submodules of different types of modules were investigated
by many researchers in the last decades. It is shown by Azizi in [4,
Corollary 2.4] that any submodule N of an Artinian R-module M is
prime if and only if (N : M) is a maximal ideal of R. This is our
motivation for the following definition.

Definition 1.2. An R-moduleM is said to be pseudo Artinian if either
Spec(M) = ∅ or Spec(M) ̸= ∅ and for each prime submodule P of M ,
(P :M) is a maximal ideal of R.

In the next section, we show that the class of pseudo Artinian modules
is more extensive than the class of Artinian modules. In Lemma 2.2, we
will present some properties of pseudo Artinian modules. Theorem 2.7
explicitly expresses the radical of specific submodules of pseudo Artinian
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modules. Finally, in Theorem 2.10, some topological properties of the
prime spectrum of pseudo Artinian modules are investigated.

2. pseudo Artinian modules

By definition, any Artinian module is pseudo Artinian, see [4, Corol-
lary 2.4]. However, the converse is not true in general. For example,
every infinite vector space over a field is pseudo Artinian which is not
Artinian. So, the class of pseudo Artinian modules is more extensive
than the class of Artinian modules. Now, we present other examples of
pseudo Artinian modules.

Example 2.1. If R is a ring of (Krull) dimension 0 (e.g, Artinian or
absolutely flat ring), then every R-module is a pseudo Artinian module.
Let S be a one-dimensional integral domain and M be a S-module such
that Spec(0)(M) = ∅. Then, M is a pseudo Artinian S-module. For
instance, if S is a Dedekind domain, then every torsion S-module is
pseudo Artinian.

In the next lemma, we will present some properties of pseudo Artinian
modules. Recall that, the saturation of N with respect to a prime ideal
p of R, denoted by Sp(N), is the kernel of the composite homomorphism

M →M/N →Mp/Np

where the first homomorphism is the canonical homomorphism (see [6,
p.69]). More precisely,

Sp(N) = {m ∈M | sm ∈ N for some s ∈ R \ p}.

Lemma 2.2.

(1) Let R be an integral domain over which every R-module is pseudo
Artinian. Then R is a field.

(2) Let R be an integral domain. If M is a non-primeless pseudo
Artinian R-module, then either M is torsion or R is a field.

(3) An R-module M is a pseudo Artinian module if and only if the
Rp-module Mp is a pseudo Artinian module for every prime (or
maximal) ideal p of R.

(4) Let {Mi}i∈I be a family of R-modules. Then
⊕

i∈I Mi is a pseudo
Artinian R-module if and only if Mi is a pseudo Artinian R-
module for each i ∈ I.

(5) Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of R-
modules. If M ′ and M ′′ both are pseudo Artinian, then M is
pseudo Artinian. Also, if M is pseudo Artinian, then so is M ′′.

(6) If Supp(M) ⊆ Max(R), then M is pseudo Artinian.

Proof.
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(1) Let K be the field of quotients of R. Then (0) is the only (0)-
prime submodule of the R-module K (see, for example [15, The-
orem 1]). Since K is pseudo Artinian, we have (0) ∈ Max(R).
This implies that R is a field.

(2) Suppose that M is not torsion. By [17, Lemma 4.5], S(0)(0) is a
(0)-prime submodule of M . Since M is pseudo Artinian, (0) is
a maximal ideal of R. Hence, R is a field.

(3) Let M be a pseudo Artinian R-module and Q be a qRp-prime
submodule ofMp where p and q are prime ideals of R. According
to [15, Proposition 1], Q ∩ M is a q-prime submodule of M .
So q ∈ Max(R), therefore q = p. Hence, qRp is (the unique)
maximal ideal of Rp. This shows that Mp is a pseudo Artinian
module.

Now, suppose that the Rp-module Mp is a pseudo Artinian
module for every prime ideal p of R and M is not a pseudo Ar-
tinian module. Then there exists a prime submodule P of M
such that p := (P :M) is not a maximal ideal of R. Thus, there
exists a maximal ideal m of R such that p ⊆ m. By [15, Propo-
sition 1], P e is a pRm-prime submodule of the pseudo Artinian
Rm-moduleMm. In the light of our assumption, pRm is the max-
imal ideal of Rm. Therefore, p = m, which is a contradiction.
So, M is pseudo Artinian.

(4) Suppose that Mi is a pseudo Artinian R-module for each i ∈ I.
Let P be a p-prime submodule of

⊕
i∈I Mi. Then, Mj ̸⊆ P for

some j ∈ I. By [22, Lemma 1.6], P ∩Mj is a p-prime submodule
of Mj . Since Mj is a pseudo Artinian R-module, p is a maximal
ideal of R. This implies that

⊕
i∈I Mi is a pseudo Artinian R-

module.
Conversely, suppose that

⊕
i∈I Mi is a pseudo Artinian R-

module and let Pj be a pj-prime submodule of Mj , for some
j ∈ I. Then by [18, Lemma 4.6],

Pj ⊕
⊕
j ̸=i∈I

Mi ∈ Specpj (
⊕
i∈I

Mi).

Hence, pj is a maximal ideal of R. This shows that Mj is a
pseudo Artinian module.

(5) We may assume thatM ′ is a submodule ofM andM ′′ =M/M ′.
Suppose M ′ and M ′′ are both pseudo Artinian. Let P be a
p-prime submodule of M . If P ∩ M ′ = M ′, then P/M ′ is a
prime submodule of M ′′. Since M ′′ is pseudo Artinian, (P/M ′ :
M ′′) = (P : M) is a maximal ideal of R, as desired. Otherwise,
if P ∩ M ′ ̸= M ′, then P ∩ M ′ is a p-prime submodule of M ′
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by [22, Lemma 1.6]. Since M ′ is pseudo Artinian, p must be a
maximal ideal of R. This implies that M is pseudo Artinian.

Now, suppose that M is pseudo Artinian. Let Q/M ′ be a
prime submodule of M ′′. Then Q is a prime submodule of M ,
hence (Q : M) = (Q/M ′ : M ′′) is a maximal ideal of R. This
shows that M ′′ is pseudo Artinian.

(6) Let P be a prime submodule of M . Then

{(P :M)} = Ass(M/P ) ⊆ Supp(M/P ) ⊆ Supp(M) ⊆ Max(R).

This implies that (P :M) ∈ Max(R). So, M is pseudo Artinian

□

Example 2.3. We note that Lemma 2.2 enables us to construct more
examples of pseudo Artinian modules. For instance, let q be a prime
integer. Then Z/qZ is a pseudo Artinian Z-module. Hence,

⊕
p Z/pZ

as a Z-module, where p runs through the set of all prime integers, is
pseudo Artinian, by Lemma 2.2.

Remark 2.4.

(1) By Lemma 2.2, any direct sum of arbitrary family of pseudo
Artinian modules is a pseudo Artinian, again. But this is not
true for the case of direct product. For example, consider L =∏

p Z/pZ as a Z-module, where p runs through the set of all prime
integers. Since L is not torsion, according to the Lemma 2.2, it
is not a pseudo Artinian module.

(2) Let M be a pseudo Artinian R-module. Then, a proper sub-
module N of M is a prime submodule of M if and only if
(N :M) ∈ Max(R), by [13, Proposition 2].

(3) Every minimal prime submodule of M is of the form mM , for
some maximal ideal m of R. In particular, if R is semi-local,
then M has only finitely many minimal prime submodules.

LetM be an R-module. Then, M is called primeful if eitherM = (0)
or M ̸= (0) and the natural map ψ : Spec(M) → Spec(R/Ann(M)) de-
fined by ψ(P ) = (P :M)/Ann(M) for every P ∈ Spec(M), is surjective
(see [18]).

Proposition 2.5. Let M be a nonzero R-module. If M is pseudo Ar-
tinian, then dim(R/Ann(M)) = 0 in each of the following cases:

(1) M is primeful;
(2) M is free;
(3) M is finitely generated;
(4) M is faithfully flat;
(5) R is an integral domain and M is projective.
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Proof. It is shown in [18] that in each cases (1)-(5), for every prime
ideal p containing Ann(M), there is a prime submodule P of M such
that (P : M) = p. By assumption, p must be a maximal ideal of R.
This completes the proof. □

Corollary 2.6. Let M be a nonzero finitely generated pseudo Artinian
module over a Noetherian ring R. Then M has finite length.

We recall that, an R-module M is called catenary if for any prime
submodules P and Q of M with P ⊊ Q, all the saturated chains of
the prime submodules of M starting from P and ending at Q have the
same length (see [23]). Let N be a submodule of an R-module M . The
radical of N , denoted by radM (N) or briefly rad(N), is defined to be
the intersection of all prime submodules of M containing N . In the case
where there are no such prime submodules, rad(N) is defined as M . If
rad(N) = N , we say that N is a radical submodule (see [14, 20]).

Theorem 2.7. Let M be a pseudo Artinian R-module. The following
statements holds:

(1) M is catenary.
(2) If I is an ideal of R, then rad(IM) =

⋂
m∈Max(R)∩V (I)mM .

Proof.

(1) Consider a chain of the prime submodules P ⊊ Q of M . By
definition, p := (P :R M) is a maximal ideal of R. Let N
be a prime submodule of M such that P ⊆ N ⊆ Q. Then
(N :R M) = p and N/P is a (0)-prime submodule of R/p-vector
space M/P . Therefore, any chain of the prime submodules P ⊂
N1 ⊂ N2 ⊂ · · · ⊂ Q of M is a saturated chain if and only if
P/P ⊂ N1/P ⊂ N2 ⊂ · · · ⊂ Q/P is a saturated chain of R/p-
subspaces of M/P . Consequently, length of any saturated chain
of the prime submodules of M starting from P and ending at Q
is equal to rankR/p(Q/P ).

(2) If V ∗(IM) = ∅, then by [13, Proposition 4], mM = M for any
maximal ideal m ⊇ I. Hence, rad(IM) =

⋂
m∈Max(R)∩V (I)mM =

M . Thus, we suppose that V ∗(IM) ̸= ∅. Let P ∈ V ∗(IM) be
a m-prime submodule of M . This implies that IM ⊆ mM ⊆
P ̸= M . Again by [13, p.63, Proposition 4], mM is a prime
submodule of M . So, mM is a minimal element of Specm(M).
Therefore, rad(IM) =

⋂
m∈Max(R)∩V (I)mM .

□

We conclude the paper by investigating some topological properties
of the prime spectrum of pseudo Artinian modules.
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Remark 2.8. LetM be an R-module. By [16, Theorem 6.1], the following
statements are equivalent:

(1) (Spec(M), τ) is a T0-space;
(2) |Specp(M)| ≤ 1 for every p ∈ Spec(R).

Remark 2.9. Let X be a topological space.

(1) Let M ba an R-module and set Z∗(M) = {V ∗(N) : N ≤ M}.
There is a topology, τ∗ say, on Spec(M) due to Z∗(M) as the
collection of all closed sets if and only if Z∗(M) is closed under
finite union. When this is the case, we call the topology τ∗ the
quasi-Zariski topology on Spec(M) andM is called a top module
(see [22]).

(2) X is said to be Noetherian if the open subsets of X satisfy the
ascending chain condition. X is said to be irreducible if X ̸= ∅
and if every pair of non-empty open sets in X intersects ([6]).
For examples of modules with Noetherian spectrum, we refer the
reader to [1, 19].

(3) Let M be an R-module and Y be a subset of Spec(M). We will
denote the intersection of all elements in Y by ℑ(Y ) and the
closure of Y in Spec(M) w.r.t the (quasi-)Zariski topology by
Cl(Y ). By [16, Proposition 5.1], we have V (ℑ(Y )) = Cl(Y ). An
element y ∈ Y is called a generic point of Y if Y = Cl({y}).

(4) Following M. Hochster [12], we say that a topological space Y is
a spectral space in the case where Y is homeomorphic to Spec(S),
with the Zariski topology, for some ring S. Spectral spaces have
been characterized by Hochster [12, Proposition 4] as the topo-
logical spaces Y which satisfy the following conditions: (1) Y is
a T0-space; (2) Y is quasi-compact; (3) the quasi-compact open
subsets of Y are closed under finite intersections and form a ba-
sis of open sets; (4) each irreducible closed subset of Y has a
generic point. For examples of modules whose prime spectrum
is spectral, see [1, 16].

(5) A Noetherian space is spectral if and only if it is T0 and ev-
ery non-empty irreducible closed subspace has a generic point
([12, pp. 57-58]). We recall that if M is a top R-module, then
(Spec(M), τ∗) is a T0-space and every irreducible closed subset
of Spec(M) has a generic point (see [2, Theorem 3.3]).

Theorem 2.10. Let M be a pseudo Artinian R-module. The following
statements holds:

(1) If
∑

:= {P ∈ Spec(M) | (P : M)M ̸= M} is a finite set, then
(Spec(M), τ) is a Noetherian space. Moreover, M/rad(0) is a
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Noetherian R-module if and only if M/rad(0) is an Artinian
R-module.

(2) Let (Spec(M), τ) be a T0-space. Then we have
(a) Spec(M) = Max(M).
(b) If M is content, then M is top. Moreover, if Spec(R) is

Noetherian, then (X, τ∗) is spectral.
(c) If R is a one-dimensional integral domain with the Noether-

ian spectrum, then M is top.

Proof.

(1) Let
V (N1) ⊇ V (N2) ⊇ · · ·

be a descending chain of closed subsets of (Spec(M), τ). So, we
have an ascending chain

ℑ(V (N1)) ⊆ ℑ(V (N2)) ⊆ · · ·
of radical submodules of M and the ascending chain of radical
ideals

(ℑ(V (N1)) :M) ⊆ (ℑ(V (N2)) :M) ⊆ · · · .
Since

∑
is a finite set, there exists a positive integer k such that

(ℑ(V (Nk)) :M)M = (ℑ(V (Nk+i)) :M)M

for each i = 1, 2, · · · . By [16, Result 3], V (ℑ(V (Nk))) = V (ℑ(V (Nk+i))).
By Remark 2.9, V (Nk) = V (Nk+i), and so (Spec(M), τ) is a
Noetherian space.

For the second assertion, note that by assumption and Theo-
rem 2.7 there are finitely many maximal ideals mλ1 , . . . ,mλt such
that rad(0) = mλ1M∩· · ·∩mλtM . This implies thatM/rad(0) is
annihilated by mλ1 · · ·mλt . Therefore, M/rad(0) is a Noetherian
R-module if and only if M/rad(0) is an Artinian R-module.

(2) (a): Clearly Max(M) ⊆ Spec(M). Let P ∈ Spec(M). Then,
there is a maximal ideal m of R such that m = (P :M). Suppose
that L is a proper submodule of M such that P ⊆ L. Then
m = (P : M) = (L : M). By [13, Proposition 4], mM and
L are m-prime submodules of M . Since (Spec(M), τ) is a T0-
space, P = L = mM by Remark 2.8. Consequently, P = mM ∈
Max(M). (b) and (c) are direct consequences of part (a) and [1,
Theorem 3.9].

□

Let M be an R-module and N be a submodule of M . We say that
N is j-semiprime if N is an intersection of some prime submodules P
of M such that (P :M) is a maximal ideal of R.
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Proposition 2.11. Let M be a pseudo Artinian R-module. Then (X, τ)
is a Noetherian (and so is quasi-compact) topological space in each of
the following cases:

(1) R satisfies ACC on j-semiprime ideals;
(2) M satisfies the ascending chain condition on submodules of the

form IM , where I is an j-semiprime ideal of R;

Proof. (1) Let
V (N1) ⊇ V (N2) ⊇ · · ·

be a descending chain of closed subsets of (X, τ). Then, we have
an ascending chain of j-semiprime submodules of M ,

ℑ(V (N1)) ⊆ ℑ(V (N2)) ⊆ · · · ,
and the ascending chain of j-semiprime ideals,

(ℑ(V (N1)) :M) ⊆ (ℑ(V (N2)) :M) ⊆ · · · .
Thus, there exists a positive integer k such that

(ℑ(V (Nk)) :M)M = (ℑ(V (Nk+i)) :M)M

for each i = 1, 2, · · · . By [16, Result 3],

V (ℑ(V (Nk))) = V (ℑ(V (Nk+i))).

By Remark 2.9, V (Nk) = V (Nk+i), and so (X, τ) is a Noetherian
space.

(2) Let V (N1) ⊇ V (N2) ⊇ · · · be a descending chain of closed sub-
sets of (X, τ). Then we have an ascending chain of j-semiprime
submodules ofM , ℑ(V (N1)) ⊆ ℑ(V (N2)) ⊆ · · · , and the ascend-
ing chain of j-semiprime ideals, (ℑ(V (N1)) : M) ⊆ (ℑ(V (N2)) :
M) ⊆ · · · . Thus, by assumption there is a positive integer k
such that (ℑ(V (Nk)) : M)M = (ℑ(V (Nk+i)) : M)M for each
i = 1, 2, . . . . By [16, Result 3], V (ℑ(V (Nk))) = V (ℑ(V (Nk+i))).
So, by Remark 2.9, V (Nk) = V (Nk+i), and so (X, τ) is a Noe-
therian space.

□
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