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Milutin Obradović 1 and Nikola Tuneski 2

1 Department of Mathematics, Faculty of Civil Engineering, University
of Belgrade, Bulevar Kralja Aleksandra 73, 11000, Belgrade, Serbia

2 Department of Mathematics and Informatics, Faculty of Mechanical
Engineering, Ss. Cyril and Methodius University in Skopje, Karpoš II
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Abstract. Let f be function that is analytic in the unit disk
D = {z : |z| < 1}, normalized such that f(0) = f ′(0) − 1 = 0, i.e.,
of type f(z) = z +

∑∞
n=2 anz

n. If additionally,∣∣∣∣∣
(

z

f(z)

)2

f ′(z)− 1

∣∣∣∣∣ < λ (z ∈ D),

then f belongs to the class U(λ), 0 < λ ≤ 1. In this paper we prove
sharp upper bound of the modulus of the fifth coefficient of f from
U(λ) satisfying

f(z)

z
≺ 1

(1 + z)(1 + λz)
,

(”≺” is the usual subordination) in the case when 0.400436 . . . ≤
λ ≤ 1.
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1. Introduction and preliminaries

Let A consists of functions f that analytic in the open unit disc D =
{z : |z| < 1}, with expansion

f(z) = z + a2z
2 + a3z

3 + · · · ,

i.e., normalized such that f(0) = f ′(0)− 1 = 0. The famous Bieberbach
conjecture from 1914 states that |an| ≤ n, n = 2, 3, . . ., for the univalent
functions from A. The proof of the conjecture due to de Branges in
1985 [1] is one of the most celebrated results of the twentieth century.
Although, the conjecture is closed it remains an intriguing question to
find upper bounds (preferably sharp) of the modulus of the coefficient for
functons in various sublasses of univalent functions. One such class, that
attracts significant attention in past decades is the class U(λ), 0 < λ ≤ 1,

U(λ) =

{
f ∈ A :

∣∣∣∣∣
(

z

f(z)

)2

f ′(z)− 1

∣∣∣∣∣ < λ, z ∈ D

}
.

Functions from this class are proven to be univalent but not starlike
which makes them interesting since the class of starlike functions is very
wide. Overview of the most valuable results is given in Chapter 12 from
[9].

In [5], the authors conjectured |an| ≤ 1 + λ+ λ2 + · · ·+ λn−1 for the
class U(λ) and n ≥ 2. In the same paper they proved that the conjecture
is valid for n = 3 and n = 4, while for n = 2 the proof is given in [6].
For the fifth coefficient the conjecture was proven in [7] for the range
2/3 ≤ λ ≤ 1. The proofs for the third, fourth and the fifth coefficient
rely on the claim from [6] that for every function f from U(λ),

f(z)

z
≺ 1

(1 + z)(1 + λz)
. (1.1)

Here ”≺” denotes the usual subordination, i.e., F (z) ≺ G(z) for F and
G analytic in D, means that there exists function ω(z), also analytic in
D, such that ω(0) = 0 and |ω(z)| < 1 for all z ∈ D.

Recently, in [2], by a counterexample, the authors showed that f ∈
U(λ) does not imply subordination (1.1). So, the cited estimates of |an|,
for n = 3, 4 and 5, are correct only on the subclass of U(λ) consisting of
functions satisfying the subordination (1.1).

The estimate |a2| ≤ 1 + λ is correct and sharp on whole class U(λ)
(see [6]).

In this paper we study functions f from U(λ) satisfying subordination
(1.1) and we extend the conjectured estimate for n = 5 to the range
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λ0 ≤ λ ≤ 1, where λ0 = 0.400436 . . . is the unique positive solution of
the equation

9λ4 − 3λ3 + λ2 + 2λ− 1 = 0.

For the proof we will use the following result for the class P of
Caratheodory functions, that are functions p analytic in D, of form
p(z) = 1 + p1z + p2z

2 + · · · with positive real part, i.e., Re p(z) > 0
for z ∈ D. The result is due to Leverenz ([3, Theorem 4(b)]).

Lemma 1.1. Function p(z) = 1+p1z+p2z
2+ · · · has positive real part

on the unit disk, if, and only if,

∞∑
j=0


∣∣∣∣∣2zj +

∞∑
k=1

pkzk+j

∣∣∣∣∣
2

−

∣∣∣∣∣
∞∑
k=0

pk+1zk+j

∣∣∣∣∣
2
 ≥ 0 (1.2)

for every sequence {zk} of complex numbers that satisfy limk→∞ |zk|1/k <
1.

We will also need the following result by Prokhorov and Szynal [8,
Lemma 2, p.128].

Lemma 1.2. Let ω(z) = c1z + c2z
2 + c3z

3 + · · · be analytic in D with
|ω(z)| ≤ 1 for all z ∈ D. If µ and ν are real numbers such that 2 ≤ |µ| ≤
4 and ν ≥ 1

12(µ
2 + 8), then |c3 + µc1c2 + νc31| ≤ ν.

2. Main result

If p(z) = 1 + p1z + p2z
2 + · · · is a function from P, then there exists

function ω(z) = c1z + c2z
2 + · · · , analytic in D, such that ω(0) = 0,

|ω(z)| < 1 for all z ∈ D and

p(z) =
1 + ω(z)

1− ω(z)

(
= 1 + 2ω(z) + 2ω2(z) + · · ·

)
.

After comparing the coefficients we have

p1 = 2c1,

p2 = 2(c2 + c21),

p3 = 2(c3 + 2c1c2 + c31),

p4 = 2(c4 + 2c1c3 + c22 + 3c21c2 + c41).

(2.1)

This will help us to prove the main result.
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Theorem 2.1. Let f(z) = z+a2z
2+· · · belongs to the class U(λ), where

λ0 ≤ λ ≤ 1, where λ0 = 0.400436 . . . is the unique positive solution of
the equation

9λ4 − 3λ3 + λ2 + 2λ− 1 = 0.

If, additionally, f satisfies subordination (1.1), then

|a5| ≤ 1 + λ+ λ2 + λ3 + λ4,

and the result is sharp.

Proof. If f(z) = z+a2z
2+ · · · ∈ U(λ), 0 < λ ≤ 1, satisfies subordination

(1.1), then

f(z)

z
=

1

(1− ω(z))(1− λω(z))
= 1 +

∞∑
n=1

1− λn+1

1− λ
ωn(z), (2.2)

where ω(z) = c1z + c2z
2 + · · · is analytic in D, |ω(z)| < 1 for all z ∈ D,

and 1−λn+1

1−λ

∣∣∣
λ=1

= n+ 1 for n = 1, 2, . . .. From (2.2) we have

a5 = (1 + λ)c4 + 2(1 + λ+ λ2)c1c3 + (1 + λ+ λ2)c22

+ 3(1 + λ+ λ2 + λ3)c21c2 + (1 + λ+ λ2 + λ3 + λ4)c41.
(2.3)

On the other side, if we choose zk = 0 for k > 3 in (1.2), we have

|2z0 + p1z1 + p2z2 + p3z3|2 − |p1z0 + p2z1 + p3z2 + p4z3|2

+|2z1 + p1z2 + p2z3|2 − |p1z1 + p2z2 + p3z3|2

+|2z2 + p1z3|2 − |p1z2 + p2z3|2 + |2z3|2 − |p1z3|2 ≥ 0.

From here, we have that

L =: |p1z0 + p2z1 + p3z2 + p4z3|2

≤R =: (|2z0 + p1z1 + p2z2 + p3z3|2 − |p1z1 + p2z2 + p3z3|2)
+ (|2z1 + p1z2 + p2z3|2 − |p1z2 + p2z3|2)
+ (|2z2 + p1z3|2 − |p1z3|2) + |2z3|2.

(2.4)

If we choose p1, p2, p3 and p4 from (2.1) and

z0 =λ2(1− λ)2c31,

z1 =λ2c2 + (3λ3 − 2λ2)c21,

z2 =2λ2c1,

z3 =1 + λ,
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then, after some calculations and comparing with (2.3), for L defined in
(2.4) we have that

L = 4|a5|2. (2.5)

Also, if we use that |a+ b|2−|b|2 = |a|2+2Re{ab} (a and b are complex
numbers), then by (2.4):

R = 4|z0|2 + 4Re{(p1z1 + p2z2 + p3z3)z0}+ 4|z1|2 + 4Re{(p1z2 + p2z3)z1}
+ 4|z2|2 + 4Re{(p1z3)z2}+ 4|z3|2.

(2.6)

Considering each term of (2.6) by choosing the same values for p1, p2,
p3, p4, z0, z1, z2, z3 as before, we receive:

|z0|2 = λ4(1− λ)4|c1|6;
Re{(p1z1 + p2z2 + p3z3)z0} ≤ |p1z1 + p2z2 + p3z3| · |z0|

= 2|(1 + λ)c3 + (3λ2 + 2λ+ 2)c1c2 + (3λ3 + λ+ 1)c31|λ2(1− λ)2|c1|3

= 2λ2(1− λ)2|c1|3(1 + λ)

∣∣∣∣c3 + (
2 +

3λ2

1 + λ

)
c1c2 +

(
1 +

3λ3

1 + λ

)
c31

∣∣∣∣
= 2λ2(1− λ)2|c1|3(1 + λ)

(
1 +

3λ3

1 + λ

)
= 2λ2(1− λ)2(3λ3 + λ+ 1)|c1|3;

since in this case 2 < |µ| < 4 and ν ≥ 1
12(8 + µ2) is equivalent with

√
52−4
9 = 0.356789 . . . ≤ λ ≤ 1. Further,

|z1|2 = |λ2c2 + (3λ3 − 2λ2)c21|2 = λ4|c2|2 + (3λ3 − 2λ2)2|c1|4

+ 2Re{λ2(3λ3 − 2λ2)c2c1
2};

Re{(p1z2 + p2z3)z1}
= Re{(4λ2c21 + 2(1 + λ)(c2 + c21)) · (λ2c2 + (3λ3 − 2λ2)c1

2)}
= Re{(2(1 + λ)c2 + 2(2λ2 + λ+ 1)c21)(λ

2c2 + (3λ3 − 2λ2)c1
2)}

= Re{2λ2(1 + λ)|c2|2 + 2(2λ2 + λ+ 1)(3λ3 − 2λ2)|c1|4

+ (2λ2(2λ2 + λ+ 1) + 2(1 + λ)(3λ3 − 2λ2))c2c1
2};

|z2|2 = 4λ4|c1|2;
Re{(p1z3)z2} = Re{2(1 + λ)2λ2|c1|2} = 4λ2(1 + λ)|c1|2;
|z3|2 = (1 + λ)2.
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Using all previous facts and some transformations and calculations,
from (2.6) we have

R ≤ 4
[(
λ2(1− λ)2|c1|3 + 3λ3 + λ+ 1

)2 − (3λ3 + λ+ 1)2

+λ2(λ2 + 2λ+ 2)|c2|2 + (3λ3 − 2λ2)(3λ3 + 2λ2 + 2λ+ 2)|c1|4

+4λ2(λ2 + λ+ 1)|c1|2 + 2λ2(3λ3 + 3λ2 + 2λ− 1)Re{c2c12}+ (1 + λ)2
]
.

Since 3λ3 + 3λ2 + 2λ− 1 > 0 for 0.400436 . . . = λ0 ≤ λ ≤ 1, then

2λ2(3λ3 + 3λ2 + 2λ− 1)Re{c2c12} ≤ 2λ2(3λ3 + 3λ2 + 2λ− 1)|c2||c1|2,

and using that |c2| ≤ 1− |c1|2, we have

R ≤ 4
[
(λ2(1− λ)2|c1|3 + 3λ3 + λ+ 1)2 + λ2(λ2 + 2λ+ 2)(1− |c1|2)2

+(3λ3 − 2λ2)(3λ3 + 2λ2 + 2λ+ 2)|c1|4 + 4λ2(λ2 + λ+ 1)|c1|2

+2λ2(3λ3 + 3λ2 + 2λ− 1)(1− |c1|2)|c1|2 + (1 + λ)2 − (3λ3 + λ+ 1)2
]
,

and after some calculations, finally,

R ≤ 4
[
(λ2(1− λ)2|c1|3 + 3λ3 + λ+ 1)2 + F (λ, |c1|2)

]
,

where

F (λ, t) = 3λ4(3λ2−2λ−1)t2+2λ2(3λ3+4λ2+2λ−1)t−λ2(9λ4+5λ2+4λ−2),
(2.7)

t = |c1|2, 0 ≤ t ≤ 1.

If λ = 1, then F (1, t) = 16(t− 1) ≤ 0.

If 0 < λ < 1, then 3λ2 − 2λ − 1 < 0 and the function F (λ, t) attains
its maximal value for

t0 =
λ2(3λ3 + 4λ2 + 2λ− 1)

3λ4(1 + 2λ− 3λ2)
≥ 1,

since this is equivalent to 9λ4−3λ3+λ2+2λ−1 ≥ 0, which is true because
λ0 ≤ λ ≤ 1. It means that max0≤t≤1 F (λ, 1) = 0, i.e., F (λ, |c1|2) ≤ 0 for
all λ0 ≤ λ ≤ 1 and 0 ≤ |c1| ≤ 1. By (2) we have

R ≤ 4λ2(1− λ)2|c1|3 + 3λ3 + λ+ 1)2

≤ 4(λ2(1− λ)2 + 3λ3 + λ+ 1)2

= 4(λ4 + λ3 + λ2 + λ+ 1)2.

(2.8)

Finally, from (2.4), (2.5) and (2.8) we have

|a5| ≤ 1 + λ+ λ2 + λ3 + λ4.

□
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