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1. Introduction

If (G, ⋆) is a group, and τ is a topology on G, then we say that (G, ⋆, τ)
is a topologized group. Given a topologized group G, a question arises
about interactions and relations between algebraic and topological struc-
tures: which topological properties are satisfied by the multiplication
mapping m : G × G → G, (x, y) → x ⋆ y, and the inverse mapping
i : G → G, x → x−1. The concept of ideals in topological spaces has
been introduced and studied by Kuratowski [3] and Vaidyanathaswamy,
[4]. An ideal I on a topological space (X, τ) is a nonempty collection of
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subsets of X which satisfies (i) A ∈ I and B ⊂ A implies B ∈ I and
(ii) A ∈ I and B ∈ I implies A ∪ B ∈ I. Given a topological space
(X, τ) with an ideal I on X and a set operator (.)⋆: P(X) → P(X),
where P(X) is the set of all subsets of X, is called the local function
[4] of A with respect to τ and I and is defined as follows: for A ⊂
X, A⋆(τ, I) = {x ∈ X|U ∩ A /∈ I for every U ∈ τ(x)}, where τ(x) =
{U ∈ τ : x ∈ U}. A Kuratowski closure operator cl⋆(·) for a topology
τ⋆(τ, I) called the ⋆-topology, finer than τ is defined by cl⋆(A) = A ∪
A⋆(τ, I). When there is no chance of confusion, A⋆(I) is denoted by A⋆.
If I is an ideal on X, then (X, τ, I) is called an ideal topological space.
In this paper, we introduce and study a new class of topologized groups
called β-I-topological groups.

2. Preliminaries

Throughout this paper (G, ⋆, τ), or simply G, will denote a group
(G, ⋆) endowed with the topologies τ on G. The identity element of G
is denoted by e, or eG when it is necessary, the operation ⋆ : G × G →
G, (x, y) → x ⋆ y, is called the multiplication mapping and sometimes
denoted by m, and the inverse mapping i : G → G, x → x−1 is denoted
by i. For a subset A of a topological space (X, τ), cl(A) and Int(A)
denote the closure of A and the interior of A in (X, τ), respectively. A
topological space is extremely disconnected if closure of an open set is
open. A subset S of an ideal topological space (X, τ, I) is said to be β-
I-open [2] if S ⊂ cl(Int(cl∗(S))). The complement of a β-I-open set is
called β-I-closed [2]. The intersection of all β-I-closed sets containing S
is called the β-I-closure of S and is denoted by βIcl(S). The β-I-interior
of S is defined by the union of all β-I-open sets contained in S and is
denoted by βIInt(S). The family of all β-I-open (resp. β-I-closed) sets
of (X, τ, I) is denoted by βIO(X) (resp. βIC(X)). The family of all
β-I-open (resp. β-I-closed) sets of (X, τ, I) containing a point x ∈ X
is denoted by βIO(X,x) (resp. βIC(X,x)).

Definition 2.1. Let (X, τ, I) be an ideal topological space. The family
Ω of β-I-open sets is called a β-I-base if and only if for each β-I-open
set is a union of members of Ω.

Definition 2.2. A subset M(x) of an ideal topological space (X, τ, I) is
called a β-I-neighbourhood of a point x ∈ X if there exists a β-I-open
set S such that x ∈ S ⊂ M(x).

Definition 2.3. A function f : (X, τ, I) → (Y, σ, I) is said to be:

(1) β-Icontinuous if f−1(V ) ∈ βIO(X) for every V ∈ σ.
(2) β-I-irresolute if f−1(V ) ∈ βIO(X) for every V ∈ βIO(Y ).
(3) β-I-open if f(U) ∈ βIO(Y ) for every U ∈ βIO(X).
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(4) β-I-homeomorphism if f is bijective, β-I-irresolute and β-I-
open.

Lemma 2.4. If f : (X, τ, I) → (Y, σ, I) is a β-I-homeomorphism, then:

(1) βIcl(f(A)) = f(βIcl(A)) for all A ⊂ X;
(2) βIInt(f(A)) = f(βIInt(A)) for all A ⊂ X.

3. On β-I-topological groups

Definition 3.1. A topologized group (G, ∗, τ, I) is called an ideal topo-
logical group if for each x, y ∈ G and each neighbourhood W of x ∗ y−1
in G there exist I - open neighbourhoods U of x and V of y such that
U ∗ V −1 ⊆ W .

Definition 3.2. (G, ◦, τ, I) is said to be β-I-topological group if (G, ◦)
is a group, (G, τ, I) is an ideal topological space and left translation
Lx : G → G for all x ∈ G and right translation Rx : G → G for all
x ∈ G are β-I-continuous and the mapping of inversion i : G → G
defined by i(x) = x−1 is β-I-continuous on G.

Example 3.3. Any group with the discrete topology, or indiscrete topol-
ogy, is a topological group, hence β-I-topological group.

Example 3.4. The set G = {−1, 1} is a group under usual multiplica-
tion. Let topology and ideal on G be τ = {∅, G, {1}}, I = P(G). Then
open sets of G are the only β - I - open sets and so (G, ◦, τ, I) is not a
β-I-topological group.

Example 3.5. The set Zn = {0, 1, 2, . . . n−1} is a group under addition
modulo n. Let topology and ideal on Zn be τ = ∅, {0},Zn, I = {P(Zn)\
M} where M = {M ⊆ Zn : 0 ∈ M}. Here M∗ = {0}∀M ∈ M and so
{0} is β - I - open but {x ∈ Zn : x ̸= 0} is not β - I - open. Thus,
(Zn,⊕, τ, I) is not a β-I-topological group.

In addition, every ideal topological group is β-I-topological group but
converse need not be true by the following example.

Example 3.6. Consider the addition modulo group Z2 with discrete
topology and an ideal I = {∅, 0}. Then {0}∗ = ∅, {1}∗ = {0, 1}∗ =
{0, 1}. Thus the collection of I - open sets and β - I - open sets are
P(Z2) \ 0 and P(Z2). Hence (Z2, τ, I) is β - Ideal topological group but
not an Ideal topological group.

Theorem 3.7. Let (G, ◦, τ, I) be a β-I-topological group and βe be the
base at identity element e of G. Then:

(1) for every U ∈ βe, there is an element V ∈ βIO(G, e) such that
V −1 ⊂ U .
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(2) for every U ∈ βe, there is an element V ◦ x ⊂ U , and x ◦ V ⊂ U
for each x ∈ U .

Proof. (1) Since (G, ◦, τ, I) is a β-I-topological group, for every U ∈ βe
there exists V ∈ βIO(G, e) such that i(V ) = V −1 ∈ U because the
inverse mapping i : G → G is β-I-continuous.
(2) Since (G, ◦, τ, I) is a β-I-topological group, for each U ∈ τ containing
x, there exists V ∈ βIO(G, e) such that Rx(V ) = V ◦ x ⊂ U . □

Lemma 3.8. Let A be a subset of a β-I-topological group (G, ◦, τ, I).
Then βIcl(A

−1) ⊂ cl(A−1).

Proof. Let x ∈ (βIcl(A))−1 and U ∈ τ containing x. Then, U−1 is a β-
I-open neighbourhood of x−1. Since x−1 ∈βI cl(A), U−1 ∩A ̸= ∅. This
implies that U ∩ A−1 ̸= ∅. That is, x ∈ cl(A−1) and so (βIcl(A))−1 ⊂
cl(A−1). □

Theorem 3.9. Let (G, ◦, τ, I) be a β-I-topological group. If U is β-I-
open set in (G, ◦, τ, I), then U−1 is β-I-open in (G, ◦, τ−1, I−1).

Proof. The proof follows from the respective definitions. □

We denote that I−1 = {I−1 : I ∈ I}. It is easily verify that I−1 is an
ideal on X.

Theorem 3.10. If (G, ◦, τ, I) is a β-I-topological group, then (G, ◦, τ−1, I−1)
is also a β-I-topological group.

Proof. Since (G, ◦) is a group and (G, τ, I) is an ideal topological space,
(G, ◦, τ−1, I−1) is an ideal topological group. We need to prove that:
i : (G, ◦, τ−1, I−1) → (G, ◦, τ−1, I−1), and Lx : (G, ◦, τ−1, I−1) →
(G, ◦, τ−1, I−1) and Rx : (G, τ−1) → (G, τ−1) are β-I-continuous map-
pings. First, we show that Lx is β-I-continuous. For this, let V ∈ τ−1.
Then V −1 = U ∈ τ . Since (G, ◦, τ, I) is β-I-topological group, the
left (right) translation is β-I-continuous. Hence L←x (U) ∈ βIO(G, τ, I),
that is, (U ◦ x−1)−1 ∈ βIO(G, τ−1, I−1), that is, U ◦ x−1 = V −1 ◦
x−1 = (x ◦ V )−1 = L←x (V ) ∈ βIO(G, τ−1, I−1). This proves that Lx :
(G, ◦, τ−1, I−1) → (G, ◦, τ−1, I−1) is β-I-continuous for every x ∈ G.
Similarly, we can prove that right translation Rx : (G, ◦, τ−1, I−1) →
(G, ◦, τ−1, I−1) is β-I-continuous. Trivially i : (G, ◦, τ−1, I−1) → (G, ◦, τ−1, I−1)
is continuous and hence β-I-continuous. Hence (G, ◦, τ−1, I−1) is also
a β-I-topological group. □

Theorem 3.11. If H is a discrete subgroup of a β-I-topological group
(G, ◦, τ−1, I−1), then βIcl(H) is a subgroup of G.

Proof. Let x, y ∈βI cl(H). If U and V are respective τ−1-open neigh-
bourhoods of x and y, then Lx−1(U) = x−1 ◦ U and Ly−1(U) = y−1 ◦ U
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are β-I-open neighbourhoods of e. Since H is a discrete subgroup of a
β-I-topological group G, x−1◦U∩H ̸= ∅ and y−1◦U∩H ̸= ∅. Therefore,
(x◦y−1 ◦x−1 ◦U ∩x◦y−1 ◦H)∪(x◦y−1 ◦y−1 ◦V ∩x◦y−1 ◦H) ̸= ∅. That
is, W ∩x−1 ◦y−1 ◦H ̸= ∅, where W = x◦y−1 ◦x−1 ◦U ∪x◦y−1 ◦y−1 ◦V
is a β-I-open neighbourhood of x ◦ y−1. Thus, for each x, y ∈βI cl(H)
implies that x ◦ y−1 ∈βI cl(H). Hence βIcl(H) is a subgroup of G. □

Corollary 3.12. If H is a discrete subgroup of a β-I-topological group
(G, ◦, τ, I), then cl(H) is a subgroup of G.

Theorem 3.13. Let (G, ◦, τ, I) be a β-I-topological group. If A is open
in G, then A ◦ B and B ◦ A are β-I-open in (G, ◦, τ, I) for any subset
B of G.

Proof. Let x ∈ B and z ∈ A ◦ x we show that z is β-I-interior point
of A ◦ x. Let z = y ◦ x for some y ∈ A = A ◦ x ◦ x−1. This implies
that y = z ◦ x−1. Now Rx−1 : G → G is β-I-continuous, that is, for
every open set containing Rx−1(z) = z ◦ x−1 = y, there exists a β-I-
open set Mz containing z such that Rx−1(Mz) ⊂ A. Now we have that
Mz ◦x−1 ⊂ A or Mz ⊂ A◦x. This implies z is β-I-interior point of A◦x.
Thus A ◦ x is β-I-open. It follows that A ◦B = ∪

x∈B
A ◦ x is β-I-open in

(G, ◦, τ, I). Similarly we can prove that for every open set A of G and
arbitrary subset B of G, B ◦ A is β-I-open in a β-I-topological group
(G, ◦, τ, I). □

Proposition 3.14. Let (G, ◦, τ, I) be a β-I-topological group. If C is
closed in G, then for any a ∈ G, a ◦ C and C ◦ a are β - I - closed.

Proof. Let x ∈ βIcl(a ◦ C), b = a−1◦x andD be an open neighbourhood
of b. Then by Definition 3.1, there exist an β − I - open set F of x in
G such that a−1 ◦F ⊂ D. Since x ∈ βIcl(a ◦ C) we have F ∩ a ◦C ̸= ∅.
Let c ∈ F ∩ a ◦ C, then a−1 ◦ c ∈ C ∩ a−1 ◦ F ⊆ C ∩D which implies
C ∩ D ̸= ∅. Thus b is a limit point of C. Since C is closed we have
b ∈ C. Now x = a ◦ b and so x ∈ a ◦ C. By the above argument,

βIcl(a ◦ C) ⊆ a ◦ C and since a ◦ C ⊆βI cl(a ◦ C) is trivial we have
a ◦ C = βIcl(a ◦ C). Hence a ◦ C is β - I - closed. Proof of C ◦ a is
similar. □

Theorem 3.15. Let (G, ◦, τ, I) be a β-I-topological group. Then each
left (right) translation Lx : G → G, Rx : G → G is a β-I-homeomorphism.

Proof. Since (G, ◦, τ, I) is β-I-topological group, Lx : G → G is β-I-
continuous. So it is enough to show that Lx : G → G is β-I-open. Let V
be an open set in G. Then by Theorem 3.13, Lg(V ) = g ◦ V ∈ βIO(G).
Hence Lx : G → G is a β-I-open mapping. □
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Theorem 3.16. Suppose that a subgroup H of a β-I-topological group
(G, ◦, τ, I) contains a nonempty open subset of G. Then H is β-I-open
in G.

Proof. By Theorem 3.15 for every g ∈ H, Rg : G → G is β-I-homeomorphism.
Let U ∈ τ and U ⊂ H, then for every g ∈ H, the set Rg(U) = U ◦ g is
β-I-open in (G, ◦, τ, I). Now H = ∪{U ◦ g : g ∈ H} is β-I-open in G
being the union of β-I-open sets of G. □

Definition 3.17. A topological space (G, τ, I) is said to be β-I-homogeneous
if for all x, y ∈ G, there is a β-I-homeomorphism f of the space G onto
itself such that f(x) = y.

Theorem 3.18. If (G, ◦, τ, I) is a β-I-topological group, then every
open subgroup of G is also β-I-closed.

Proof. Since (G, ◦, τ, I) is a β-I-topological group and H is an open
subgroup of G, then any left or right translation x ◦H or H ◦ x is β-I-
open for each x ∈ G. So the set Y = {x ◦H : x ∈ G} of all left cosets of
H in G forms a partition of G. Thus Y is a β-I-open covering of G by
disjoint β-I-open sets of G. This gives G\H is union of β-I-open sets
and hence β-I-open. This proves that H is β-I-closed. □

Corollary 3.19. Every β-I-topological group is a β-I-homogeneous
space.

Proof. Let us take elements x and y in (G, ◦, τ, I) and put z = x−1 ◦ y.
Since Rx : G → G is a β-I-homeomorphism of (G, ◦, τ, I) and Rz(x) =
x◦z = x◦(x−1◦y) = e◦y = y, (G, ◦, τ, I) is β-I-homogeneous space. □

Lemma 3.20. If f : (X, τ, I) → (Y, σ) is β-I-continuous and H is
an open subset of X, then fH : (H, τ |H, I|H) → (Y, σ|H) is β-I-
continuous.

Theorem 3.21. Every open subgroup H of a β-I-topological group
(G, ◦, τ, I) is also a β-I-topological group (called β-I-topological sub-
group) of G.

Proof. Let (G, ◦, τ, I) be a β-I-topological group and H an open sub-
group of G. We need to prove that (H, ◦, τ |H, I|H) is a β-I-topological
group. For this, we show that i : H → H, Lx : H → H and Rx : H → H
are β-I-continuous with respect to the relative topology. Since H is an
open subgroup of G, by Lemma 3.20, iH : (H, τ |H, I|H) → (Y, σ|H),
LH : (H, τ |H, I|H) → (Y, σ|H) and RH : (H, τ |H, I|H) → (Y, σ|H) are
β-I-continuous. This proves that (H, ◦, τ |H, I|H) is a β-I-topological
group. □
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Theorem 3.22. Let f : (G, ◦, τG, IG) → (H, ◦, τH , IH) be a homomor-
phism of β-I-topological groups. If f is β-I-irresolute at the neutral
(identity) element eG, then f is β-I-continuous on G.

Proof. Let x ∈ G be an arbitrary element. Suppose that W is an open
neighbourhood of y = f(x) ∈ H. Since the left translation in H is a β-I-
continuous mapping, there is a β-I-open neighbourhood V of the neutral
element eH of H such that Ly(V ) = y◦V ⊂ W . Since f is β-I-irresolute
at eG, therefore, f(U) ⊂ V for some β-I-open neighbourhood U of eG,
in G. Since f(U) ⊂ V , now y ◦ f(U) ⊂ y ◦ V ⊂ W . This implies that
(x ◦ U) ⊂ W . By the fact that (G, ◦, τG, IG) is a β-I-topological group,
thus x ◦ U is β-I-open in G. This proves that f is β-I-continuous at x.
Since x was the arbitrary element of G, therefore f is β-I-continuous on
G. □

We recall that, an Ideal topological space X is β - I - connected if X
cannot be written as union of two disjoint non - empty β - I - open sets
in X.

Theorem 3.23. Let (G, ◦, τ, I) be a extremely disconnected β - Ideal
topological group and M be a subgroup of G. If M and G/M are β - I
- connected, then G is β - I - connected.

Proof. Suppose G is not β - I - connected. Let us assume that G = E∪F
where E and F are disjoint non - empty β - I - open sets. Since M is
β - I - connected, each coset of M is either a subset of E or a subset of
F . Thus, the relation

G/M = {a ◦M : a ◦M ⊂ E} ∪ {a ◦M : a ◦M ⊂ F}
= {a ◦M : a ∈ E} ∪ {a ◦M : a ∈ F}

It expresses G/M as the union of disjoint non - empty β - I - open sets
which is a contradiction to β - I - connectedness of G/M . Thus, G is β
- I - connected. □

Theorem 3.24. Let a β - Ideal topological group (G, ◦, τ, I) be β - I
- connected and e be its identity element. If S is any β - I - open
neighbourhood of e, then G is generated by S.

Proof. Let S be a β - I - open neighbourhood of e. For each n ∈ N,
we denote Sn by the set of elements of the form s1.s2....sn where each
si ∈ S. Let T = ∪∞n=1S

n . If we prove T is β - I - open and β - I - closed,
Since G is β - I - connected, we have G = T and so G is generated by
S. Since each Sn is β - I - open and arbitrary union of β - I - open
sets is β - I - open, therefore T is β - I - open. Now we prove that
T is β - I - closed. Let a ∈ βIcl(T ). Since a ◦ S−1 is a β - I - open
neighbourhood of a, it must intersect T . Thus, let b ∈ T ∩a ◦S−1. Since
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b ∈ a ◦ S−1 then b = a ◦ s−1 for some s ∈ S. Since b ∈ T then b ∈ Sn

for some n ∈ N which implies b = s1s2...sn with each si ∈ S. Now, we
have a = s1s2...sn.s and so a ∈ Sn+1 ⊆ T . Hence T is β - I - closed.
Since G is β - I - connected and T is β - I - open and β - I - closed,
we have T = G. Thus, G is generated by S. □

Theorem 3.25. If (G, ◦, τ, I) is a β - I - connected, extremely discon-
nected β - Ideal topological group and H, a discrete invariant subgroup
of G, then H ⊆ Z(G), where Z(G) denotes the center of G.

Proof. Suppose H = {e}, then the result is trivial. Suppose H is non
- trivial. Let h ̸= e ∈ H. Since H is discrete, we can find an open
set D of h in G such that D ∩ H = {h}. Now, by definition of β
- Ideal topological group, there exists a β - I - open neighbourhood
E of e and a β - I - open neighbourhood E ◦ h of h in G such that
(E ◦ h) ◦ E−1 ⊂ D. Let b ∈ E be arbitrary. Since H is an invariant
subgroup of G, we have b ◦H = H ◦ b which implies that b ◦ h ∈ H ◦ b
and so b ◦h ◦b−1 ∈ H. It is also clear that b ◦h ◦b−1 ∈ E ◦h ◦E−1 ⊂ D.
Therefore, b ◦h ◦b−1 ∈ D∩H = {h} which implies b ◦h ◦b−1 = h. Thus,
b ◦ h = h ◦ b for each b ∈ E. Since the group G is β - I - connected, En

with n ∈ N covers the group G. Thus, a ∈ G can be written in the form
a = b1.b2...bn where b1, b2, ..., bn ∈ E and n ∈ N. Since h commutes
with every element of E, we have

a.h = b1.b2....bn.h = b1.b2....h.bn =
... = b1.h.b2....bn = h.b1.b2....bn = h.a

Hence h ∈ H is in the center of G. Since h is an arbitrary element of G,
we proved that the center of G contains H. □
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