Caspian Journal of Mathematical Sciences (CJMS) University of Mazandaran, Iran http://cjms.journals.umz.ac.ir ISSN: 2676-7260 CJMS. **11**(2)(2022), 518-525

(Research paper)

β -Ideal topological groups

P. Gnanachandra^{1 1} S. Jafari² and N. Rajesh³
¹ Centre for Research and Post Graduate Studies in Mathematics, College, Sivakasi - 626124, Tamil Nadu, India
² College of Vedtsjaelland South, Herrestraede 11, 4200 Slagelse, Denmark
³ Department of Mathematics, Rajah Serfoji Govt. College, Thanjavur 613005 Tamil Nadu, India

ABSTRACT. In this paper, we introduce and study a class of topologized groups called β - \mathcal{I} -topological groups.

Keywords: Topological group, $\beta\text{-}\mathcal{I}\text{-}\mathrm{open}$ sets, $\beta\text{-}\mathcal{I}\text{-}\mathrm{topological}$ group.

2020 Mathematics subject classification: 54C10, 54C08, 54C05

1. INTRODUCTION

If (G, \star) is a group, and τ is a topology on G, then we say that (G, \star, τ) is a topologized group. Given a topologized group G, a question arises about interactions and relations between algebraic and topological structures: which topological properties are satisfied by the multiplication mapping $m : G \times G \to G$, $(x, y) \to x \star y$, and the inverse mapping $i : G \to G, x \to x^{-1}$. The concept of ideals in topological spaces has been introduced and studied by Kuratowski [3] and Vaidyanathaswamy, [4]. An ideal \mathcal{I} on a topological space (X, τ) is a nonempty collection of

¹Corresponding author: pgchandra07@gmail.com Received: 10 March 2021 Accepted: 03 July 2022

⁵¹⁸

subsets of X which satisfies (i) $A \in \mathcal{I}$ and $B \subset A$ implies $B \in \mathcal{I}$ and (ii) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$. Given a topological space (X, τ) with an ideal \mathcal{I} on X and a set operator (.)*: $\mathcal{P}(X) \to \mathcal{P}(X)$, where $\mathcal{P}(X)$ is the set of all subsets of X, is called the local function [4] of A with respect to τ and \mathcal{I} and is defined as follows: for $A \subset$ $X, A^*(\tau, \mathcal{I}) = \{x \in X | U \cap A \notin \mathcal{I} \text{ for every } U \in \tau(x)\}$, where $\tau(x) =$ $\{U \in \tau : x \in U\}$. A Kuratowski closure operator $cl^*(\cdot)$ for a topology $\tau^*(\tau, \mathcal{I})$ called the *-topology, finer than τ is defined by $cl^*(A) = A \cup$ $A^*(\tau, \mathcal{I})$. When there is no chance of confusion, $A^*(\mathcal{I})$ is denoted by A^* . If \mathcal{I} is an ideal on X, then (X, τ, \mathcal{I}) is called an ideal topological space. In this paper, we introduce and study a new class of topologized groups called β - \mathcal{I} -topological groups.

2. Preliminaries

Throughout this paper (G, \star, τ) , or simply G, will denote a group (G,\star) endowed with the topologies τ on G. The identity element of G is denoted by e, or e_G when it is necessary, the operation $\star : G \times G \to$ $G, (x, y) \to x \star y$, is called the multiplication mapping and sometimes denoted by m, and the inverse mapping $i: G \to G, x \to x^{-1}$ is denoted by i. For a subset A of a topological space (X, τ) , cl(A) and Int(A)denote the closure of A and the interior of A in (X, τ) , respectively. A topological space is extremely disconnected if closure of an open set is open. A subset S of an ideal topological space (X, τ, \mathcal{I}) is said to be β - \mathcal{I} -open [2] if $S \subset cl(Int(cl^*(S)))$. The complement of a β - \mathcal{I} -open set is called β - \mathcal{I} -closed [2]. The intersection of all β - \mathcal{I} -closed sets containing S is called the β - \mathcal{I} -closure of S and is denoted by $_{\beta\mathcal{I}}cl(S)$. The β - \mathcal{I} -interior of S is defined by the union of all β -*I*-open sets contained in S and is denoted by $_{\beta \mathcal{I}}Int(S)$. The family of all $\beta \mathcal{I}$ -open (resp. $\beta \mathcal{I}$ -closed) sets of (X, τ, \mathcal{I}) is denoted by $\beta \mathcal{I}O(X)$ (resp. $\beta \mathcal{I}C(X)$). The family of all β - \mathcal{I} -open (resp. β - \mathcal{I} -closed) sets of (X, τ, \mathcal{I}) containing a point $x \in X$ is denoted by $\beta \mathcal{I}O(X, x)$ (resp. $\beta \mathcal{I}C(X, x)$).

Definition 2.1. Let (X, τ, \mathcal{I}) be an ideal topological space. The family Ω of β - \mathcal{I} -open sets is called a β - \mathcal{I} -base if and only if for each β - \mathcal{I} -open set is a union of members of Ω .

Definition 2.2. A subset M(x) of an ideal topological space (X, τ, \mathcal{I}) is called a β - \mathcal{I} -neighbourhood of a point $x \in X$ if there exists a β - \mathcal{I} -open set S such that $x \in S \subset M(x)$.

Definition 2.3. A function $f: (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{I})$ is said to be:

- (1) β - \mathcal{I} continuous if $f^{-1}(V) \in \beta \mathcal{I}O(X)$ for every $V \in \sigma$.
- (2) β - \mathcal{I} -irresolute if $f^{-1}(V) \in \beta \mathcal{I}O(X)$ for every $V \in \beta \mathcal{I}O(Y)$.
- (3) β - \mathcal{I} -open if $f(U) \in \beta \mathcal{I}O(Y)$ for every $U \in \beta \mathcal{I}O(X)$.

(4) β - \mathcal{I} -homeomorphism if f is bijective, β - \mathcal{I} -irresolute and β - \mathcal{I} -open.

Lemma 2.4. If $f : (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{I})$ is a β - \mathcal{I} -homeomorphism, then: (1) $_{\beta \mathcal{I}} cl(f(A)) = f(_{\beta \mathcal{I}} cl(A))$ for all $A \subset X$;

(2) $_{\beta \mathcal{I}}Int(f(A)) = f(_{\beta \mathcal{I}}Int(A))$ for all $A \subset X$.

3. On β -*I*-topological groups

Definition 3.1. A topologized group $(G, *, \tau, \mathcal{I})$ is called an ideal topological group if for each $x, y \in G$ and each neighbourhood W of $x * y^{-1}$ in G there exist \mathcal{I} - open neighbourhoods U of x and V of y such that $U * V^{-1} \subseteq W$.

Definition 3.2. $(G, \circ, \tau, \mathcal{I})$ is said to be β - \mathcal{I} -topological group if (G, \circ) is a group, (G, τ, \mathcal{I}) is an ideal topological space and left translation $L_x : G \to G$ for all $x \in G$ and right translation $R_x : G \to G$ for all $x \in G$ are β - \mathcal{I} -continuous and the mapping of inversion $i : G \to G$ defined by $i(x) = x^{-1}$ is β - \mathcal{I} -continuous on G.

Example 3.3. Any group with the discrete topology, or indiscrete topology, is a topological group, hence β - \mathcal{I} -topological group.

Example 3.4. The set $G = \{-1, 1\}$ is a group under usual multiplication. Let topology and ideal on G be $\tau = \{\emptyset, G, \{1\}\}, \mathcal{I} = \mathcal{P}(G)$. Then open sets of G are the only $\beta - \mathcal{I}$ - open sets and so $(G, \circ, \tau, \mathcal{I})$ is not a $\beta - \mathcal{I}$ -topological group.

Example 3.5. The set $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$ is a group under addition modulo n. Let topology and ideal on \mathbb{Z}_n be $\tau = \emptyset, \{0\}, \mathbb{Z}_n, \mathcal{I} = \{\mathcal{P}(\mathbb{Z}_n) \setminus \mathcal{M}\}$ where $\mathcal{M} = \{M \subseteq \mathbb{Z}_n : 0 \in M\}$. Here $M^* = \{0\} \forall M \in \mathcal{M}$ and so $\{0\}$ is $\beta - \mathcal{I}$ - open but $\{x \in \mathbb{Z}_n : x \neq 0\}$ is not $\beta - \mathcal{I}$ - open. Thus, $(\mathbb{Z}_n, \oplus, \tau, \mathcal{I})$ is not a β - \mathcal{I} -topological group.

In addition, every ideal topological group is β - \mathcal{I} -topological group but converse need not be true by the following example.

Example 3.6. Consider the addition modulo group \mathbb{Z}_2 with discrete topology and an ideal $\mathcal{I} = \{\emptyset, 0\}$. Then $\{0\}^* = \emptyset, \{1\}^* = \{0, 1\}^* = \{0, 1\}$. Thus the collection of \mathcal{I} - open sets and $\beta - \mathcal{I}$ - open sets are $\mathcal{P}(\mathbb{Z}_2) \setminus 0$ and $\mathcal{P}(\mathbb{Z}_2)$. Hence $(\mathbb{Z}_2, \tau, \mathcal{I})$ is β - Ideal topological group but not an Ideal topological group.

Theorem 3.7. Let $(G, \circ, \tau, \mathcal{I})$ be a β - \mathcal{I} -topological group and β_e be the base at identity element e of G. Then:

(1) for every $U \in \beta_e$, there is an element $V \in \beta \mathcal{I}O(G, e)$ such that $V^{-1} \subset U$.

(2) for every $U \in \beta_e$, there is an element $V \circ x \subset U$, and $x \circ V \subset U$ for each $x \in U$.

Proof. (1) Since $(G, \circ, \tau, \mathcal{I})$ is a β - \mathcal{I} -topological group, for every $U \in \beta_e$ there exists $V \in \beta \mathcal{I}O(G, e)$ such that $i(V) = V^{-1} \in U$ because the inverse mapping $i: G \to G$ is β - \mathcal{I} -continuous.

(2) Since $(G, \circ, \tau, \mathcal{I})$ is a β - \mathcal{I} -topological group, for each $U \in \tau$ containing x, there exists $V \in \beta \mathcal{I}O(G, e)$ such that $R_x(V) = V \circ x \subset U$. \Box

Lemma 3.8. Let A be a subset of a β - \mathcal{I} -topological group $(G, \circ, \tau, \mathcal{I})$. Then $_{\beta \mathcal{I}} cl(A^{-1}) \subset cl(A^{-1})$.

Proof. Let $x \in ({}_{\beta\mathcal{I}}cl(A))^{-1}$ and $U \in \tau$ containing x. Then, U^{-1} is a β - \mathcal{I} -open neighbourhood of x^{-1} . Since $x^{-1} \in_{\beta\mathcal{I}} cl(A)$, $U^{-1} \cap A \neq \emptyset$. This implies that $U \cap A^{-1} \neq \emptyset$. That is, $x \in cl(A^{-1})$ and so $({}_{\beta\mathcal{I}}cl(A))^{-1} \subset cl(A^{-1})$.

Theorem 3.9. Let $(G, \circ, \tau, \mathcal{I})$ be a β - \mathcal{I} -topological group. If U is β - \mathcal{I} open set in $(G, \circ, \tau, \mathcal{I})$, then U^{-1} is β - \mathcal{I} -open in $(G, \circ, \tau^{-1}, \mathcal{I}^{-1})$.

Proof. The proof follows from the respective definitions.

We denote that $\mathcal{I}^{-1} = \{I^{-1} : I \in \mathcal{I}\}$. It is easily verify that \mathcal{I}^{-1} is an ideal on X.

Theorem 3.10. If $(G, \circ, \tau, \mathcal{I})$ is a β - \mathcal{I} -topological group, then $(G, \circ, \tau^{-1}, \mathcal{I}^{-1})$ is also a β - \mathcal{I} -topological group.

Proof. Since (G, \circ) is a group and (G, τ, \mathcal{I}) is an ideal topological space, $(G, \circ, \tau^{-1}, \mathcal{I}^{-1})$ is an ideal topological group. We need to prove that: $i : (G, \circ, \tau^{-1}, \mathcal{I}^{-1}) \rightarrow (G, \circ, \tau^{-1}, \mathcal{I}^{-1})$, and $L_x : (G, \circ, \tau^{-1}, \mathcal{I}^{-1}) \rightarrow (G, \circ, \tau^{-1}, \mathcal{I}^{-1})$ and $R_x : (G, \tau^{-1}) \rightarrow (G, \tau^{-1})$ are β - \mathcal{I} -continuous mappings. First, we show that L_x is β - \mathcal{I} -continuous. For this, let $V \in \tau^{-1}$. Then $V^{-1} = U \in \tau$. Since $(G, \circ, \tau, \mathcal{I})$ is β - \mathcal{I} -topological group, the left (right) translation is β - \mathcal{I} -continuous. Hence $L_x^{\leftarrow}(U) \in \beta \mathcal{I}O(G, \tau, \mathcal{I})$, that is, $(U \circ x^{-1})^{-1} \in \beta \mathcal{I}O(G, \tau^{-1}, \mathcal{I}^{-1})$, that is, $U \circ x^{-1} = V^{-1} \circ x^{-1} = (x \circ V)^{-1} = L_x^{\leftarrow}(V) \in \beta \mathcal{I}O(G, \tau^{-1}, \mathcal{I}^{-1})$. This proves that $L_x :$ $(G, \circ, \tau^{-1}, \mathcal{I}^{-1}) \rightarrow (G, \circ, \tau^{-1}, \mathcal{I}^{-1})$ is β - \mathcal{I} -continuous for every $x \in G$. Similarly, we can prove that right translation $R_x : (G, \circ, \tau^{-1}, \mathcal{I}^{-1}) \rightarrow (G, \circ, \tau^{-1}, \mathcal{I}^{-1})$ is continuous and hence β - \mathcal{I} -continuous. Hence $(G, \circ, \tau^{-1}, \mathcal{I}^{-1})$ is also a β - \mathcal{I} -topological group. \Box

Theorem 3.11. If H is a discrete subgroup of a β - \mathcal{I} -topological group $(G, \circ, \tau^{-1}, \mathcal{I}^{-1})$, then $_{\beta \mathcal{I}} cl(H)$ is a subgroup of G.

Proof. Let $x, y \in_{\beta \mathcal{I}} cl(H)$. If U and V are respective τ^{-1} -open neighbourhoods of x and y, then $L_{x^{-1}}(U) = x^{-1} \circ U$ and $L_{y^{-1}}(U) = y^{-1} \circ U$

are β - \mathcal{I} -open neighbourhoods of e. Since H is a discrete subgroup of a β - \mathcal{I} -topological group G, $x^{-1} \circ U \cap H \neq \emptyset$ and $y^{-1} \circ U \cap H \neq \emptyset$. Therefore, $(x \circ y^{-1} \circ x^{-1} \circ U \cap x \circ y^{-1} \circ H) \cup (x \circ y^{-1} \circ y^{-1} \circ V \cap x \circ y^{-1} \circ H) \neq \emptyset$. That is, $W \cap x^{-1} \circ y^{-1} \circ H \neq \emptyset$, where $W = x \circ y^{-1} \circ x^{-1} \circ U \cup x \circ y^{-1} \circ y^{-1} \circ V$ is a β - \mathcal{I} -open neighbourhood of $x \circ y^{-1}$. Thus, for each $x, y \in_{\beta \mathcal{I}} cl(H)$ implies that $x \circ y^{-1} \in_{\beta \mathcal{I}} cl(H)$. Hence ${}_{\beta \mathcal{I}} cl(H)$ is a subgroup of G. \Box

Corollary 3.12. If H is a discrete subgroup of a β - \mathcal{I} -topological group $(G, \circ, \tau, \mathcal{I})$, then cl(H) is a subgroup of G.

Theorem 3.13. Let $(G, \circ, \tau, \mathcal{I})$ be a β - \mathcal{I} -topological group. If A is open in G, then $A \circ B$ and $B \circ A$ are β - \mathcal{I} -open in $(G, \circ, \tau, \mathcal{I})$ for any subset B of G.

Proof. Let $x \in B$ and $z \in A \circ x$ we show that z is β - \mathcal{I} -interior point of $A \circ x$. Let $z = y \circ x$ for some $y \in A = A \circ x \circ x^{-1}$. This implies that $y = z \circ x^{-1}$. Now $R_{x^{-1}} : G \to G$ is β - \mathcal{I} -continuous, that is, for every open set containing $R_{x^{-1}}(z) = z \circ x^{-1} = y$, there exists a β - \mathcal{I} open set M_z containing z such that $R_{x^{-1}}(M_z) \subset A$. Now we have that $M_z \circ x^{-1} \subset A$ or $M_z \subset A \circ x$. This implies z is β - \mathcal{I} -interior point of $A \circ x$. Thus $A \circ x$ is β - \mathcal{I} -open. It follows that $A \circ B = \bigcup_{x \in B} A \circ x$ is β - \mathcal{I} -open in $(G, \circ, \tau, \mathcal{I})$. Similarly we can prove that for every open set A of G and arbitrary subset B of G, $B \circ A$ is β - \mathcal{I} -open in a β - \mathcal{I} -topological group $(G, \circ, \tau, \mathcal{I})$.

Proposition 3.14. Let $(G, \circ, \tau, \mathcal{I})$ be a β - \mathcal{I} -topological group. If C is closed in G, then for any $a \in G$, $a \circ C$ and $C \circ a$ are β - \mathcal{I} - closed.

Proof. Let $x \in {}_{\beta \mathcal{I}} cl(a \circ C)$, $b = a^{-1} \circ x$ and D be an open neighbourhood of b. Then by Definition 3.1, there exist an $\beta - \mathcal{I}$ - open set F of x in G such that $a^{-1} \circ F \subset D$. Since $x \in {}_{\beta \mathcal{I}} cl(a \circ C)$ we have $F \cap a \circ C \neq \emptyset$. Let $c \in F \cap a \circ C$, then $a^{-1} \circ c \in C \cap a^{-1} \circ F \subseteq C \cap D$ which implies $C \cap D \neq \emptyset$. Thus b is a limit point of C. Since C is closed we have $b \in C$. Now $x = a \circ b$ and so $x \in a \circ C$. By the above argument, ${}_{\beta \mathcal{I}} cl(a \circ C) \subseteq a \circ C$ and since $a \circ C \subseteq {}_{\beta \mathcal{I}} cl(a \circ C)$ is trivial we have $a \circ C = {}_{\beta \mathcal{I}} cl(a \circ C)$. Hence $a \circ C$ is $\beta - \mathcal{I}$ - closed. Proof of $C \circ a$ is similar. \Box

Theorem 3.15. Let $(G, \circ, \tau, \mathcal{I})$ be a β - \mathcal{I} -topological group. Then each left (right) translation $L_x : G \to G, R_x : G \to G$ is a β - \mathcal{I} -homeomorphism.

Proof. Since $(G, \circ, \tau, \mathcal{I})$ is β - \mathcal{I} -topological group, $L_x : G \to G$ is β - \mathcal{I} -continuous. So it is enough to show that $L_x : G \to G$ is β - \mathcal{I} -open. Let V be an open set in G. Then by Theorem 3.13, $L_g(V) = g \circ V \in \beta \mathcal{I}O(G)$. Hence $L_x : G \to G$ is a β - \mathcal{I} -open mapping. \Box **Theorem 3.16.** Suppose that a subgroup H of a β - \mathcal{I} -topological group $(G, \circ, \tau, \mathcal{I})$ contains a nonempty open subset of G. Then H is β - \mathcal{I} -open in G.

Proof. By Theorem 3.15 for every $g \in H$, $R_g : G \to G$ is β - \mathcal{I} -homeomorphism. Let $U \in \tau$ and $U \subset H$, then for every $g \in H$, the set $R_g(U) = U \circ g$ is β - \mathcal{I} -open in $(G, \circ, \tau, \mathcal{I})$. Now $H = \cup \{U \circ g : g \in H\}$ is β - \mathcal{I} -open in G being the union of β - \mathcal{I} -open sets of G.

Definition 3.17. A topological space (G, τ, \mathcal{I}) is said to be β - \mathcal{I} -homogeneous if for all $x, y \in G$, there is a β - \mathcal{I} -homeomorphism f of the space G onto itself such that f(x) = y.

Theorem 3.18. If $(G, \circ, \tau, \mathcal{I})$ is a β - \mathcal{I} -topological group, then every open subgroup of G is also β - \mathcal{I} -closed.

Proof. Since $(G, \circ, \tau, \mathcal{I})$ is a β - \mathcal{I} -topological group and H is an open subgroup of G, then any left or right translation $x \circ H$ or $H \circ x$ is β - \mathcal{I} open for each $x \in G$. So the set $Y = \{x \circ H : x \in G\}$ of all left cosets of H in G forms a partition of G. Thus Y is a β - \mathcal{I} -open covering of G by disjoint β - \mathcal{I} -open sets of G. This gives $G \setminus H$ is union of β - \mathcal{I} -open sets and hence β - \mathcal{I} -open. This proves that H is β - \mathcal{I} -closed. \Box

Corollary 3.19. Every β - \mathcal{I} -topological group is a β - \mathcal{I} -homogeneous space.

Proof. Let us take elements x and y in $(G, \circ, \tau, \mathcal{I})$ and put $z = x^{-1} \circ y$. Since $R_x : G \to G$ is a β - \mathcal{I} -homeomorphism of $(G, \circ, \tau, \mathcal{I})$ and $R_z(x) = x \circ z = x \circ (x^{-1} \circ y) = e \circ y = y$, $(G, \circ, \tau, \mathcal{I})$ is β - \mathcal{I} -homogeneous space. \Box

Lemma 3.20. If $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is β - \mathcal{I} -continuous and H is an open subset of X, then $f_H : (H, \tau | H, \mathcal{I} | H) \to (Y, \sigma | H)$ is β - \mathcal{I} continuous.

Theorem 3.21. Every open subgroup H of a β - \mathcal{I} -topological group $(G, \circ, \tau, \mathcal{I})$ is also a β - \mathcal{I} -topological group (called β - \mathcal{I} -topological subgroup) of G.

Proof. Let $(G, \circ, \tau, \mathcal{I})$ be a β - \mathcal{I} -topological group and H an open subgroup of G. We need to prove that $(H, \circ, \tau | H, \mathcal{I} | H)$ is a β - \mathcal{I} -topological group. For this, we show that $i : H \to H, L_x : H \to H$ and $R_x : H \to H$ are β - \mathcal{I} -continuous with respect to the relative topology. Since H is an open subgroup of G, by Lemma 3.20, $i_H : (H, \tau | H, \mathcal{I} | H) \to (Y, \sigma | H)$, $L_H : (H, \tau | H, \mathcal{I} | H) \to (Y, \sigma | H)$ and $R_H : (H, \tau | H, \mathcal{I} | H) \to (Y, \sigma | H)$ are β - \mathcal{I} -continuous. This proves that $(H, \circ, \tau | H, \mathcal{I} | H)$ is a β - \mathcal{I} -topological group. \Box **Theorem 3.22.** Let $f : (G, \circ, \tau_G, \mathcal{I}_G) \to (H, \circ, \tau_H, \mathcal{I}_H)$ be a homomorphism of β - \mathcal{I} -topological groups. If f is β - \mathcal{I} -irresolute at the neutral (identity) element e_G , then f is β - \mathcal{I} -continuous on G.

Proof. Let $x \in G$ be an arbitrary element. Suppose that W is an open neighbourhood of $y = f(x) \in H$. Since the left translation in H is a β - \mathcal{I} continuous mapping, there is a β - \mathcal{I} -open neighbourhood V of the neutral element e_H of H such that $L_y(V) = y \circ V \subset W$. Since f is β - \mathcal{I} -irresolute at e_G , therefore, $f(U) \subset V$ for some β - \mathcal{I} -open neighbourhood U of e_G , in G. Since $f(U) \subset V$, now $y \circ f(U) \subset y \circ V \subset W$. This implies that $(x \circ U) \subset W$. By the fact that $(G, \circ, \tau_G, \mathcal{I}_G)$ is a β - \mathcal{I} -continuous at x. Since x was the arbitrary element of G, therefore f is β - \mathcal{I} -continuous on G.

We recall that, an Ideal topological space X is β - I - connected if X cannot be written as union of two disjoint non - empty β - I - open sets in X.

Theorem 3.23. Let $(G, \circ, \tau, \mathcal{I})$ be a extremely disconnected β - \mathcal{I} deal topological group and M be a subgroup of G. If M and G/M are β - \mathcal{I} - connected, then G is β - \mathcal{I} - connected.

Proof. Suppose G is not $\beta - \mathcal{I}$ - connected. Let us assume that $G = E \cup F$ where E and F are disjoint non - empty $\beta - \mathcal{I}$ - open sets. Since M is $\beta - \mathcal{I}$ - connected, each coset of M is either a subset of E or a subset of F. Thus, the relation

$$G/M = \{a \circ M : a \circ M \subset E\} \cup \{a \circ M : a \circ M \subset F\}$$
$$= \{a \circ M : a \in E\} \cup \{a \circ M : a \in F\}$$

It expresses G/M as the union of disjoint non - empty β - \mathcal{I} - open sets which is a contradiction to β - \mathcal{I} - connectedness of G/M. Thus, G is β - \mathcal{I} - connected.

Theorem 3.24. Let a β - \mathcal{I} deal topological group $(G, \circ, \tau, \mathcal{I})$ be β - \mathcal{I} - connected and e be its identity element. If S is any β - \mathcal{I} - open neighbourhood of e, then G is generated by S.

Proof. Let S be a $\beta - \mathcal{I}$ - open neighbourhood of e. For each $n \in \mathbb{N}$, we denote S^n by the set of elements of the form $s_1.s_2....s_n$ where each $s_i \in S$. Let $T = \bigcup_{n=1}^{\infty} S^n$. If we prove T is $\beta - \mathcal{I}$ - open and $\beta - \mathcal{I}$ - closed, Since G is $\beta - \mathcal{I}$ - connected, we have G = T and so G is generated by S. Since each S^n is $\beta - \mathcal{I}$ - open and arbitrary union of $\beta - \mathcal{I}$ - open sets is $\beta - \mathcal{I}$ - open, therefore T is $\beta - \mathcal{I}$ - open. Now we prove that T is $\beta - \mathcal{I}$ - closed. Let $a \in {}_{\beta \mathcal{I}} cl(T)$. Since $a \circ S^{-1}$ is a $\beta - \mathcal{I}$ - open neighbourhood of a, it must intersect T. Thus, let $b \in T \cap a \circ S^{-1}$. Since

 $b \in a \circ S^{-1}$ then $b = a \circ s^{-1}$ for some $s \in S$. Since $b \in T$ then $b \in S^n$ for some $n \in \mathbb{N}$ which implies $b = s_1 s_2 \dots s_n$ with each $s_i \in S$. Now, we have $a = s_1 s_2 \dots s_n . s$ and so $a \in S^{n+1} \subseteq T$. Hence T is $\beta - \mathcal{I}$ - closed. Since G is $\beta - \mathcal{I}$ - connected and T is $\beta - \mathcal{I}$ - open and $\beta - \mathcal{I}$ - closed, we have T = G. Thus, G is generated by S.

Theorem 3.25. If $(G, \circ, \tau, \mathcal{I})$ is a β - \mathcal{I} - connected, extremely disconnected β - \mathcal{I} deal topological group and H, a discrete invariant subgroup of G, then $H \subseteq Z(G)$, where Z(G) denotes the center of G.

Proof. Suppose $H = \{e\}$, then the result is trivial. Suppose H is non - trivial. Let $h \neq e \in H$. Since H is discrete, we can find an open set D of h in G such that $D \cap H = \{h\}$. Now, by definition of β - \mathcal{I} deal topological group, there exists a $\beta - \mathcal{I}$ - open neighbourhood E of e and a $\beta - \mathcal{I}$ - open neighbourhood $E \circ h$ of h in G such that $(E \circ h) \circ E^{-1} \subset D$. Let $b \in E$ be arbitrary. Since H is an invariant subgroup of G, we have $b \circ H = H \circ b$ which implies that $b \circ h \in H \circ b$ and so $b \circ h \circ b^{-1} \in H$. It is also clear that $b \circ h \circ b^{-1} \in E \circ h \circ E^{-1} \subset D$. Therefore, $b \circ h \circ b^{-1} \in D \cap H = \{h\}$ which implies $b \circ h \circ b^{-1} = h$. Thus, $b \circ h = h \circ b$ for each $b \in E$. Since the group G is $\beta - \mathcal{I}$ - connected, E^n with $n \in \mathbb{N}$ covers the group G. Thus, $a \in G$ can be written in the form $a = b_1.b_2...b_n$ where $b_1, b_2, ..., b_n \in E$ and $n \in \mathbb{N}$. Since h commutes with every element of E, we have

$$a.h = b_1.b_2....b_n.h = b_1.b_2....h.b_n = = b_1.h.b_2....b_n = h.b_1.b_2....b_n = h.a$$

Hence $h \in H$ is in the center of G. Since h is an arbitrary element of G, we proved that the center of G contains H.

References

- J. Dontchev, On Hausdorff spaces via topological ideals and *I*-irresolute functions, Annals of the New York Academy of Sciences, Papers on General Topology and Applications, 767 (1995), 28-38.
- [2] E. Hatir and T. Noiri, On decomposition of continuity via idealization, Acta Math. Hungar., 96 (2002), 341-349.
- [3] K. Kuratowski, Topology, Academic Press, New York, 1966.
- [4] R. Vaidyanatahswamy, The localisation theory in set topology, Proc. Indian Acad. Sci., 20 (1945), 51-61.
- [5] N. V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl., 2 (78) (1968), 103-118.
- [6] S. Yuksel, A. Acikgoz and E. Gursel, On β-*I*-regular sets, Far. East J. Math. Sci., 25 (2)(2007), 353-366.
- [7] S. Yuksel, A. Acikgoz and E. Gursel, On weakly β-*I*-irresolute functions, Far. East J. Math. Sci., 25 (1)(2007), 129-144.