
Caspian Journal of Mathematical Sciences (CJMS)
Eskişehir Osmangazi University, Turkey
http://cjms.journals.umz.ac.ir
https://doi.org/10.22080/CJMS.2021.22228.1599
Caspian J Math Sci. 12(1)(2023), 30-50 (Research Article)

Application of The Sine-Gordon Expansion Method on
Nonlinear Various Physical Models

Sait San,Bahri Koç and Sukri Khareng 1

Department of Mathematics - Computer, 26480, Eskişehir - TURKEY

Abstract. In this paper, by utilizing the Sine-Gordan expan-
sion method, soliton solutions of the higher-order improved Boussi-
nesq equation, Kuramoto-Sivashinsky equation, and seventh-order
Sawada-Kotera equation are obtained. Given partial differential
equations are reduced to ordinary differential equations, by choos-
ing the compatible wave transformation associated with the struc-
ture of the equation. Based on the solution of the Sine-Gordan
equation, a polynomial system of equations is obtained according
to the principle of homogeneous balancing. The solution of the
outgoing system gives the parameters which are included by the so-
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equations that play a very important role in mathematical physics
and engineering.
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1. Introduction

Nonlinear partial differential equations are encountered in modeling
of many problems in physics and engineering. In recent studies, the
integrability, the existence and uniqueness of their solutions, obtain-
ing conservation laws, finding numerical and exact solutions of these
equations have been discussed. Since there is no universal method for
obtaining exact solutions, it has caused many researchers to work in this
field. Using the functionality and ease of symbolic computing programs
such as maple matlab, many powerful techniques developed such as
improved (G′/G)− expansion method [1], exp(−Ω(ξ))−expansion func-
tion method [2], the generalized Riccati equation mapping method [3],
modified trial equation method [4], homotopy perturbation method [5],
Kudryashov method [6]- [9], Jacobi elliptic function method [10], lie
symmetry analysis method [11]-[13] and so on. Most methods have been
used to find different perspectives and to obtain different solutions. All
these exact solution methods are effective and lead to assorted types of
solutions such as trigonometric solutions, non-periodic solutions, soliton
and solitary solutions. Especially the last two types are very important
in nonlinear physical phenomena and engineering.

In this study, we considered the sine-gordan expansion method to find
exact solutions of various physical models. Firstly, we examined the
higher-order improved Boussinesq equation which were derived formally
from 2D water wave problem. Schneider and Wayne introduced a class
of Boussinesq equations to model the water wave problem with surface
tension [14].

− uxxxxtt + uxxtt − utt + uxx + µuxxxx + (u)2xx = 0 (1.1)

They have showed that the equation (1.1) really can be expressed by
two decoupled Kawahara equations for a degenerate case. In [15], Ak
çağıl and Gözükızıl utulized the tanh-coth method and obtained some
travelling wave solutions. The authors of [16] have also showed that
the finite time blow up solutions by employing the improved convexity
method. And in [17], Wang and Xue considered the Cauchy problem
for sixth order Boussinesq equation and proved that the existence and
uniqueness of the local solution by the contraction mapping theorem.

Another physical model is Kuramoto-Sivashinsky (KS) equation is
presented [18] as

ut + auux + buxx + kuxxxx = 0. (1.2)

in which a, b and k are some arbitrary constants. It appears in many
scientific areas such as phase turbulence systems [19], an example of
spatio temporal chaos [20], flame front propagation [21] and so on. In
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[22], approximate analytical solutions were found with homotopy anal-
ysis method and compared numerical solutions. Khater et al. [23],
Chebyshev spectral collocation method were performed and obtained
approximate numerical solutions.

As the last application, the seventh-order Sawada-Kotera equation
was examined [24].
ut+[63u4+63(2u2uxx+u(ux)

2)+21(uuxxxx+(uxx)
2+uxuxxx)+uxxxxxx]x = 0

(1.3)
Higher order KdV type equations have many applications in fluid

dynamics [25]-[29]. Jafari et al.[30] obtained approximate solutions by
applying the Adomian decomposition method and He’s variational it-
eration method for two different physical models of higher order KdV
type equations. Wazwaz employed the tanh-coth method and Hirota’s
direct method and obtained multiple soliton solutions [31]. The authors
of [32], performed Bell polynomial approach to investigate integrable
properties and constructed Lax pair, Backlund Transformation, Hirota
D-operators and infinite conservation laws.

2. Methodology of the Method

Firstly, we will give some preliminaries about the methodology of the
Sine-Gordon expansion method [33]- [37]. This method is constructed
on the well known Sine-Gordan equation.

uxx − utt = m2sin(u) (2.1)
in which u = u(x, t) is definition as a arbitrary function and m is a

constant. By taking u(x, t) = U(ξ) where it is applied ξ = kx+ lt which
is called wave transformation, (2.1) equation is reduced in one dimension
form.

U ′′ =
m2

k2 − l2
sin2(

U

2
) (2.2)

When multiply by U ′ and integrating once, we get a simpler equation.

[(
U

2
)′]2 =

m2

k2 − l2
sin2(

U

2
) +K (2.3)

Here K is an integration constant. If we get K = 0, U

2
= w(ξ) and

m2

k2 − l2
= α2,we get a simpler equation as follows.

w′ = α sin(w) (2.4)
Solution of Eq. (2.4) with taking α = 1 can be find as below

sin(w) = sin(w(ξ)) =
2peξ

p2e2ξ + 1
|p=1= sech(ξ) (2.5)
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cos(w) = cos(w(ξ)) =
2peξ − 1

p2e2ξ + 1
|p=1= tanh(ξ), (2.6)

where p ≠ 0 is the integration constant.

We suppose that a nonlinear differential equation of the polynomial
form

H(u, ux, ut, uxx, uxt, utt, ...) = 0. (2.7)
Applying the compatible wave transformation, (3.2) can be converted

to ODE
O(U,U ′, U ′′, U ′′′...) = 0 (2.8)

Thence, the expected solution to (3.3) of the form

U(ξ) =
n∑

i=1

tanhi−1(ξ)[Bisech(ξ) +Aitanh(ξ)] +A0 (2.9)

Thanks to (2.5) and (3.1) equations, we get equation (3.4) as following

U(ω) =

n∑
i=1

cosi−1(ω)[Bisin(ω) +Aicos(ω)] +A0 (2.10)

Operate the homogeneous balace principle to obtain the value of n. In
equation (2.10), necessary derivatives are taken and replaced in equation
(3.3). In obtained expression, letting the coefficients of sinp cosq of equal
power to be all zero, we construct an algebraic system. When the system
is solved by Maple, the values of unknowns Ai, Bi, k, l are found. Finally,
one can easily construct the soliton solutions of Eq. (3.3).

3. Applications

3.1. Higher Order Boussinesq Equation. In this section, we start
with the sixth-order Boussinesq equation,

− uxxxxtt + uxxtt − utt + uxx + µuxxxx + u2xx = 0, (3.1)

where u(x, t) is an analytic function and µ is arbitrary constant.
If we use the wave transformation ξ = x − ct into Eq.(3.1), it trans-

formed into an ODE

− c2u(vi) + c2u′′′′ − c2u′′ + u′′ + µu′′′′ + 2(u′)2 + 2uu′′ = 0, (3.2)

where prime expresses differentiation with respect to ξ. If we balance
between the highest order derivative term u(vi) and nonlinear term of
the highest degree uu′′ in Eq.(3.2), we obtain n = 4.
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Thus, the exact solution of the related equation has the form,

u(ξ) = A0 +B1 sech(ξ) +B2 sech(ξ) tanh(ξ)
+B3 sech(ξ) tanh

2(ξ) +B4 sech(ξ) tanh
3(ξ)

+A1 tanh(ξ) +A2 tanh
2(ξ) +A3 tanh

3(ξ) +A4 tanh
4(ξ),

(3.3)

where u(x, t) = U(ξ) satisfies Eq.(2.5) and A0, A1, A2, A3, A4, B1, B2, B3, B4

are undetermined constants.
Firstly, we substitute Eq.(3.3) into Eq.(3.2) with taking the necessary

derivatives and employ Eq.(2.5), in the end we equate all coefficients of
the functions [cos(ξ), sin(ξ)] to zero and we get the following nonlinear
algebraic system :

cos10(ξ) : −60480A4c
2 + 72A2

4 − 72B2
4 ,

cos9(ξ) : −20160A3c
2 + 112A3A4 − 112B4B3,

cos9(ξ) sin(ξ) : −60480B4c
2 + 144A4B4,

cos8(ξ) : −5040A2c
2 + 195720A4c

2 + 84A2A4

+42A2
3 − 128A2

4 + µ840A4 − 84B2B4 − 42B2
3 + 170B2

4 ,

cos8(ξ) sin(ξ) : −20160B3c
2 + 112A3B4 + 112A3B4,

cos7(ξ) : −720A1c
2 + 60120A3c

2 + 60A1A4 + 60A2A3

−196A3A4 + µ360A3 − 60B1B4 − 60B2B3 + 256B3B4,

cos7(ξ) sin(ξ) : −5040B2c
2 − 168000B4c

2

+84A2B4 + 84A3B3 + 84A4B2 − 226A4B4 + µ840B4,

cos6(ξ) : 13560A2c
2 − 232820A4c

2 + 40A0A4 + 40A1A3

+20A2
2 − 144A2A4 + µ120A2 − 72A2

3 + 56A2
4 − µ2080A4

−40B1B3 − 20B2
2 + 184B2B4 + 92B2

3 − 128B2
4 + 20A4,

cos6(ξ) sin(ξ) : −720B1c
2 + 50400B3c

2 + 60A1B4 + 60A2B3

+60A3B2 − 170A3B4 + 60A4B1 − 170A4B3 + µ360B3,

cos5(ξ) : 1704A1c
2 − 63660A3c

2 + 24A0A3 + 24A1A2

−100A1A4 + µ24A1 − 100A2A3 + 84A3A4 − µ816A3

−24B1B2 + 124B1B4 + 124B2B3 − 184B3B4 + 12A3,

cos5(ξ) sin(ξ) : 11040B2c
2 − 163160B4c

2 + 40A0B4

+40A1B3 + 40A2B2 − 122A2B4 + 40A3B1 − 122A3B3 − 122A4B2

+84A4B4 + µ120B2 − µ1720B4 + 20B4,
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cos4(ξ) : −12342A2c
2 + 121280A4c

2 + 12A0A2 − 64A0A4 + 6A2
1 − 64A1A3

−32A2
2 + 60A2A4 − µ240A2 + 30A2

3 + µ1696A4 − 6B2
1 + 76B1B3 + 38B2

2

−124B2B4 − 62B2
3 + 30B2

4 + 6A2 − 32A4,

cos4(ξ) sin(ξ) : 1344B1c
2 − 41832B3c

2 + 24A0B3 + 24A1B2 − 82A1B4 + 12B3

+24A2B1 − 82A2B3 − 82A3B2 + 60A3B4 − 82A4B1 + 60A4B3 + µ24B1 − µ648B3,

cos3(ξ) : −1274A1c
2 + 27522A3c

2 + 4A0A1 − 36A0A3 − 36A1A2 + 2A1 − 18A3

+40A1A4 − µ40A1 + 40A2A3 + µ576A3 + 40B1B2 − 76B1B4 − 76B2B3 + 40B3B4,

cos3(ξ) sin(ξ) : −7452B2c
2 + 63091B4c

2 + 12A0B2 − 50A0B4 + µ1061B4 + 6B2 − 25B4

+12A1B1 − 50A1B3 − 50A2B2 + 40A2B4 − 50A3B1 + 40A3B3 + 40A4B2 − µ180B2,

cos2(ξ) : 4112A2c
2 − 24684A4c

2 − 16A0A2 + 24A0A4 − 8A2
1 + 24A1A3 + 12A2

2

+µ136A2 − µ480A4 + 8B2
1 − 40B1B3 − 20B2

2 − 24B2B4 + 12B2
3 − 8A2 + 12A4,

cos2(ξ) sin(ξ) : −692B1c
2 + 12283B3c

2 + 4A0B1 − 26A0B3 − 26A1B2 − 13B3

+24A1B4 − 26A2B1 + 24A2B3 + 24A3B2 + 24A4B1 − µ28B1 + µ317B3 + 2B1,

cos(ξ) : 290A1c
2 − 3822A3c

2 − 4A0A1 + 12A0A3 + 12A1A2

+µ16A1 − µ120A3 − 16B1B2 + 12B1B4 + 12B2B3 − 2A1 + 6A3,

cos(ξ) sin(ξ) : 1451B2c
2 − 7452B4c

2 − 10A0B2 + 12A0B4 − 10A1B1 + 12A1B3

+12A2B2 + 12A3B1 + µ61B2 − µ180B4 − 5B2 + 6B4,

sin(ξ) : 67B1c
2 − 692B3c

2 − 2A0B1 + 4A0B3 + 4A1B2

+4A2B1 + µ5B1 − µ28B3 −B1 + 2B3,

constant : −290A2c
2 + 984A4c

2 + 4A0A2 + 2A2
1 − µ16A2

+µ24A4 − 2B2
1 + 4B1B3 + 2B2

2 + 2A2.

,

(3.4)
We solve the set of nonlinear algebraic equations with the help of

Maple, the solutions of these algebraic equations are found to be in the
following.
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Case 1:

A0 =
1105
2 c2 − 1

2 , A1 = 0, A2 = −1680c2, A3 = 0, A4 = 840c2,
B1 = 0, B2 = 0, B3 = 0, B4 = 0, µ = 51c2, c = 1

4 .
(3.5)

If we replace these results into (3.3) and insert the result into the trans-
formation (2.2), we acquire the exact solitary wave solution of equation:

u1(x, t) = −1

2

575c2cosh4(x− ct) + cosh4(x− ct)− 1680c2

cosh4(x− ct)
. (3.6)

(a)

(b)

Figure 1. Figure 1 shows that the 3D and 2D soliton
solution (3.6) for c = 1

4 , −5 < x < 5, −5 < t < 5.

Case 2:

A0 = −1247
2 c2 − 1368c2(−1

2 + 1
62I

√
31)− 1

2 ,
A1 = 0, A2 = 1680c2(−1

2 + 1
62I

√
31), A3 = 0,

A4 = 840c2, B1 = 0, B2 = 0, B3 = 0,
B4 = 0, µ = −105c2 − 156c2(−1

2 + 1
62I

√
31).

(3.7)

If we replace these results into (3.3), we get the following solution:

u2(x, t) =
1

62
I

(
312

√
31c2cosh4(x− ct)− 1680

√
31c2cosh2(x− ct) + 375c2cosh4(x− ct)

cosh4(x− ct)

)

+(
52080c2 − c252080 cosh2(x− ct)− 31cosh4(x− ct)

cosh4(x− ct)
).

(3.8)
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(a)

(b)

(c)

(d)

Figure 2. Figure 2 The 3D and 2D surfaces of solution
(3.8) with respectively real part and imaginar part .

Case 3:

A0 =
385
2 c2 − 1

2 , A1 = 0, A2 = −630c2, A3 = 0, A4 = 420c2,
B2 = −420Ic2, B3 = 0, B4 = 420Ic2, µ = 12c2, B1 = 0.

(3.9)

Similar to the previous case, we get the following solitary wave solu-
tion:

u3(x, t) = −1

2
(
35c2cosh4(x− ct) + cosh4(x− ct)

cosh4(x− ct)
) (3.10)

+
420cosh2(x− ct)c2 − 840c2

cosh4(x− ct)
+ I(

840c2sinh(x− ct)

cosh4(x− ct)
) (3.11)
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(a)

(b)

(c)

(d)

Figure 3. The 3D and 2D surfaces of solution (3.1)
with respectively real part and imaginar part.

Case 4:

A0 = −381
4 (−3

4 + 1
124I

√
31)
√

− 1
11025B

2
4 − 353

8

√
− 1

11025B
2
4 − 1

2 ,

A1 = 0, A3 = 0, B1 = 0,

A2 =
105
2 (−5

2 + 1
62I

√
31)
√

− 1
11025B

2
4 ,

A4 = 105
√

− 1
11025B

2
4 , B2 = B4(−3

4 + 1
124I

√
31),

B3 = 0, c = 1
2(−

1
11025B

2
4)

1
4 ,

µ = −3
2

√
− 1

11025B
2
4(

5
4 + 13

124I
√
31), B4 = 1.

(3.12)
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(a) (b) (c)

(d)

Figure 4. The 3D and 2D surfaces of solution (3.13)
with respectively real part and imaginar part.

Similar to the previous case, we get the following solitary wave solu-
tion:

u4(ξ) =

(
1

52080

39I
√
−B2

4

√
31cosh4(ξ) + 420IB4sinh(ξ)

√
31cosh2(ξ) + 527

√
−B2

4cosh
4(ξ)

cosh4(ξ)

)
−
(

420I
√

−31B2
4cosh

2(ξ)

cosh4(ξ)

)

+

(
1

52080

13020B4sinh(ξ)cosh
2(ξ)− 26040cosh4(ξ)− 39060cosh2(ξ)

√
B2

4

cosh4(ξ)

)

-
(

52080B4sinh(ξ)+52080
√

B2
4

cosh4(ξ)

)
(3.13)
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3.2. Kuramoto-Sivashinsky Equation. Secondly, we consider Kuramoto-
Sivashinsky equation:

ut + αuux + buxx + kuxxxx = 0, (3.14)

In this subsection we are going to sustain the exact traveling wave
solutions of the Kuramoto-Sivashinsky equation by using of the sine-
Gordon method.

We look for the solutions of the Kuramoto-Sivashinsky equation by
the method described in past section.We operate the travelling wave
transformation of the following form,

u(x, t) = u(ξ), ξ = x− ct, (3.15)

Eq.(3.14) is reduced into the following ordinary differential equations
(ODE)

− cu′ + αuu′ + bu′′ + ku′′′′ = 0, (3.16)

where prime denotes differentiation with respect to ξ. If we balance
between the highest order nonlinear derivative u′′′′ and nonlinear term
of the highest degree uu′ in Eq.(3.16), we obtain n = 3.

Hence, the expected solution takes the form

u(ξ) = A0 +B1sech(ξ) +B2sech(ξ)tanh(ξ) +B3sech(ξ)tanh
2(ξ)(3.17)

+A1tanh(ξ) +A2tanh
2(ξ) +A3tanh

3(ξ), (3.18)

where u = u(ξ) satisfies Eq.(2.5) in which A0, A1, A2,A3,B1, B2, B3 are
undetermined constants.

We substitute Eq.(3.17) into Eq.(3.16) secondly utilize Eq.(2.5) finally
we equate all coefficients of the functions [cos(ξ), sin(ξ)] to zero and we
get:

cos7(ξ) : −3A2
3a+ 3B3

2a+ 360A3k,

cos6(ξ) : −5A2A3a+ 5B2B3a+ 120A2k,

cos6(ξ) sin(ξ) : −6A3B3a+ 360B3k,

cos5(ξ) : −4A1A3a− 2A2
2a+ 3A2

3a
+4B1B3a+ 2B2

2a− 5B2
3a+ 24A1k + 12A3b− 816A3k,
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cos5(ξ) sin(ξ) : −5A2B3a− 5A3B2a+ 120B2k,

cos4(ξ) : −3A0A3a− 3A1A2a+ 5A2A3a+ 3B1B2a− 8B2B3a+ 6A2b− 240A2k + 3A3c,

cos4(ξ) sin(ξ) : −4A1B3a− 4A2B2a− 4A3B1a+ 5A3B3a
+24B1k + 12B3b− 648B3k,

cos3(ξ) : −2A0A2a−A2
1a+ 4A1A3a+ 2A2

2a+B2
1a− 6B1B3a

−3B2
2a+ 2B2

3a+ 2A1b− 40A1k + 2A2c− 18A3b+ 576A3k,

cos3(ξ) sin(ξ) : −3A0B3a− 3A1B2a− 3A2B1a+ 4A2B3a
+4A3B2a+ 6B2b− 180B2k + 3B3c,

cos2(ξ) : −A0A1a+ 3A0A3a+ 3A1A2a− 4B1B2a+ 3B2B3a+A1c
−8A2b+ 136A2k − 3A3c,

cos2(ξ) sin(ξ) : −2A0B2a− 2A1B1a+ 3A1B3a
+3A2B2a+ 3A3B1a+ 2B1b− 28B1k + 2B2c
−13B3b+ 317B3k,

cos(ξ) : 2A0A2a+A2
1a−B2

1a+ 2B1B3a+B2
2a− 2A1b

+16A1k − 2A2c+ 6A3b− 120A3k,

cos(ξ) sin(ξ) : −A0B1a+ 2A0B3a+ 2A1B2a+ 2A2B1a+B1c
−5B2b+ 61B2k − 2B3c,

sin(ξ) : A0B2a+A1B1a−B1b+ 5B1k −B2c+ 2B3b− 28B3k,

constant : A0A1a+B1B2a−A1c+ 2A2b− 16A2k.
(3.19)

We solved the set of nonlinear algebraic equations with the help of
Maple, the solutions of these algebraic equations are found to be in the
following.
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Set 1:

A0 = A0, A1 = − 9

11
A3, A2 = 0, , (3.20)

B1 = 0, B2 = 0, B3 = 0, (3.21)

b =
19

330
A3a, c = A0a, (3.22)

k =
1

120
A3a. (3.23)

Set 2:
A1 = IB1, A2 = 0, A3 = 0, (3.24)
B2 = 0, B3 = 0, b = IaB1, (3.25)
c = A0a, k = 0. (3.26)

Set 3:
A1 = −3

2IB3, A2 = 0, A3 = IB3,
B1 = −B3, B2 = 0,
b = −19

60IaB3, c = A0a,
k = 1

60IaB3.

(3.27)

Set 4:
A1 = −21

22IB3, A2 = 0, A3 = IB3,
B1 = − 5

11B3, B2 = 0,
b = 19

660IaB3, c = A0a,
k = 1

60IaB.

(3.28)
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If we substitute these results into (3.3) we attain the exact travelling
wave solutions of equation:

u1(x, t) = A0 −
9

11
A3tanh(x−A0at) +A3tanh

3(x−A0at). (3.29)

(a) Caption1

(b) Caption2

Figure 5. 3D and 2D soliton solution (3.29) for A0 =
1/2, a = 1/2, A3 = 1.

u2(x, t) =
IB1sinh(x−A0at) +A0cosh(x−A0at) +B1

cosh(x−A0at)
. (3.30)

(a) (b) (c)

(d)

Figure 6. For A0 = 1/2, a = 1/2, B1 =
1 The 3D and 2D surfaces of solution (3.30)
with respectively real part and imaginar part.
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u3(x, t) =
1

2

(
2A0cosh

3(x−A0at)−−2B3

cosh3(x−A0at)

)
(3.31)

−I
B3sinh(x−A0at)cosh

2(x−A0at)

cosh3(x−A0at)
(3.32)

+I
+2B3sinh(x−A0at)

cosh3(x−A0at)
(3.33)

(a) (b) (c)

(d)

Figure 7. For A0 = 1/2, a = 1/2, B3 =
1.The 3D and 2D surfaces of solution (3.33)
with respectively real part and imanigar part.

u4(x, t) =
1

22

(
IB3sinh(x−A0at)cosh

2(x−A0at) + 22A0cosh
3(x−A0at)

cosh3(x−A0at)

)

+
1

22

(
−22IB3sinh(x−A0at) + 12B3cosh

2(x−A0at)− 22B3

cosh3(x−A0at)

)
.

(3.34)
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(a) (b) (c)

(d)

Figure 8. For A0 = 1/2, a = 1/2, B3 = 1.
The 3D and 2D surfaces of solution(3.34)
with respectively real part and imaginar part.

3.3. Sawada-Kotera Equation. As a last application of the related
method, we consider Sawada-Kotera equation and is given as follows:

ut+[63u4+63(2u2uxx+uu2x)+21(uuxxxx+u2xx+uxuxxx)+uxxxxxx]x = 0,
(3.35)

By substituting transformation u(x, t) = u(ξ), ξ = x− ct, Eq.(3.35 ) is
transformed into an one dimension form

−cu′+252u3u′+378uu′′u′+126u2u′′′+63(u′)3+42u′u′′′′+21uu′′′′′+63u′′u′′′+uvii = 0,
(3.36)

where prime denotes differentiation with respect to ξ. The balance be-
tween uvii and u3u′ gives n = 2.

Thereby, the exact solution of the proposed equation has the form,

u(ξ) = A0 +B1sech(ξ) +B2sech(ξ)tanh(ξ) +A1tanh(ξ) +A2tanh
2(ξ),

(3.37)
where u = u(ξ) satisfies Eq.(2.5) in which A0, A1, A2,B1, B2 are unde-
termined constants.

As in other applications, the algebraic equation system construct and
when it is solved, the following solution sets are obtained.
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Set 1:

A1 = 0, A2 = −2, B1 = 0, (3.38)
B2 = 0, c = 252A3

0 − 1008A2
0 + 1344A0 − 608. (3.39)

Set 2:

A1 = 0, A2 = −1, B1 = 0, (3.40)
B2 = I, c = 252A3

0 − 630A2
0 + 525A0 − 146. (3.41)

Set 3:

A0 =
8

3
, A1 = 0, A2 = −4, (3.42)

B1 = 0, B2 = 0, c = −256

3
. (3.43)

Set 4:

A0 =
5

3
, A1 = 0, A2 = −2, (3.44)

B1 = 0, B2 = 2I, c = −4

3
. (3.45)

If we substitute these results into (3.3) we attain the exact travelling
wave solutions of equation:

u1 (ξ) =
A0cosh

2(ξ)− 2cosh2(ξ) + 2

cosh2(ξ)
. (3.46)

u2 (ξ) =
Isinh(ξ) +A0cosh

2(ξ) + 1− cosh2(ξ)

cosh2(ξ)
(3.47)

u3 (ξ) = −4

3

(
cosh2(ξ)− 3

cosh2(ξ)

)
. (3.48)

u4 (ξ) =
1

3

(
6Isinh(ξ)− cosh2(ξ) + 6

cosh2(ξ)

)
. (3.49)
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(d)

Figure 9. For A0 = 1.
The 3D and 2D surfaces of solution(3.47)
with respectively real part and imaginar part.

4. Conclusion

In this article, we studied on acquiring the exact travelling wave so-
lutions of (1+1)-dimensional nonlinear equations by introducing appro-
priate transformations and applying the sine-gordon expansion method.
We employed this method to find the solutions of Higher-Order Boussi-
nesq , Kuramoto-Sivashinsky and Sawada-Kotera Equations. We ob-
tained the sets of nonlinear equations that can be solved by using Maple
software.

The purpose of this study was constructed on reliable, beneficial and
consistent treatment for the analysis of the above-mentioned equations.
We can say that the sine-gordon expansion method is a very powerful
and efficient mathematical tool to solve nonlinear equations. Further-
more, we believe that this method is also useful for a variety of other
nonlinear equations that represent in mathematical, physics and other
nonlinear sciences. The solutions acquired may be very beneficial in
order to understand the mechanism of the intricate nonlinear physical
phenomena of referred equations. The conclusions obtained will be use-
ful for guiding future research works in the appropriate fields.
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