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Abstract. The main aim of this paper is to introduce the core
and nucleolus notions of cooperative games with multiple scenar-
ios in uncertain environment. Taking imprecision of information
into account, we incorporate fuzzy coalition values, which are rep-
resented by intuitionistic fuzzy numbers. They can be applied as
an appropriate approach to define a fuzzy set in the case that avail-
able information is not sufficient for defining an imprecise concept
by means of a conventional fuzzy set. The characteristic function
of such games associates a coalition with a vector containing the
intuitionistic fuzzy components. The notion of expected interval is
defined and computed for the intuitionistic fuzzy numbers. Then,
an approach is proposed to transform the problem into a single-
objective cooperative game with interval-valued payoffs. The con-
cepts of core and nucleolus are considered. It is shown that the
core is nonempty in these games. A method is proposed to com-
pute the nucleolus of such the problems. Finally, the validity and
applicability of the approach are illustrated by a numerical example.
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1. Introduction

In many real-world situations, the rational players may cooperate to-
gether to obtain more profits. Cooperative game theory provides the
mathematical methods for analyzing cooperation and distribution prob-
lems. The main part of cooperative game theory deals with how to divide
the overall worth among the players in the game. In cooperative games,
coalitions are organized by group agreement among some or all of the
players and multiple coalitions. For conventional n-person cooperative
games, a coalition is defined as any nonempty subset of the set of all
players, making the number of possible coalitions at most 2n−1 , which
includes one-person coalitions. Any player participating in a coalition
must accept completely the decisions of the coalition; that is, a coalition
behaves like an individual decision maker. In some real-world situations,
if we want to use cooperative games, imprecision is oserved inherently
in human judgment. One of the methods for studying imprecision is the
use of fuzzy set theory. In fuzzy cooperative games, the characteristic
function of any coalition corresponds to a fuzzy value.
Let us review some significant works on fuzzy cooperative games in the
literature. Aubin and Butnariu studied fuzzy cooperative games. They
investigated the notions of core and Shapley value for n-person coop-
erative games with fuzzy coalitions [1]. Butnariu also performed some
similar works in extending the concept of coalitions in n-person coop-
erative games, and he considered the core and the Shapley value [4, 5].
Moreover, he examined fuzzy games with an infinite number of players
[6]. Aubin defined the generalized gradient, which can be regarded as
the marginal gains that the players receive when they join the coalition
of all players [2].
In n-person cooperative games, lexicographical solutions such as the nu-
cleolus are considered to be as important as the core and the Shapley
value. Yu and Zhang [20] introduced the concept of core in the games
with fuzzy coalitions. They studied three types of special fuzzy cores in
the games with fuzzy coalition and the explicit fuzzy core is represented
by the crisp core. Zhang et al. [22] studied the core and nucleolus con-
cepts and bargaining sets of the cooperative games with fuzzy payoffs.
Yu et al. [21] considered the cooperative game with fuzzy coalition and
payoff value in the generalized integral form. They proposed Shapley
value based on the Hukuhara difference. Zhao and Zhang [23] studied
the core solution for the cooperative games with interval payoffs. They
showed the nonempty of I-core in interval-valued cooperative games.
Nan et al. [13] studied the α-consensus value of a cooperative game
with payoffs of triangular intuitionistic fuzzy numbers and gave the for-
mation mechanism of the α-consensus value, as well as some properties.
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In another work, [14], they presented the definition of the Shapley func-
tion for intuitionistic fuzzy cooperative games by extending the fuzzy
cooperative games. Based on the extended Hukuhara difference, they
obtained the specific expression of the Shapley in the intuitionistic fuzzy
cooperative games with multi-linear extension form, and discussed its ex-
istence and uniqueness.
In multi-objective n-person cooperative games, it is not assumed that a
payoff is the value of a utility, but multiple attribute values are directly
dealt with as a vector of payoffs.
Bergstresser and Yu [3] investigated multi-objective cooperative games.
They mainly considered the core defined by the domination structures
and referred to a couple of solution concepts which yield a unique solu-
tion such as the nucleolus in n-person cooperative games. Sakawa and
Nishizaki considered the nucleolus in n-person cooperative games with
multiple scenarios [18]. Bigdeli and Hassanpour [7] studied a kind of
the fuzzy multiobjective cooperative game that called the multiobjec-
tive production programming with fuzzy parameters. They presented a
method for solving of this kind of cooperative games. Also, the authors
considered the types of the fuzzy multi-objective games in other works
[8, 9, 10, 11].
In this paper, we consider n-person cooperative games with multiple
coalition values that are assumed to be intuitionistic fuzzy numbers. An
approach is proposed to transform the problem into a single-objective
cooperative game with interval-valued payoffs. It is shown that core sets
in these games are nonempty. A method is proposed to compute the
nucleolus of such the problems.

The rest of this paper is organized as follows. In Section 2, some
preliminaries and necessary definitions about intuitionistic fuzzy sets
and n-person cooperative games are presented. In Section 3, intuitionis-
tic fuzzy vector-valued cooperative games are introduced. An approach
is proposed to transform the problem into a single-objective coopera-
tive game with interval valued payoffs. The core and nucleolus solution
concepts are considered. It is shown that core sets in these games are
nonempty. An algorithm is proposed to compute the nucleolus solu-
tion of the problem. In Section 4, the validity and applicability of the
method is illustrated by a numerical example. Finally, conclusion is
made in Section 5.

2. Preliminaries

In this section, we provide some definitions and notions of intuition-
istic fuzzy sets and cooperative games according to [7, 15, 19].
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Definition 2.1. Let X = {x1, · · · , xn} be a finite universal set. An
intuitionistic fuzzy set Ã in X is mathematically expressed as Ã =
{
〈
xi, µÃ(xi), ϑÃ(xi)

〉
| xi ∈ X}, in which µÃ : X → [0, 1] and ϑÃ : X →

[0, 1] are respectively the membership degree and the non-membership
degree of an element xi ∈ X to Ã such that they satisfy the inequality
µÃ(xi) + ϑÃ(xi) ≤ 1 for all xi ∈ X.

Definition 2.2. ((α, β)− cuts), Let α, β ∈ [0, 1] be fixed numbers such
that α+ β ≤ 1. An (α, β)-cut generated by an intuitionistic fuzzy set Ã
is defined as

Ãα,β = {x | µÃ(x) ≥ α, ϑÃ(x) ≤ β}.
So, Ãα,β is a crisp set of elements x ∈ X, which belong to Ã at least
with the degree α and which do not belong to Ã at most with the degree
β.

In the following, a special type of intuitionistic fuzzy numbers is in-
troduced.

Definition 2.3. A triangular intuitionistic fuzzy number (TIFN) ã =
(a, la, ra;wa, ua) is a special intuitionistic fuzzy number, whose member-
ship and non-membership functions are defined as follows:

µã(x) =



x− a+ l

l
wa a− l ≤ x < a,

a+ r − x

r
wa a ≤ x < a+ r,

0 otherwise,
and

ϑã(x) =



(a− x) + ua(x− a+ l)

l
a− l ≤ x < a,

(x− a) + ua(a+ r − x)

r
a ≤ x < a+ r,

1 otherwise,
where la, ra are respectively the left and right spreads and a is the
mean value. wa and ua represent the maximum degree of membership
and minimum degree of non-membership, respectively. Moreover, they
satisfy the following conditions

0 ≤ wa ≤ 1, 0 ≤ ua ≤ 1, 0 ≤ wa + ua ≤ 1.
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It can be seen that for a TIFN ã = (a, la, ra;wa, ua) and for 0 ≤ α ≤ wa,
ua ≤ β ≤ 1 where 0 ≤ α+ β ≤ 1, we have ãα,β = ãα ∧ ãβ, where symbol
”∧” denotes the minimum operator between ãα and ãβ. Thus, (α, β)-cut
of a TIFN ã = (a, la, ra;wa, ua) is as follows [19]:

ãα,β =



âβ = [aL(β), aR(β)] α <
1− β

1− ua
wa,

âα = [aL(α), aR(α)] α >
1− β

1− ua
wa,

âα or âβ α =
1− β

1− ua
wa,

where
aL(α) = (a− la) +

laα

wa
, aR(α) = (a+ ra)−

raα

wa
,

aL(β) = (a− la) +
(1− β)la
1− ua

, aR(α) = (a+ ra)−
(1− β)ra
1− ua

.

The arithmetic on intervals can be explicitly expressed in the following
manner. Let a = [aL, aR] and b = [bL, bR] be two intervals. Then, we
have

[aL, aR] + [bL, bR] = [aL + bL, aR + bR],

[aL, aR]− [bL, bR] = [aL − bR, aR − bL],

λA =

{
[λaL, λaR] λ ≥ 0

[λaR, λaL] λ < 0

where λ is a real scalar.
Different order relations between intervals are presented in the literature.
In this paper, we use one of the most well-known them.

Definition 2.4. For each two intervals a = [aL, aR] and b = [bL, bR],
the order relation is defined as follows,

1) a ≽ b if aL ≥ bL and aR ≥ bR;

2) a ≼ b if aL ≤ bL and aR ≤ bR;

3) a = b if aL = bL and aR = bR.

Now, we briefly review some fundamental results about cooperative
games. A cooperative game (transferable utility game) is a pair (N, ν),
where N = {1, 2, · · · , n} is a finite set of players and ν is a real-valued
function defined on the power set of N , i.e., ν : 2N → R satisfying



176 H. Bigdeli , J. Tayyebi

ν(∅) = 0. Each subset S of N is called a coalition and the value ν(S)
is referred to as the worth of S . Throughout this paper, we assume
that the player set N is fixed. So we can regard a function ν , called
a characteristic function, as a game. We denote by GN the set of all
games on N . We use some abbreviated notations such as ν({i}) = ν(i),
S ∪ {i} = S ∪ i, and so on.

Definition 2.5. A game ν ∈ GN is said to be
• monotonic if ν(S) ≤ ν(T ), ∀S, T ⊆ N : S ⊆ T ;

• additive if ν(S ∪ T ) = ν(S) + ν(T ), ∀S, T ⊆ N : S ∩ T = ∅;

• superadditive if ν(S∪T ) ≥ ν(S)+ν(T ), ∀S, T ⊆ N : S∩T = ∅;

• convex if ν(S ∪ T ) + ν(S ∩ T ) ≥ ν(S) + ν(T ), ∀S, T ⊆ N .

In cooperative games, the most important topic is to find an appropri-
ate rule to allocate the worth of the grand coalition among the players.
Such a rule is usually called a solution of the cooperative game. The al-
located profit vector is denoted by x = (x1, x2, · · · , xn), where xi is the
profit of the ith player. The set of all imputations of the game ν ∈ GN

is denoted by

I(ν) = {x ∈ Rn

∣∣∣∣∑
i∈N

xi = ν(N), xi ≥ ν(i),∀i ∈ N}.

Definition 2.6. For a game ν ∈ GN , the core of the game is a set-valued
solution, which is defined by

C(ν) = {x ∈ Rn |
∑
i∈N

xi = ν(N),
∑
i∈S

xi ≥ ν(S),∀S ⊆ N}.

If we define the excess of the coalition S with respect to x by
e(S, x) = ν(S)−

∑
i∈S

xi,

then the core can be rewritten as follows:
C(ν) = {x ∈ Rn | e(N, x) = 0, e(S, x) ≤ 0 ∀S ⊆ N}.

It is clear that the core is a convex polyhedron, since it is represented
by a linear equation and 2n − 2 linear inequalities. Unfortunately, the
core of a game may be empty in general. Hence some extended solution
concepts, such as the ε-core and the least core, were proposed. Moreover,
the lexicographic minimization of the excesses leads to the concept of
”nucleolus” [15].

Definition 2.7. A game which has a nonempty core is called balanced.
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Actually balancedness is specified by introducing an optimization
problem for checking the emptiness of the core and its dual problem
[15].

3. Cooperative games with multiple scenarios and
intuitionistic fuzzy coalition values

A single objective n-person cooperative game is represented by a
characteristic function ν. It associates a coalition S with the value
ν(S), that is interpreted as the payoff which the coalition S can ac-
quire only through S . We assume that p kinds of different scenarios are
expected in the game. Thus, we can consider the coalition value as an p-
dimensional vector. Taking imprecision of information into account, we
incorporate intuitionistic fuzzy coalition values, which are represented
by p-dimensional vector with the components of triangular intuitionis-
tic fuzzy numbers. Therefore, in an n-person cooperative game with
scenarios, a characteristic function ν̃ associates any coalition S with its
fuzzy vector ṽ(S) = (ṽ1(S), ṽ2(S), · · · , ṽp(S)). Then, we represent the
game with multiple scenarios by (N, ṽ) . Let µṽk(S)(v) and ϑṽk(S)(v)
respectively denote the membership and non-membership functions of a
triangular intuitionistic fuzzy number ṽk(S), k = 1, · · · , p representing
the intuitionistic fuzzy value that the players of the coalition for the
k-th scenario could earn without any help from the players outside of S
. We consider the (α, β)-level cut of any triangular intuitionistic fuzzy
number ṽk(S) = (vk, lkv , r

k
v , w

k
v , u

k
v) defined as the following ordinary set

over R as follows:
ṽkα,β(S) = {vk ∈ R | µṽk(S)(v) ≥ α, ϑṽk(S)(v) ≤ β}.

The (α, β)-level cut of ṽ(S) is presented as

ṽkα,β(S) =



v̂kβ = [vkL(β), vkR(β)], α <
1− β

1− ukv
wk
v ,

v̂kα = [vkL(α), vkR(α)], α >
1− β

1− ukv
wk
v ,

v̂kα or v̂kβ, α =
1− β

1− ukv
wk
v .

Using the (α, β)-level cut of triangular intuitionistic fuzzy numbers, a
characteristic function ṽα,β(S) = (ṽ1α,β(S), ṽ

2
α,β(S), · · · , ṽ

p
α,β(S)) asso-

ciates any coalition. In other words, fuzzy-valued cooperative game is
transformed into an interval-valued cooperative game for any α, β ∈
[0, 1].
In the following, we illustrate the core and nucleolus concepts for the
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cooperative game (N, ṽα,β(S)). We use the following steps to get the
core and nucleolus solutions for the cooperative game (N, ṽα,β(S)).

Step 1. (Computing weights for the scenarios):
Before we consider solution concepts in cooperative game (N, ṽα,β(S)) ,
we state how to reduce it to single-objective game. For this purpose, we
consider the probabilities of encountering scenarios. Moreover, we can
use the well-known group AHP method [12] to obtain the preference
degrees of different scenarios.
Assume that the probability of encountering the k-th scenario is repre-
sented by λk . Thus, the coalition value S is vλα,β(S) =

∑p
k=1 λkṽ

k
α,β(S) =

(vλ, lλv , r
λ
v , w

λ
v , u

λ
v ) where λk ≥ 0, for k = 1, · · · , p, and

∑p
k=1 λk =

1. Also, vλ =
∑p

k=1 λkv
k, lλv =

∑p
k=1 λkl

k
v , r

λ
v =

∑p
k=1 λkr

k
v , w

k
v =

mink=1,··· ,p{wk
v}, uλv = maxk=1,··· ,p{ukv}.

Since that for any α, β ∈ [0, 1] , we obtain a value for coalition S , we
should search a way to obtain appropriate α, β or compute the expected
value for the coalition S. In this paper, we apply a method based on
the expected value of coalition values.

Step 2. (Computing the expected interval):
We compute the expected interval of the coalition S, as follows:

E(vλα,β(S)) =


E(vλβ(S)) = [EL(vλβ(S)), E

R(vλβ(S))] α <
1− β

1− uλv
wλ
v ,

E(vλα(S)) = [EL(vλα(S)), E
R(vλα(S))] α >

1− β

1− uλv
wλ
v ,

E(vλα(S)) or E(vλβ(S)) α =
1− β

1− uλv
wλ
v ,

where

[EL(vλβ(S)), E
R(vλβ(S))] =

∫ 1

uλ
v

[ l∑
k=1

λkṽ
KL
β (S),

l∑
k=1

λkṽ
KR
β (S)

]
dβ,

[EL(vλα(S)), E
R(vλα(S))] =

∫ wλ
v

0

[ l∑
k=1

λkṽ
KL
α (S),

l∑
k=1

λkṽ
KR
α (S)

]
dα.
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Therefore,

EL(vλβ(S)) =

p∑
k=1

λk((v
k − lkv

2
(1− ukv)),

ER(vλβ(S)) =

p∑
k=1

λk((v
k +

rkv
2
(1− ukv)),

EL(vλα(S)) =

p∑
k=1

λk(v
k − lkv

2
wλ
v ),

ER(vλα(S)) =

p∑
k=1

λk(v
k − rkv

2
wλ
v ).

It is notable that the coalition value of S is an interval.

3.1. Core. So far, we transformed a cooperative game with multiple
scenarios and intuitionistic fuzzy coalition values into a single-objective
cooperative game with interval coalition values. According to the fol-
lowing definition, we consider the core concepts for the current game.

Definition 3.1. A cooperative game (N,E(vλα,β(S)) with interval coali-
tion values is said to be L−R-supperadditive if

E

(
vλα,β(S ∪ T )

)
≽ E

(
vλα,β(S)

)
+ E

(
vλα,β(T )

)
.

Definition 3.2. For a cooperative game (N,E(vλα,β(S)), an L − R-
imputation is a vector x = (x1, · · · , xn) where xi = [xLi , x

R
i ], and it

satisfies the relations

xi ≽ E

(
vλα,β(i)

)
∀i ∈ N,∑

i∈N
xi = E

(
vλα,β(N)

)
.

Definition 3.3. For a cooperative game (N,E(vλα,β(S)), L − R core
solution is defined as follows

C(E(vλα,β(S)) =

{
(x1, · · · , xn) |

n∑
i=1

xi = E(vλα,β(N)) and
∑
i∈S

xi ≽

E(vλα,β(S)), ∀S ⊂ N

}
.

Definition 3.4. Let B = {S1, · · · , Sm} be a collection of non-empty
subsets of N . B is called a balanced collection if there exists a vector of
positive numbers, the balancing vector y = (y1, · · · , ym), such that
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Sj∈B
i∈Sj

ys = 1, ∀i ∈ N.

Definition 3.5. A cooperative game (N,E(vλα,β(S)) is L−R balanced
if for any balanced vector y = (y1, · · · , ym),

m∑
j=1

yjE(vλα,β(Sj)) ≼ E(vλα,β(N)).

Theorem 3.6. The L − R core C(E(vλα,β)) is nonempty if and only if
the game E(vλα,β) is L−R balanced.

Proof. By Definition 3.3, C(E(vλα,β)) ̸= ∅ if and only if

CL(E(vλα,β)) =

{
(x1, · · · , xn) |

n∑
i=1

xLi = EL(vλα,β(N)) and
∑
i∈S

xLi ≥ EL(vλα,β(S)),∀S ⊆ N

}
(3.1)

and

CR(E(vλα,β)) =

{
(x1, · · · , xn) |

n∑
i=1

xRi = ER(vλα,β(N)) and
∑
i∈S

xRi ≥ ER(vλα,β(S)), ∀S ⊆ N

}
(3.2)

are nonempty. From the classical cooperative game theory [15], we know

EL

(
vλα,β(N)

)
= min

{∑
i∈N

xLi |
∑
i∈S

xLi ≥ EL

(
vλα,β(S)

)
, ∀S ⊆ N

}
(3.3)

and

ER

(
vλα,β(N)

)
= min

{∑
i∈N

xRi |
∑
i∈S

xLi ≥ ER

(
vλα,β(S)

)
,∀S ⊆ N

}
.

(3.4)
Note that the relations 3.3 and 3.4 must be hold simultaneously. Now,
considering the dual problems of 3.3 and 3.4, we have

EL

(
vλα,β(N)

)
= max

{ ∑
S⊆N

ySE
L

(
vλα,β(S)

)
|
∑
S∈Ni

yS = 1,∀i ∈ N, yS ≥ 0,∀S ⊆ N

}
(3.5)

and

ER

(
vλα,β(N)

)
= max

{ ∑
S⊆N

ySE
R

(
vλα,β(S)

)
|
∑
S∈Ni

yS = 1, ∀i ∈ N, yS ≥ 0, ∀S ⊆ N

}
.

(3.6)
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These problems are satisfied if and only if∑
S⊆N

ySE
L

(
vλα,β(S)

)
≤ EL

(
vλα,β(N)

)
, ∀yS ≥ 0,

∑
S∈Ni

yS = 1

and∑
S⊆N

ySE
R

(
vλα,β(S)

)
≤ ER

(
vλα,β(N)

)
, ∀yS ≥ 0,

∑
S∈Ni

yS = 1.

By Definition 3.5, these relations assure that E(vλα,β) is L−R balanced.
□

3.2. Nucleolus. After performing Steps 1 and 2, we consider the in-
tuitionistic fuzzy cooperative game with multiple scenarios (N, ṽ(S))
as two cooperative games (N,EL(vλα,β(S))) and (N,ER(vλα,β(S))). The
players obtain a pessimistic nucleolus by solving the cooperative game
(N,EL(vλα,β(S))) and an optimistic nucleolus by solving the cooperative
game (N,ER(vλα,β(S))). For the former, the players consider the least
value obtained from the coalition and the latter the highest value.
We assume that XL and XR are the sets of all imputations, which are
defined as
XL = XL(N,EL(vλα,β)) =

{
xL ∈ Rn |

∑
i∈N

xLi = 1, xLi ≥ 0, i =

1, · · · , n
}
,

and
XR = XR(N,ER(vλα,β)) =

{
xR ∈ Rn |

∑
i∈N

xRi = 1, xRi ≥ 0, i =

1, · · · , n
}
,

The excesses of a coalition with respect to xL and xL of a coalition S
are as follows:

eL(S, xL) = EL(vλα,β(S))−
∑
i∈S

xLi k = 1, · · · , p,

and
eR(S, xR) = ER(vλα,β(S))−

∑
i∈S

xRi k = 1, · · · , p.

Definition 3.7. For a vector x , let q(x) be a vector arranged in non-
decreasing order, i.e., if i < j, then qi(x) ≥ qj(x). So x is less than y
with respect to the lexicographical order if x = y or, ql(x) < ql(y) for
the first nonequal component l.
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Based on the excesses eL(S, xL) and eR(S, xR) over XL and XR, the
nucleolus is defined as
NL(N,EL(vλα,β), X

L) = {x ∈ XL | H2n−2(e
L(S1, x

L), · · · , eL(S2n−2, x
L))

≤L H2n−2(e
L(S1, y

L), · · · , eL(S2n−2, y
L)), ∀yL ∈ XL}

and
NR(N,ER(vλα,β), X

R) = {x ∈ XR | H2n−2(e
R(S1, x

R), · · · , eR(S2n−2, x
R))

≤L H2n−2(e
R(S1, y

R), · · · , eR(S2n−2, y
R)),∀yR ∈ XR},

where H2n−2 : R2n−2 → R2n−2 is a mapping which arranges elements
of a (2n − 2)-dimensional vector in nonincreasing order, and ≤L means
”less than or equal to” in the lexicographical order [15].

3.3. An algorithm for obtaining the nucleolus. We now present an
algorithm to compute the nucleolus solutions in the game with multiple
scenarios (N, vLα,β) and (N, vRα,β). For the nucleoluses NL(N,EL(vλα,β), X

L)

and NR(N,ER(vλα,β), X
R) , we have the following linear programming

problems, respectively:
min εL

s.t. EL(vλα,β(S))−
∑
i∈S

xLi ≤ εL,∀S ⊂ N,

xL1 + · · ·+ xLn = 1,

xLi ≥ 0, i = 1, · · · , n, (3.7)
and

min εR

s.t. ER(vλα,β(S))−
∑
i∈S

xRi ≤ εR, ∀S ⊂ N,

xR1 + · · ·+ xRn = 1,

xRi ≥ 0, i = 1, · · · , n. (3.8)

The nucleolus NL(N,EL(vλα,β), X
L) and NR(N,ER(vλα,β), X

R) can be
obtained by solving problems (3.7) and (3.8) and the updated problems
as the following algorithm.

Algorithm
Step 1. Set t = 1.
Step 2. Formulate problems (3.7) and (3.8), and solve them.
Step 3. If we obtain a unique optimal solution, stop. Otherwise, update
t = t+ 1 and go to Step 4.
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Step 4. Let εLt−1 and εRt−1 be the optimal values in the (t−1)th iteration.
Moreover, let ΓL

t−1 and ΓR
t−1 be the set of coalitions with active inequality

constraints for any optimal solution, respectively. Solve the following
problems and then, go to Step 3.

min εL

S.t. EL(vλα,β(S))−
∑
i∈S

xLi = εLk ,∀S ∈ ΓL
k , k = 1, · · · , t− 1,

EL(vλα,β(S))−
∑
i∈S

xLi ≤ εL, ∀S ̸∈ ΓL
1 , · · · ∪ ΓL

t−1, S ⊂ N,

xL1 + · · ·+ xLn = EL(vλα,β(N)),

xLi ≥ 0, i = 1, · · · , n. (3.9)

and

min εR

S.t. ER(vλα,β(S))−
∑
i∈S

xRi = εRk , ∀S ∈ ΓR
k , k = 1, · · · , t− 1,

ER(vλα,β(S))−
∑
i∈S

xRi ≤ εR,∀S ̸∈ ΓR
1 , · · · ∪ ΓR

t−1, S ⊂ N,

xR1 + · · ·+ xRn = ER(vλα,β(N)),

xRi ≥ 0, i = 1, · · · , n. (3.10)

The following lemma shows that the above algorithm is convergent.

Lemma 3.8. The unique payoff vectors xL and xR minimizing εL and
εR, respectively, can always be determined by at most n steps.

Proof. With a little change, the proof is similar to the crisp case (see
[15]). □

This lemma allows us to prove the following theorem.

Theorem 3.9. The solutions obtained by the algorithm are the nucleolus
for the games (N,EL(vλα,β)) and (N,ER(vλα,β)).

Proof. Assume that the solutions obtained from the algorithm are x∗L

and x∗R. We must show that these solutions are the pessimistic and
optimistic nucleolus solutions. For this purpose, suppose that x∗L and
x∗R are not the nucleolus solutions for the games (N,EL(vλα,β)) and
(N,ER(vλα,β)), respectively. Let q(x∗L) and q(x∗R) be the vectors of all
excesses of x∗L and x∗R, respectively, whose elements are arranged in
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descending order. Then, there are the imputations such as yL and yR,
for a certain l,

qi(x
∗L) = qi(y

L), i = 1, · · · , l − 1; ql(x
∗L) < ql(y

L),

or

qi(x
∗R) = qi(y

R), i = 1, · · · , l − 1; ql(x
∗R) < ql(y

R).

This proves that for an iteration k with ql(x
∗L) = εLk and ql(x

∗R) = εRk
, the objective function values yL and yR are less than the minimum
values, which is a contradiction. □

4. Numerical Example

We consider a three-person cooperative game with three different sce-
narios. For all scenarios, the values of the one-person coalitions are
z̃ero = (0, 0, 0; 1, 0), and the value of the grand coalition is õne =
(1, 0, 0; 1, 0). The values of two-person coalitions are shown in Table
1.

Table 1. The values of two-person coalitions

S Scenario 1 Scenario 2 Scenario 3
{ 1,2} (0.3, 0.1, 0.2;0.6,0.3) (0.5, 0.1, 0.2;1,0) (0.4, 0.1, 0.1;1,0)
{ 1,3} (0.6, 0.2, 0.2;1,0) (0.2, 0.1, 0.1;1,0) (0.5, 0.2, 0.1;0.6,0.4)
{ 2,3} (0.5, 0.2, 0.1;0.6,0.4) (0.7, 0.2, 0.1;0.6,0.4) (0.7, 0.2, 0.1;1,0)

Using Step 1, let weighting coefficients of scenarios be (0.5, 0.2, 0.3).
By Step 2, we have Table 2. So the following linear programming prob-

Table 2. The weighting expected intervals

S Aggregated scenario
{ 1,2} [0.192, 0.273]
{ 1,3} [0.15, 0.249]
{ 2,3} [0.3, 0.39]
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lems are formulated:
min εL

s.t. xL1 + εL ≥ 0, xL2 + εL ≥ 0, xL3 + εL ≥ 0,

xL1 + xL2 + εL ≥ 0.192,

xL1 + xL3 + εL ≥ 0.15,

xL2 + xL3 + εL ≥ 0.30,

xL1 + xL2 + xL3 = 1,

xLi ≥ 0, i = 1, 2, 3, (4.1)
and

min εR

s.t. xR1 + εR ≥ 0, xR2 + εR ≥ 0, xR3 + εR ≥ 0,

xR1 + xR2 + εR ≥ 0.273,

xR1 + xR3 + εR ≥ 0.249,

xR2 + xR3 + εR ≥ 0.39,

xR1 + xR2 + xR3 = 1,

xRi ≥ 0, i = 1, 2, 3. (4.2)
The results of solving the above problems are shown in Table 3. More-

Table 3.

Player 1 Player 2 Player 3
Solutions of Problem 4.1 0.70 0 0.30
Solutions of Problem 4.2 0.61 0 0.39

over, the values of εL and εR are zero.

5. Conclusion

In this paper, we considered intuitionistic fuzzy-valued cooperative
games with multiple scenarios. The concepts of core and nucleus are
introduced for the obtained interval-valued cooperative games. Then,
an algorithm is presented to compute the nucleolus. Finally, a numerical
example is presented to examine the proposed algorithm.

The proposed method of this paper can be applied to interval-valued
cooperative games with multiple scenarios. The main advantage of this
method is that it does not require any defuzzification method. Note that,
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when a defuzzification method is used, the intuitionistic fuzzy aspect of
payoffs are actually lost, which is not desirable.
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