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Abstract. In this article, we unify the system of functional equa-
tions defining a multim-Jensen mapping to a single equation. Using
a fixed point theorem, we study the generalized Hyers-Ulam stabil-
ity of such equation. As a result, we show that the multi m-Jensen
mappings are hyperstable.
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1. Introduction

Speaking of the stability of a functional equation we follow the question
of Ulam: “when is it true that the solution of an equation differing
slightly from a given one, must of necessity be close to the solution
of the given equation?”. The first stability problem concerning group
homomorphisms was raised by Ulam [23] in 1940 and affirmatively solved
by Hyers [12]. The result of Hyers was generalized by Rassias [20] for
approximate linear mappings by allowing the Cauchy difference operator
f(x + y) − f(x) − f(y) to be controlled by ϵ(∥x∥p + ∥y∥p). In 1994, a
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generalization of Rassias theorem was obtained by Găvruţa [11], who
replaced ϵ(∥x∥p+∥y∥p) by a general control function φ(x, y) by following
Rassias’ approach.

The stability of the Jensen functional equation

J

(
x+ y

2

)
=
J(x) + J(y)

2
(1.1)

was studied by a number of mathematicians (see for instance [13], [14],
[15], [17] and [22]), whereas the stability of bi-Jensen equation was in-
vestigated by Bae and Park [1] and Jun et al., [16].

Prager and Schwaiger [19] introduced the notion of multi-Jensen map-
pings f : V n −→ W (V and W being vector spaces over the rationals)
with the connection with generalized polynomials and obtained their
general form. The aim of this note was to study the stability of the
multi-Jensen equation. After that, the stability of multi-Jensen map-
pings in various normed spaces have been investigated by a number of
authors (see [9], [10], [18] and [24]).

Let V be a commutative group, W be a linear space, and n ≥ 2
be an integer. In this paper, we define the multi m-Jensen mappings
f : V n −→ W which are m-Jensen in each variable, that is f satisfies
the equation

J

(
z1 + . . .+ zm

m

)
=
J(z1) + . . .+ J(zm)

m
(m > 2). (1.2)

in each variable and then present a characterization of such mappings.
In other words, we reduce the system of n equations defining the multi
m-Jensen mappings to obtain a single functional equation. We also
prove the generalized Hyers-Ulam stability for multim-Jensen functional
equations by using the fixed point method which was used for the first
time by Brzdȩk in [6]; for more applications of this approach for the
stability of various multi-mappings in Banach spaces see [2], [4], [5] and
[21].

2. Characterization of multi m-Jensen mappings

Throughout this paper, N and Q stand for the set of all positive
integers and rationals, respectively. In addition, N0 := N ∪ {0} and
R+ := [0,∞). For any l ∈ N0, n ∈ N, t = (t1, . . . , tn) ∈ {0, 1}n
and x = (x1, . . . , xn) ∈ V n we write lx := (lx1, . . . , lxn) and tx :=
(t1x1, . . . , tnxn), where ra stands, as usual, for the rth power of an ele-
ment a of the linear space V .

In what follows, let V and W be vector spaces over the rationals,
n ∈ N and xnj = (x1j , x2j , . . . , xnj) ∈ V n, where j ∈ {1, . . . ,m}. We
shall denote xnj by xj or simply x if there is no risk of ambiguity. A
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mapping f : V n −→ W is called multi m-Jensen if f is m-Jensen in all
variables.

In this section, we wish to show that the mapping f : V n −→ W is
multi m-Jensen if and only if it satisfies the equation

mnf

(
x1 + . . .+ xm

m

)
=

∑
l1,...,ln∈{1,...,m}

f(x1l1 , x2l2 , . . . , xnln) (2.1)

for all xj = (x1j , x2j , . . . , xnj) ∈ V k where j ∈ {1, . . . ,m}.
Here, we reduce the system of n equations defining the multim-Jensen

mapping to obtain a single functional equation.

Theorem 2.1. Let n ∈ N. Then, a mapping f : V n −→ W is multi
m-Jensen mapping if and only if f satisfies the equation (2.1).

Proof. Suppose that f is a multim-Jensen mapping. We prove f satisfies
the equation (2.1) by induction on n. For n = 1, it is trivial that f
satisfies the equation (1.2). Assume that (2.1) is valid for some positive
integer n > 1. Then,

f

(
xn+1
1 + . . .+ xn+1

m

m

)
= f

(
x11 + . . .+ x1m

m
, . . . ,

xn1 + . . .+ xnm
m

,
xn+11 + . . .+ xn+1m

m

)
=

1

mn

∑
l1,...,ln∈{1,...,m}

f

(
x1l1 , x2l2 , . . . , xnln ,

xn+11 + . . .+ xn+1m

m

)

=
1

mn+1

∑
l1,...,ln+1∈{1,...,m}

f
(
x1l1 , x2l2 , . . . , xn+1ln+1

)
.

This means that (2.1) holds for n+ 1.
Conversely, assume that f satisfies the equation (2.1). Now, fix j ∈

{1, . . . , n}, put zk = xklk and for all k ∈ {1, . . . , n}\{j}, where lk ∈
{1, . . . ,m}. We have

f

(
z1, . . . , zj−1,

xj1 + . . .+ xjm
m

, zj+1, . . . , zn

)
=

1

mn
mn−1

∑
lj∈{1,...,m}

f
(
z1, . . . , zj−1, xjlj , zj+1, . . . , zn

)
=

1

m

∑
lj∈{1,...,m}

f
(
z1, . . . , zj−1, xjlj , zj+1, . . . , zn

)
.

It follows from the above relation that f is m-Jensen in the jth variable.
Since j is arbitrary, we obtain the desired result. �
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Recall that a mapping f : V n −→ W is called multi-additive if it is
additive (satisfies the Cauchy’s functional equation A(x + y) = A(x) +
A(y)) in each variable.

Proposition 2.2. Let n ∈ N. Consider the mapping f : V n −→ W . If
there exists a multi-additive mapping g : V n −→ W such that f(x) =
g(x) + f(0) in which f(0) is a constant, then f is multi m-Jensen.

Proof. Fix j ∈ {1, . . . , n}. We have

f

(
z1, . . . , zj−1,

xj1 + . . .+ xjm
m

, zj+1, . . . , zn

)
= g

(
z1, . . . , zj−1,

xj1 + . . .+ xjm
m

, zj+1, . . . , zn

)
+ f(0, . . . , 0)

=
1

m

m∑
lj=1

g
(
z1, . . . , zj−1, xjlj , zj+1, . . . , zn

)
+ f(0, . . . , 0)

=
1

m

m∑
lj=1

[
g
(
z1, . . . , zj−1, xjlj , zj+1, . . . , zn

)
+ f(0, . . . , 0)

]
=

1

m

m∑
lj=1

f
(
z1, . . . , zj−1, xjlj , zj+1, . . . , zn

)
. (2.2)

Thus, g is m-Jensen in the jth variable. This completes the proof. �

3. Stability of multi m-Jensen mappings

In this section, we prove the generalized Hyers-Ulam stability of equa-
tion (2.1) by a fixed point result (Theorem 3.1) in Banach spaces. Through-
out, for two setsX and Y , the set of all mappings fromX to Y is denoted
by Y X . Here, we introduce the oncoming three hypotheses:

(A1) Y is a Banach space, S is a nonempty set, j ∈ N, g1, . . . , gj :
S −→ S and L1, . . . , Lj : S −→ R+,

(A2) T : Y S −→ Y S is an operator satisfying the inequality

∥T λ(x)− T µ(x)∥ ≤
j∑

i=1

Li(x) ∥λ(gi(x))− µ(gi(x))∥ , λ, µ ∈ Y S , x ∈ S,

(A3) Λ : RS
+ −→ RS

+ is an operator defined through

Λδ(x) :=

j∑
i=1

Li(x)δ(gi(x)) δ ∈ RS
+, x ∈ S.

In the following, we present a result in fixed point theory [7, Theorem
1] which plays a key tool to obtain our aim in this paper.



On the stability of multi m-Jensen mappings 203

Theorem 3.1. Let hypotheses (A1)-(A3) hold and the function θ :
S −→ R+ and the mapping ϕ : S −→ Y fulfills the following two condi-
tions:

∥T ϕ(x)− ϕ(x)∥ ≤ θ(x), θ∗(x) :=
∞∑
l=0

Λlθ(x) <∞ (x ∈ S).

Then, there exists a unique fixed point ψ of T such that

∥ϕ(x)− ψ(x)∥ ≤ θ∗(x) (x ∈ S).

Moreover, ψ(x) = liml→∞ T lϕ(x) for all x ∈ S.

Here and subsequently, for the mapping f : V n −→ W , we consider
the difference operator J f : V n × V n −→W by

J f(x1, . . . , xm) := mnf

(
x1 + . . .+ xm

m

)
−

∑
l1,...,ln∈{1,...,m}

f(x1l1 , x2l2 , . . . , xnln)

for all xj = (x1j , x2j , . . . , xnj) ∈ V k where j ∈ {1, . . . ,m}.
We recall the upcoming lemma from [3] which will be useful in the

proof of our stability result. For simplicity, given a k ∈ N, we write
S := {0, 1}k, and Si stands for the set of all elements of S having exactly
i zeros, i.e.,

Si : {(s1, . . . , sk) ∈ S : card{j : sj = 0} = i}, i ∈ {0, . . . , k}.

Lemma 3.2. Let k ∈ N, l ∈ N0 and ψ : S −→ R. Then

k∑
v=0

k∑
w=0

∑
s∈Sw

∑
t∈Sv

(2l − 1)wψ(st) =
k∑

i=0

∑
p∈Si

(2l+1 − 1)iψ(p).

From now on, S stands for {0, 1}n and Si ⊆ S for i ∈ {0, . . . , n}. We
have the following stability result for the functional equation (2.1).

Theorem 3.3. Let V be a linear space and W be a Banach space. Sup-

pose that ϕ :

m−times︷ ︸︸ ︷
V n × · · · × V n −→ R+ is a function satisfying the equality

lim
l→∞

(
1

mn

)l n∑
i=0

∑
p∈Si

(2l − 1)iϕ(mlpx1, . . . ,m
lpxm) = 0 (3.1)

for all x1, . . . , xm ∈ V n. Assume also f : V n −→ W is a mapping
satisfying the inequality

∥J f(x1, . . . , xm)∥ 6 ϕ(x1, . . . , xm) (3.2)



204 Mohammad Maghsoudi, Abasalt Bodaghi

for all x1, . . . , xm ∈ V n. If

Φ(x) =:
n∑

l=0

(
1

mn

)l+1 n∑
i=0

∑
p∈Si

(2l − 1)iϕ(mlpx, 0, . . . , 0) <∞, (3.3)

for all x ∈ V n, then there exists a unique solution F : V n −→ W of
(2.1) such that

∥f(x)−F(x)∥ ≤ Φ(x) (3.4)

for all x ∈ V n.

Proof. Replacing x = x1 by mx and putting xk = (0, . . . , 0) for k ∈
{2, . . . ,m} in (3.2), we have∥∥∥∥∥f(x)− 1

mn

∑
s∈S

f(smx)

∥∥∥∥∥ ≤ 1

mn
ϕ(x, 0, . . . , 0) (3.5)

where x ∈ V n. Set θ(x) := 1
mnϕ(x, 0, . . . , 0) and T θ(x) := 1

mn

∑
s∈S f(smx)

where θ ∈W V n
, x ∈ V n. Then, the relation (3.5) can be modified as

∥f(x)− T f(x)∥ ≤ θ(x) (x ∈ V n). (3.6)

Define Λη(x) := 1
mn

∑
s∈S η(smx) for all η ∈ RV n

+ , x ∈ V n. We now see
that Λ has the form described in (A3) with S = V n, gi(x) = gs(x) = smx
and Li(x) =

1
mn for all i and x ∈ V n. Furthermore, for each λ, µ ∈W V n

and x ∈ V n, we get

∥T λ(x)− T µ(x)∥ =

∥∥∥∥∥ 1

mn

[∑
s∈S

(λ(smx)− µ(smx))

]∥∥∥∥∥
≤ 1

mn

∑
s∈S

∥λ(smx)− µ(smx)∥ .

The above relation shows that the hypothesis (A2) holds. By induction
on l, one can check for any l ∈ N0 and x ∈ V n that

Λlθ(x) :=

(
1

mn

)l n∑
i=0

(2l − 1)i
∑
p∈Si

θ(mlpx). (3.7)

Fix an x ∈ V n. Here, we adopt the convention that 00 = 1. Hence, the
relation (3.7) is trivially true for l = 0. Next, assume that (3.7) holds
for a l ∈ N0. Then, using Lemma 3.2 for k = n and ψ(s) := θ(ml+1sx)
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for s ∈ S, we find

Λl+1θ(x) = Λ(Λlθ)(x) =
1

mn

n∑
v=0

∑
t∈Sv

(Λlθ)(mtx)

=

(
1

mn

)l+1 n∑
v=0

∑
t∈Sv

n∑
w=0

(2l − 1)w
∑
s∈Sw

θ(ml+1stx)

=

(
1

mn

)l+1 n∑
v=0

n∑
w=0

∑
s∈Sw

∑
t∈Sv

(2l − 1)wθ(ml+1stx)

=

(
1

mn

)l+1 n∑
i=0

∑
p∈Si

(2l+1 − 1)iθ(ml+1px).

Therefore, (3.7) holds for any l ∈ N0 and x ∈ V n. The relations (3.3)
and (3.7) necessitate that all assumptions of Theorem 3.1 are satisfied.
Hence, there exists a mapping F : V n −→W such that

F(x) = lim
l→∞

(T lf)(x) =
1

mn

∑
s∈S

F(smx) (x ∈ V n),

and also (3.4) holds. We shall to show that

∥D(T lf)(x1, . . . , xm)∥ ≤
(

1

mn

)l n∑
i=0

∑
p∈Si

(2l − 1)iϕ(mlpx1, . . . ,m
lpxm)

(3.8)

for all x1, . . . , xm ∈ V n and l ∈ N0. We argue by induction on l. The
inequality (3.8) is valid for l = 0 by (3.2). Assume that (3.8) is true for
an l ∈ N0. Then

∥D(T l+1f)(x1, . . . , xm)∥

=
1

mn

∥∥∥∥∥∑
s∈S

D(T lf)(smx1, . . . , smxm)

∥∥∥∥∥
≤

(
1

mn

)l+1∑
s∈S

n∑
i=0

∑
t∈Si

(2l − 1)iϕ(ml+1stx1, . . . ,m
l+1stxm)

=

(
1

mn

)l+1 n∑
i=0

∑
p∈Si

(2l+1 − 1)iϕ(ml+1px1, . . . ,m
l+1pxm)

for all x1, . . . , xm ∈ V n. We note that the last equality follows from
Lemma 3.2 with k := n and ψ(s) := ϕ(ml+1sx1, . . . ,m

l+1sxm) (s ∈ S).
Letting l → ∞ in (3.8) and applying (3.1), we arrive atDF(x1, . . . , xm) =
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0 for all x1, . . . , xm ∈ V n. This means that the mapping F satisfies
(2.1). Lastly, assume that F : V n −→ W is another mapping satisfying
the equation (2.1) and inequality (3.4), and fix x ∈ V n, j ∈ N. By the
relation (3.3), we have

∥F(x)− F(x)∥

=

∥∥∥∥∥
(

1

mn

)j

F(2jx)−
(

1

mn

)j

F(2jx)

∥∥∥∥∥
≤

(
1

mn

)j

(∥F(2jx)− f(2jx)∥+ ∥F(2jx)− f(2jx)∥)

≤ 2

(
1

mn

)j

Φ(2jx)

≤ 2

(
1

mn

)j ∞∑
l=j

(
1

mn

)l+1 n∑
i=0

∑
p∈Si

(2l − 1)iϕ(mlpx, 0, . . . , 0).

Consequently, letting j → ∞ and using the fact that series (3.3) is
convergent for all x ∈ V n, we obtain F(x) = F(x) for all x ∈ V n, which
finishes the proof. �

In the sequel,

(
n
k

)
is the binomial coefficient defined for all n, k ∈

N0 with n ≥ k by n!/(k!(n − k)!). In the next corollary, we show that
the functional equation (2.1) is stable.

Corollary 3.4. Let δ > 0. Let also V be a normed space and W be a
Banach space. If f : V n −→W is a mapping satisfying the inequality

∥J f(x1, . . . , xm)∥ ≤ δ

for all x1, . . . , xm ∈ V n, then there exists a unique solution F : V n −→
W of (2.1) such that

∥f(x)−F(x)∥ ≤ δ

mn − 2n

for all x ∈ V n.
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Proof. Setting the constant function ϕ(x1, . . . , xm) = δ for all x1, . . . , xm ∈
V n, and applying Theorem 3.3, we have

Φ(x) =
∞∑
l=0

(
1

mn

)l+1 n∑
i=0

∑
p∈Si

(2l − 1)iϕ(mlpx, 0 . . . , 0)

= δ

∞∑
l=0

(
1

mn

)l+1 n∑
i=0

(
n
i

)
(2l − 1)i × 1n−i

= δ
∞∑
l=0

(
1

mn

)l+1

2nl

=
δ

mn

∞∑
l=0

(
2n

mn

)l

=
δ

mn − 2n
.

�
We note that the above corollary is valid only for any integer m with

m > 2.
Let A be a nonempty set, (X, d) a metric space, ψ ∈ RAn

+ , and F1,F2

operators mapping a nonempty set D ⊂ XA into XAn
. We say that

operator equation

F1φ(a1, . . . , an) = F2φ(a1, . . . , an) (3.9)

is ψ-hyperstable provided every φ0 ∈ D satisfying inequality

d(F1φ0(a1, . . . , an),F2φ0(a1, . . . , an)) ≤ ψ(a1, . . . , an),

fulfils (3.9) for all a1, . . . , an ∈ A. This definition is introduced in [8].
In other words, a functional equation F is hyperstable if any mapping
f satisfying the equation F approximately is a true solution of F . Un-
der some conditions the functional equation (2.1) can be hyperstable as
follows.

Corollary 3.5. Suppose that δij > 0 for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}
fulfill

∑n
i=1

∑m
j=1 δij < n. Let V be a normed space and W be a Banach

space. If f : V n −→W is a mapping satisfying the inequality

∥J f(x1, . . . , xm)∥ ≤
n∏

i=1

m∏
j=1

∥xij∥δij

for all x1, . . . , xm ∈ V n, then f is a multi m-Jensen mapping.
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