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Abstract. In this paper, we define topological hyperrings and
study their basic concepts which supported by illustrative examples.
We show some differences between topological rings and topologi-
cal hyperrings. Also, by the fundamental relation Γ∗, we indicate
the role of complete parts (saturated subsets) and complete hyper-
rings in topological hyperrings and specially we show that if every
(closed) open subset is a complete part in a topological complete
hyperring then its fundamental ring is a topological ring. Finally,
we study the quotient topology induced by Γ∗-relation on an as-
sociated Krasner hyperring obtained by a ring and show that it is
isomorphic to a quotient space of the ring by its ideals.
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1. Introduction

In 1956, M. Krasner [14] introduced the notion of hyperrings, as a
field of hyperstructures theory defined by Marty [17] in 1934. The hyper-
rings are algebraic hyperstructures endowed with two (hyper)operations
where both are hyperoperations (general hyperrings ([24])), or just one
is a hyperoperation and the other is an operation. In Krasner hyperrings
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[15] the addition is a hyperoperation such that the additive hyperstruc-
ture is a canonical hypergroup, while the multiplication structure is a
semigroup. A good review of studies on hyperrings can be seen in the
book “Hyperrings Theory and Applications” ([7]) written by Davvaz
and Leoreanu-Fotea (also can see [18], [20] and [26]).

The concept of topology on hypergroups was presented by R. Ameri
in [3]. He introduced the concept of a (pseudo, strong pseudo) topolog-
ical (transposition) hypergroup and studied the relationships between
pseudo topological polygroups and topological polygroups. Later on,
this concept was studied by Heidari et al. [8] as a generalization of topo-
logical groups. By fundamental relations on a hypergroup, they show
that if every open subset of a topological hypergroup is a complete part,
then its fundamental group is a topological group. Moreover, topologi-
cal isomorphism theorems on polygroups were investigated by them in
[9]. Salehi Shadkami et al. [22, 23] established connections of complete
parts and open sets to obtain some new results in topological polygroups.
S. Hoskova-Mayerova [10] introduced the concept of topological hyper-
groupoids, β-topological hypergroupoids, τL-topological hypergroupoids
and τℵ-topological hypergroupoids by using concepts of the pseudocon-
tinuity and the strong pseudocontinuity. Also, an over review of topo-
logical hypergroupoid can be found in [2]. Paratopological polygroups
versus topological polygroups were studied in [12]. Moreover, I. Cristea
and S. Hoskova- Mayerova defined the concept of fuzzy pseudotopologi-
cal hypergroupoids in [6].

Topological hyperrings are a generalization of topological rings and
also topological hypergroups. In this paper, we give some basic concepts
to construct a topology on hyperrings. Then, we define the notion of a
topological hyperring which supported by illustrative examples. Also,
we mention some differences of topological rings and topological hy-
perrings. By considering the fundamental relation Γ∗, we study the
role of complete parts (saturated subsets) and complete hyperrings in
topological hyperrings which shows some difference between topological
hypergroups and topological hyperrings. We show that if every (closed)
open subset is a complete part in a topological complete hyperring then
its fundamental ring is a topological ring. Moreover, we investigate rela-
tionships between a topological ring and a associated topological Kras-
ner hyperring and indicate that the topological fundamental quotient of
the associated topological Krasner hyperring is isomorphic to a quotient
space of the related topological ring by its ideals.
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2. Basic concepts of topology on hyperstructures

Let (R,+, ·) be a ring and (R, τ) be a topological space. Then (R,+, ·, τ)
is a topological ring whenever operations “+” and “ ·” from R×R to R
are continuous. Note that we consider the product topology on R×R.

In algebraic hyperstructures theory, we use “ + ” : R×R −→ P ∗(R),
where P ∗(R) is the set of all nonempty subsets of R. The map “ +
” is called a hyperoperation on R. In this case, we define A + B =⋃

a∈A,b∈B a+ b, x+ A = {x}+ A and A+ x = A+ {x}, for x ∈ R and

A,B ∈ P ∗(R). We say that (R,+) is a semihypergroup if for all x, y, z of
R, we have (x+ y)+ z = x+(y+ z). A semihypergroup (R,+) is called
a hypergroup if x + R = R + x = R, for all x ∈ R. A nonempty subset
K of a hypergroup (R,+) is called subhypergroup, if for all k ∈ K, we
have k +K = K + k = K.

Definition 2.1. ([7]) A commutative hypergroup (R,+) is called canon-
ical if

(i) there exists 0 ∈ R, such that 0 + x = {x}, for every x ∈ R;
(ii) for all x ∈ R there exists a unique −x ∈ R, such that 0 ∈

x+ (−x);
(iii) x ∈ y + z implies y ∈ x+ (−z).

Definition 2.2. ([7]) An algebraic system (R,+, ·) is said to be a (gen-
eral) hyperring, if (R,+) is a hypergroup, (R, ·) is a semihypergroup,
and “ · ” is distributive with respect to “ + ”.

A hyperring (R,+, ·) is called a Krasner hyperring [15], if (R,+) is a
canonical hypergroup and (R, ·) is a semigroup such that for all x ∈ R,
we have x · 0 = 0 = 0 · x, where 0 is a zero element of (R,+).

In a hyperoperation + : R×R → P ∗(R), assume that R has a topology
τ , then we can define a topology on P ∗(R) by the way of Hošková [10].
She defined two topologies on P ∗(R) which were called upper and lower
topologies. In this paper, we choose an upper topology on P ∗(R) and
consider the collection {SV }V ∈τ as its basis, where SV = {U ∈ P ∗(R) :
U ⊆ V }.

Theorem 2.3. [16] Let f : X → Y be a map between topological spaces
X and Y . Then the following conditions are equvalent:

(1) f : X → Y is continuous;
(2) for all open subset V of Y , f−1(V ) is open in X;
(3) for all x ∈ X and all open subset V of Y containing f(x), there

exists an open subset U of X containing x such that f(U) ⊆ V .

Remark 2.4. The above theorem is also true whenever use term of basis
elements instead of open sets. Now by previous theorem, hyperoperation
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+ : R × R → P ∗(R) is continuous, if for all basis element SU , U ∈ τ ,
the set +−1(SU ) = {V ×W : +(V,W ) ∈ SU} is open in R × R. Also
we can use the other equivalent condition for continuity of “ + ”.

In the following we present some properties of hyperstructures and
topological preliminaries that we shall use in later. Consider + : R×R →
P ∗(R) where R endowed with a topology τ and P ∗(R) endowed with
topology generated by the basis {SV }V ∈τ .

Proposition 2.5. For a hyperoperation + : R×R → P ∗(R) the follow-
ing conditions are equivalent:

(1) for any open subset V of R, the set {(x, y) ∈ R×R : x+ y ⊆ V }
is open in R×R;

(2) for all x, y ∈ R and any open subset V of R containing x + y,
there exist open subsets Ux and Uy of R containing x and y,
respectively, such that a+ b ⊆ V , for every a ∈ Ux and b ∈ Uy.

Proof. Let x, y ∈ R and V be an open subset of R such that x+ y ⊆ V .
By (1) there exists basis element Ux × Uy in R × R such that (x, y) ∈
Ux × Uy ⊆ {(x, y) ∈ R × R : x + y ⊆ V }, x ∈ Ux and y ∈ Uy, where
Ux and Uy are open subsets of R. Now if (a, b) ∈ Ux × Uy, then (a, b) ∈
{(x, y) ∈ R×R : x+ y ⊆ V }. Hence a+ b ⊆ V .

Conversely, let V be an open subset of R and (x0, y0) ∈ {(x, y) ∈
R ×R : x+ y ⊆ V }. Then by (2) there exist open subsets Ux0 and Uy0

of R containing x0 and y0, respectively, such that a + b ⊆ V , for every
a ∈ Ux0 and b ∈ Uy0 . Thus (x0, y0) ∈ Ux0 × Uy0 ⊆ {(x, y) ∈ R × R :
x+ y ⊆ V }. �
Lemma 2.6. Consider + : R × R → P ∗(R) and let U , V and O are
open subsets in R. Then the following conditions are equivalent:

(1) +(U × V ) ⊆ SO, where +(U × V ) = {x+ y : x ∈ U, y ∈ V };
(2) U + V ⊆ O, where U + V = ∪{x+ y : x ∈ U, y ∈ V }.

Proof. Let +(U × V ) ⊆ SO = {W ∈ P ∗(R) : W ⊆ O}. Then for all
x ∈ U and y ∈ V we have x + y ∈ SO, and so x + y ⊆ O. Thus
∪{x+ y : x ∈ U, y ∈ V } ⊆ O. Hence U + V ⊆ O.

Conversely, if U + V ⊆ O, then ∪{x + y : x ∈ U, y ∈ V } ⊆ O. Thus
for all x ∈ U and y ∈ V , {x+ y : x ∈ U, y ∈ V } ⊆ SO. �
Theorem 2.7. Let + : R × R → P ∗(R) be a hyperoperation. Then the
following conditions are equivalent:

(1) for all open subset V of R, the set {(x, y) ∈ R×R : x+ y ⊆ V }
is open in R×R;

(2) for all x, y ∈ R and all open subset V of R containing x + y,
there exist open subsets Ux and Uy of R containing x and y,
respectively, such that Ux + Uy ⊆ V .
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Proof. It follows from Proposition 2.5 and Lemma 2.6. �
Similar to what happens in Lemma 2.6, for the hyperoperation “/” :

R × R → P ∗(R) defined by x/y = {z ∈ R : x ∈ z + y} and all open
subset U , V and O of R, we have /(U×V ) = {x/y : x ∈ U, y ∈ V } ⊆ SO

if and only if U/V =
⋃
{x/y : x ∈ U, y ∈ V } ⊆ O.

3. Topological Hyperrings

Definition 3.1. Let (R,+, ·) be a hyperring and (R, τ) be a topological
space. (R,+, ·, τ) is said to be a topological hyperring if three hyperop-
erations “ + ”, “ · ” and “/” are continuous.

Lemma 3.2. For every hyperring (R,+, ·) with a topology τ , the hy-
peroperation “ + ” (resp., “ · ” and “/”) is continuous if and only if for
every x, y ∈ R and U ∈ τ such that x + y ⊆ U (resp., x · y ⊆ U and
x/y ⊆ U), there exist V,W ∈ τ with x ∈ V , y ∈ W and V + W ⊆ U
(resp., V ·W ⊆ U and V/W ⊆ U).

Proof. It is straightforward by Theorem 2.7. �
Example 3.3. Every topological ring is a topological hyperring by triv-
ial hyperoperations.

Example 3.4. For any non-empty set R, (R,+, ·) is a topological hy-
perring with every arbitrary topology on R, where x+ y = x · y = R.

Example 3.5. If R is a Hausdorff topological space, then (R,+, ·) is a
topological hyperring, where x+ y = x · y = {x, y}.

Example 3.6. If (R,+, ·) is a topological ring, then (R,⊕,⊙) is a topo-
logical hyperring, where x⊕ y = {x, y} and x⊙ y = {x · y}.

Example 3.7. By considering B = {{a,−a} : a ∈ N ∪ {0}} as a basis
for a topology on Z, (Z,⊕,⊙) is a topological hyperring, where x⊕ y =
{x, y,−x,−y}, x⊙ y = {xy,−xy}. Note that every subset A of Z is an
open subset of Z if and only if A consists of all its opposite elements.

Some properties in topological rings are not valid in topological hy-
perrings. For instant, if R is a topological ring and U is an open subset
of R, then a+R is open in R for every a ∈ R, while it does not hold in
topological hyperrings. For example consider R = R with the standard
topology in Example 3.6, then 2⊕ (0, 1) = {2} ∪ (0, 1) is not open in R
((0, 1) is the unite open interval). On the other hand, in Example 3.7,
a⊕V =

⋃
y∈V

a⊕ y =
⋃
y∈V

{a,−a, y,−y} = Ba ∪ (
⋃
y∈V

By) is an open subset

of Z, for all a ∈ Z.
Let ∼ be an equivalence relation on a topological space X. Then U is

open in the quotient space X/ ∼ if and only if p−1(U) is an open subset
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of X, where p : X → X/ ∼ is the natural projection map. Also, the

saturation of A ⊆ X with respect to ∼ is the set Â = {x ∈ X : ∃a ∈
A, x ∼ a}. If Â = A, then A is called saturated.

Now, consider the Γ-relation ([25]) on the hyperring (R,+, ·) which is
defined as:

xΓy ⇔ ∃n ∈ N,∃ki ∈ N, ∃(zi1, . . . , ziki) ∈ Rki , 1 ≤ i ≤ n; {x, y} ⊆
n∑

i=1

ki∏
j=1

zij .

Let Γ∗ be the transitive closure of Γ. If (R,+, ·, τ) is a topological
hyperring, then (R/Γ∗, τ) is a topological space, where τ is the quotient
topology induced by natural mapping π : R → R/Γ∗, and A ⊆ R/Γ∗ is
open iff π−1(A) ⊆ R is open.

Complete parts were introduced and studied for the first time by
Koskas [13]. Afterward, this topic was analyzed by Corsini and Sureau
[5] mostly in hypergroups. Also, complete parts and their generalizations
were studied on hyperrings theory, for example see [1, 4, 19, 21]. Recall

that a subset A ⊆ R is said to be a complete part of R if A∩
n∑

i=1

ki∏
j=1

zij ̸= ∅

implies that
n∑

i=1

ki∏
j=1

zij ⊆ A, for n ∈ N, ki ∈ N, (zi1, . . . , ziki) ∈ Rki and

1 ≤ i ≤ n.

Lemma 3.8. Let (R,+, ·) be a hyperring. Then every saturated subset
of R is a complete part.

Proof. Let A be a saturated subset of R such that A ∩
n∑

i=1

ki∏
j=1

zij ̸= ∅,

for n, ki ∈ N and (zi1 , . . . , ziki) ∈ Rki , 1 ≤ i ≤ n. Then there exists

a ∈ A such that a ∈
n∑

i=1

ki∏
j=1

zij . Thus for all x ∈
n∑

i=1

ki∏
j=1

zij , xΓ
∗a and so

x ∈ Â = A, since A is saturated. Hence A is a complete part. �

Recall that a hyperring (R,+, ·) is said to be a complete hyperring

([7]) if
n∑

i=1

ki∏
j=1

zij = Γ(
n∑

i=1

ki∏
j=1

zij), for all zij ∈ R. As a characterization,

(R,+, ·) is a complete hyperring if and only if
n∑

i=1

ki∏
j=1

zij is a complete

part of R, for all zij ∈ R. Hence we have the following:

Corollary 3.9. In every complete hyperring, a non-empty subset A of
R is a complete part if and only if it is saturated.
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Proof. Let x ∈ Â. Then there exists a ∈ A such that aΓ⋆x. This
means that a = a1Γa2Γ · · ·Γan−1Γan = x, for a1, . . . , an ∈ R. Thus

{at, at+1} ⊆
n∑

i=1

ki∏
j=1

(zt+1)ij , for 1 ≤ t ≤ n − 1. Since R is a complete

hyperring,
n∑

i=1

ki∏
j=1

(z2)ij = · · · =
n∑

i=1

ki∏
j=1

(zn)ij . Also (
n∑

i=1

ki∏
j=1

(z2)ij)∩A ̸= ∅,

which implies that (
n∑

i=1

ki∏
j=1

(zn)ij)∩A ̸= ∅. So x ∈
n∑

i=1

ki∏
j=1

(zn)ij ⊆ A, since

A is a complete part. Therefor Â = A, that is A is saturated. �

We recall that a hyperring (R,+, ·) is said to be a hyperfield if (R, ·)
is a hypergroup. Then, similar to what happen for hypergroups ([8]) we
have:

Corollary 3.10. In every hyperfield any non-empty subset is a complete
part if and only if it is saturated.

Proof. In any hyperfield, Γ∗ = Γ (Γ is transitive [4]). �

Proposition 3.11. Let (R,+, ·) be a complete hyperring with topology
τ such that every open subset of R is a complete part. If V ∈ τ , then
Γ∗(V ) ∈ τ .

Proof. Let x ∈ Γ∗(V ). Then there exists v ∈ V such that xΓ∗v. Thus
there exists an open subset U such that v ∈ U ⊆ V . On the other
hand x = a1Γa2Γ · · ·Γan−1Γan = v, which means that {at, at+1} ⊆
n∑

i=1

ki∏
j=1

(zt+1)ij , for 1 ≤ t ≤ n − 1. By v ∈ U ∩ (
n∑

i=1

ki∏
j=1

(zn)ij) we have

n∑
i=1

ki∏
j=1

(zn)ij ⊆ U . Moreover R is a complete hyperring and so x ∈

n∑
i=1

ki∏
j=1

(z1)ij =
n∑

i=1

ki∏
j=1

(zn)ij ⊆ U , thus x ∈ U . Clearly x ∈ U ⊆ Γ∗(U) ⊆

Γ∗(V ). Hence Γ∗(V ) is an open subset of R. �

Corollary 3.12. Let (R,+, ·) be a hyperfield with topology τ such that
every open subset of R is a complete part. If V ∈ τ , then Γ∗(V ) ∈ τ .

Proof. It is straightforward by Γ∗ = Γ. �

The above results imply that the natural mapping π : R → R/Γ∗

is an open mapping in a topological complete hyperring or topological
hyperfield, where any open subset is a complete part.
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Note that in any (topological) hyperring, complement of every com-
plete part (saturated subset) is a complete part (saturated subset). In-

deed, let (
n∑

i=1

ki∏
j=1

zij)∩Ac ̸= ∅. If (
n∑

i=1

ki∏
j=1

zij)∩A ̸= ∅, then
n∑

i=1

ki∏
j=1

zij ⊆ A

(A is a complete part), and so (
n∑

i=1

ki∏
j=1

zij) ∩ Ac = ∅, which is a contra-

diction. Hence (
n∑

i=1

ki∏
j=1

zij) ∩ A = ∅, i.e.
n∑

i=1

ki∏
j=1

zij ⊆ Ac. Also, let A be

a saturated subset of R, x ∈ Ac and xΓ∗y. If y /∈ Ac, then y ∈ A = Â.

Thus x ∈ Â = A, which is a contradiction. Hence y ∈ Ac and so Ac is
saturated.

Moreover, it is well-known that Γ∗ is the smallest equivalence relation
on a hyperring (R,+, ·) such that (R/Γ∗,⊕,⊙) is a classical ring, where
Γ∗(x)⊕Γ∗(y) = {Γ∗(z) | z ∈ Γ∗(x)+Γ∗(y)} and Γ∗(a)⊙Γ∗(b) = {Γ∗(d) |
d ∈ Γ∗(a) · Γ∗(b)}. Thus, ⊕ and ⊙ can be seen as Γ∗(x) ⊕ Γ∗(y) =
Γ∗(z), for all z ∈ Γ∗(x) + Γ∗(y) and Γ∗(a) ⊙ Γ∗(b) = Γ∗(d), for all
d ∈ Γ∗(a) · Γ∗(b). Hence, (R/Γ∗,⊕,⊙) is called the fundamental ring
obtained by the Γ∗-relation. Hence, we have:

Theorem 3.13. Let (R,+, ·, τ) be a topological complete hyperring such
that every (closed) open subset of R is a complete part. Then (R/Γ∗,⊕,⊙, τ∗)
is a topological ring, where τ∗ is the quotient topology on R/Γ∗.

Proof. The proof is similar to what happened in topological hypergroups
([8]). �

Lemma 3.14. Let R be a topological hyperring such that every saturated
subset of R is open. Then π : R → R/Γ∗ is an open mapping.

Proof. For every open subset V of R, V̂ = π−1(π(V )) is a saturated and
so it is open, by the hypothesis. This completes the proof. �

Corollary 3.15. If R is a topological hyperring such that every saturated
subset of R is open, then (R/Γ∗,⊕,⊙, τ∗) is a topological ring.

Proof. It is concluded by Lemma 3.14. �

We know that a non-empty subset I of a hyperring (R,+, ·) is a
hyperideal, if x, y ∈ I implies x + y ⊆ I and for every r ∈ R we have
r · x ∪ x · r ⊆ I. Let (R,+, ·) be a topological hyperring and I be a
hyperideal of R. Then R/I = {x + I : x ∈ R} is a hyperring with two
hyperoperations (x + I) ⊕ (y + I) = {z + I | z ∈ (x + I) + (y + I)}
and (x + I) ⊙ (y + I) = {t + I | t ∈ (x + I) · (y + I)}. Also, R/I is
a topological hyperring with respect to the quotient topology induced
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by π : R → R/I. Note that every open subset of R/I is in the form
{u+ I : u ∈ U} for some open subset U of R ([8]).

Now let (R,+, ·) be a commutative ring with identity and put R =
{x = {x,−x} : x ∈ R}. Define x⊕ y = {x+ y, x− y} and x⊙ y = x · y
on R. Then (R,⊕,⊙) is a Krasner hyperring by [7], R is said to be
the associated Krasner hyperring with respect to the ring R. Hence we
have:

Lemma 3.16. A non-empty subset I of R is an ideal of R if and only
if I is a hyperideal of R, where I = {x : x ∈ I}.

Proof. Let x, y ∈ I. Then x⊕y = {x+ y, x− y} ⊆ I, since x+y, x−y ∈ I
(note that x ∈ I implies that there exists t ∈ I such that x = t. Then
{x,−x} = {t,−t} and so x = t or x = −t. Hence, x + y, x − y ∈ I).
Similarly, r ⊙ x = r · x ⊆ I. Thus I is a hyperideal of R by [7, Lemma
3.2.3].
Conversely, let x, y ∈ I. Then

x⊕ y ⊆ I ⇒ {x+ y, x− y} ⊆ I
⇒ x+ y, x− y ∈ I
⇒ x+ y = t, x− y = s, for some t, s ∈ I
⇒ x+ y, x− y ∈ I.

Similarly, r · x ∈ I, for all r ∈ R. �
Since R/I is a Krasner hyperring endowed with (x ⊕ I) � (y ⊕ I) =

{z⊕I : z ∈ (x⊕I)⊕ (y⊕I)} and (x⊕I)� (y⊕I) = x⊙y⊕I = x · y⊕I,
in the following we show that the fundamental ring of R/I is isomorphic
to a quotient of R:

Consider Γ∗(R/I) and define Lx =
∑

y⊕I∈Γ∗(x⊕I)

⟨{
ki∏
j=1

tij ; 1 ≤ i ≤ n}⟩+

I such that {x⊕I, y⊕I} ⊆ �n
i=1�

ki
j=1(tij⊕I). If there exists zij ∈ R such

that {x⊕ I, y⊕ I} ⊆ �n′
i=1�

k′i
j=1 (zij ⊕ I), then we consider ⟨{

ki∏
j=1

tij ; 1 ≤

i ≤ n}⟩ ∩ ⟨{
k′i∏
j=1

zij ; 1 ≤ i ≤ n′}⟩. Now, put L =
∑
x∈R

Lx. Clearly, L is an

ideal of R.

Theorem 3.17. Let (R,+, ·) be a commutative ring and I be a hyper-
ideal of (R,⊕,⊙). Then R/I/Γ∗ ∼= R/L, for some ideal L of R.

Proof. Define a mapping f : R/I/Γ∗ → R/L by f(Γ∗(x ⊕ I)) = x + L,
where L =

∑
x∈R

Lx (which presented above). At first we show that f is

well-defined. Let Γ∗(x⊕ I) = Γ∗(y⊕ I). Then there exist z1, . . . , zn ∈ R
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such that x⊕ I = z1 ⊕ I Γ z2 ⊕ I Γ · · · Γzn−1 ⊕ I Γzn ⊕ I = y ⊕ I. By

z1⊕I Γ z2⊕I we have {z1⊕I, z2⊕I} ⊆ �n
i=1�

ki
j=1 (tij ⊕I), for tij ∈ R.

Thus z1 − z2 ∈ ⟨t11 . . . t1k1⟩+ . . .+ ⟨tn1 . . . tnkn⟩+ I ⊆ L, which implies
that z1 + L = z2 + L, i.e. f(Γ∗(z1 ⊕ I)) = f(Γ∗(z2 ⊕ I)). Similarly,
it follows that f(Γ∗(z2 ⊕ I)) = f(Γ∗(z3 ⊕ I)) = . . . = f(Γ∗(zn ⊕ I)),
and so f(Γ∗(x ⊕ I)) = f(Γ∗(y ⊕ I)). Clearly, f is an epimorphism.
Now let Γ∗(x ⊕ I) ∈ ker f . Then f(Γ∗(x ⊕ I)) = L, which implies

that x ∈ L. Hence x ∈
n∑

i=1
ri(ti1 . . . tiki) + I, for ti1 . . . tiki ∈ R, where

{x ⊕ I, y ⊕ I} ⊆ �n
i=1 �ki

j=1 (tij ⊕ I), for y ⊕ I ∈ Γ∗(x ⊕ I). Thus

{x ⊕ I, I} ⊆ �n
i=1 �ki

j=1 (qij ⊕ I), such that qi1 = riti1 and qij = tij ,

1 ≤ i ≤ n, 2 ≤ j ≤ ki. Therefore Γ∗(x ⊕ I) = Γ∗(I) = 0R/I/Γ∗ ,

and so ker f = {0R/I/Γ∗}, i.e. f is one-to-one. Consequently, f is an

isomorphism and the proof is completed. �

For instance, consider the ring (Z4,+, ·). Then Z4 = {0, 1, 2} which
I = {0, 2} is a hyperideal of Z4. Also, Z4/I = {I, 1⊕ I} and Z4/I/Γ

∗ =
{Γ∗(I),Γ∗(1⊕I)}. Moreover, L = L0 = L1 = I and so Z4/L = {I, 1+I}.

We started from a commutative ring (R,+, ·) and defined the asso-
ciated Krasner hyperring (R,⊕,⊙). Now if we have a topological com-
mutative ring (R,+, ·, τ), then it can be induced a topology on R from
R such that both hyperoperations ⊕ and ⊙ are continuous.

Define τ = {U : U ∈ τ} where U = {x = {x,−x} : x ∈ U}. Then
τ is a topology on R. Now we show that (R,⊕,⊙, τ) is a topological
hyperring, that is ⊕, ⊙ are continuous. Consider {U × V : U, V ∈ τ}
and {RW }W∈τ as the basis of R×R and P ∗(R), respectively. Then ⊕ is

continuous if and only if {(x, y) : x⊕ y ⊆ V } is an open subset of R×R
for all V ∈ τ . Let (x, y) ∈ {(x, y) : x⊕ y ⊆ V }. Then x⊕ y ⊆ V and so
{x+ y, x− y} ⊆ V . Thus x+ y ∈ V and x− y ∈ V . Hence (x+ y ∈ V
or −x− y ∈ V ) and (x− y ∈ V or y − x ∈ V ). Now we have 4 cases:

(1) x+ y ∈ V and x− y ∈ V ;
(2) x+ y ∈ V and y − x ∈ V ;
(3) −x− y ∈ V and x− y ∈ V ;
(4) −x− y ∈ V and y − x ∈ V .

Case 1: x + y ∈ V and x − y ∈ V . Since “ + ” is continuous, so there
exist open subsets W1,W2 containing x, y, respectively, such that x+y ∈
W1 +W2 ⊆ V . Also “ − ” is continuous, then there exist open subsets
U1, U2 containing x, y, respectively, such that x−y ∈ U1−U2 ⊆ V . Thus
x ∈ W1 ∩ U1 ⊆ R and y ∈ W2 ∩ U2 ⊆ R and so (x, y) ∈

(
W1 ∩ U1

)
×(

W2 ∩ U2

)
. Furthermore, W1 ∩ U1 × W2 ∩ U2 ⊆ {(x, y) : x ⊕ y ⊆ V },

because of (a, b) ∈ W1 ∩ U1×W2 ∩ U2, so (a or −a ∈ W1∩U1) and (b or
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−b ∈ W2∩U2). If a ∈ W1∩U1 and b ∈ W2∩U2, then a+b ∈ W1+W2 ⊆ V ,
so a+ b ∈ V , also a−b ∈ U1−U2 ⊆ V . Thus a− b ∈ V . Hence a⊕b ⊆ V .
Similarly, if (a ∈ W1 ∩ U1 and −b ∈ W2 ∩ U2) or (−a ∈ W1 ∩ U1 and
b ∈ W2 ∩ U2) or (−a ∈ W1 ∩ U1 and −b ∈ W2 ∩ U2), then a ⊕ b ⊆ V .
Therefore in this case {(x, y) : x ⊕ y ⊆ V } is an open subset of R × R
for all V ∈ τ . In a similar way, the other cases are proved.

Now we show that the operation ⊙ defined by x⊙y = xy is continuous.
Let U be an open subset of R. Consider ⊙−1(U) = {(x, y) : x⊙ y ∈ U}.
For (x, y) ∈ ⊙−1(U) we have x ⊙ y ∈ U , so xy ∈ U . Thus xy ∈ U or
−xy ∈ U . If xy ∈ U , then continuity of “ ·” in R implies that there exist
open subsets W1,W2 of R containing x, y, respectively, such that xy ∈
W1 ·W2 ⊆ U . Thus (x, y) ∈ W1×W2 and W1×W2 ⊆ {(x, y) : x⊙y ∈ U}.
If (a, b) ∈ W1 × W2, then (a or −a ∈ W1) and (b or −b ∈ W2). It is
easy to verify that in any cases a ⊙ b ∈ U . If −xy ∈ U , then the same
result is similarly obtained. Therefore (x, y) ∈ W1 ×W2 ⊆ ⊙−1(U) and
it means that ⊙−1(U) is open and so ⊙ is continuous.

Theorem 3.18. Consider the associated Krasner hyperring (R,⊕,⊙)
and the hyperideal I of R. Then π : R/I → R/I/Γ∗ is an open map.

Proof. Let A be an open subset of R/I, i.e. A = {u ⊕ I : u ∈ U},
for some open subset U of R. We must show that π(A) is open in
R/I/Γ∗. For this, we show that π−1(π(A)) is open in R/I, more pre-
cisely, π−1(π(A)) = B, where B = {n⊕(u⊕I) : u ∈ U, n ∈ L}. Suppose
t⊕ I ∈ π−1(π(A)). Then

π(t⊕ I) ∈ π(A) ⇒ ∃u ∈ U ; π(t⊕ I) = π(u⊕ I)
⇒ Γ∗(t⊕ I) = Γ∗(u⊕ I)

⇒ {t⊕ I, u⊕ I} ⊆ �n
i=1 �

ki
j=1 (zij ⊕ I).

Similar to the proof of Theorem 3.17, it follows that:

t− u ∈ L ⇒ t ∈ u+ L
⇒ t ∈ u+ L = u⊕ L
⇒ t⊕ I ∈ u+ L⊕ I = u⊕ I ⊕ L
⇒ ∃n ∈ L; t⊕ I = u⊕ I ⊕ n ∈ {n⊕ (u⊕ I) : u ∈ U, n ∈ L}.

Thus π−1(π(A)) ⊆ B. Conversely, let n⊕ (u⊕ I) ∈ B. Then n ∈ L and

so n ∈ L. Thus n ∈
n∑

i=1
ri(ti1 . . . tiki) + I, where ti1 . . . tiki ∈ R. Hence

n ⊕ I Γ∗I and so n ⊕ (u ⊕ I) Γ∗ u ⊕ I. This means that n ⊕ (u ⊕ I) ∈
π−1(π({u ⊕ I : u ∈ U})) = π−1(π(A)). Therefore π(A) is open in
R/I/Γ∗. �
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Proposition 3.19. Let (R,+, ·, τ) be a commutative topological ring
and (R,⊕,⊙, τ) be the induced topological Krasner hyperring. Then
(R/I/Γ∗,�Γ∗ ,�Γ∗) is a topological ring, for every ideal I of R.

Proof. We know (R/I/Γ∗,�Γ∗ ,�Γ∗) is a ring. Hence we prove that the
mappings �Γ∗ and �Γ∗ are continuous. Suppose that A is an open
subset of R/I/Γ∗ such that π(x ⊕ I) �Γ∗ π(y ⊕ I) ∈ A. We know π :
R/I −→ R/I/Γ∗ is a continuous map, because of R/I/Γ∗ has quotient
topology induced from R/I. Thus π−1(A) is an open subset of R/I
containing x ⊕ y ⊕ I. So there exists an open subset U of R such that
π−1(A) = {z ⊕ I : z ∈ U}. If t̄ ∈ x̄⊕ ȳ, then t̄⊕ Ī ⊆ x̄⊕ ȳ ⊕ Ī. Hence,
π(t̄⊕Ī) = Γ∗(t̄⊕Ī) = Γ∗(x̄⊕ȳ⊕Ī) = π(x̄⊕ȳ⊕Ī) ∈ A. So, t̄⊕Ī ∈ π−1(A)
and we have t̄⊕Ī = z̄⊕Ī such that z̄ ∈ Ū . Now, t̄ ∈ t̄⊕Ī = z̄⊕Ī ⊆ Ū⊕Ī.
Then x̄⊕ ȳ ⊆ Ū⊕ Ī. Since Ū⊕ Ī is open, then there exist open subsets V̄
and W̄ containing x̄ and ȳ such that V̄ ⊕ W̄ ⊆ Ū ⊕ Ī. Now, by Theorem
3.18, π is an open map, thus π({v⊕ I : v ∈ V }) and π({w⊕ I : w ∈ W})
are open in R/I/Γ∗ containing Γ∗(x ⊕ I) and Γ∗(y ⊕ I), respectively.
Hence

π({v ⊕ I : v ∈ V })�Γ∗ π({w ⊕ I : w ∈ W}) = {π(v ⊕ w ⊕ I) : v ∈ V ,w ∈ W}
⊆ {π(z ⊕ I) : z ∈ U}
⊆ π(π−1(A))

⊆ A.

Therefore the mapping �Γ∗ is continuous. Similarly we can prove that
the mapping �Γ∗ is continuous. �

Proposition 3.20. Let (R,+, ·, τ) be a topological commutative ring
and I be an ideal of R. Then there exists an ideal L of R such that the
topological rings R/L and R/I/Γ∗ are homeomorphic.

Proof. Define the map f : R/I/Γ∗ −→ R/L where L is the defined ideal
in Theorem 3.17. It is enough to show that f is open and continuous.
Suppose that A is open in R/L. Thus A = {z + L : z ∈ U}, where
U is open in R. It is sufficient to show that π−1(f−1(A)) is open in
R/I. Let x ⊕ I ∈ π−1(f−1(A)). Then π(x ⊕ I) ∈ f−1(A), and so
f(π(x⊕ I)) ∈ A. Thus x+ L ∈ A. This means that there exists z ∈ U
such that x + L = z + L. So there exists t ∈ L such that x + t = z.
Because of “ + ” is continuous in R, there exist open subsets V ,W of
R containing x,t, respectively, such that V + W ⊆ U . We claim that
B = {v ⊕ I : v ∈ V } ⊆ π−1(f−1(A)). If v ⊕ I ∈ B, then f(π(v ⊕ I)) =
v + L = (v + t) + L ∈ A, so v ⊕ I ∈ π−1(f−1(A)). Hence B is an open
subset ofR/I contains v⊕I (v ∈ V ) such that B ⊆ π−1(f−1(A)). So v⊕I
is an interior point of π−1(f−1(A)). Thus π−1(f−1(A)) is open in R/I. It
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is concluded that f−1(A) is open in R/I/Γ∗. Therefore f is continuous.
Now suppose that A is an open subset of R/I/Γ∗ and x + L ∈ f(A).
Then Γ∗(x⊕I) ∈ A. Thus there exists an open subset B of R/I/Γ∗ such
that Γ∗(x⊕ I) ∈ B ⊆ A. Hence there exists an open subset U of R such
that π−1(B) = {z ⊕ I : z ∈ U}. We claim that {z + L : z ∈ U} ⊆ f(A).
If z ∈ U , then z + L = f(Γ∗(x ⊕ I)) ∈ f(B) ⊆ f(A). So f(A) is open
in R/L. Hence f−1(A) is open. Therefore f is open and the proof is
completed. �
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