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Abstract. In this paper the generalization of the converse of
Baer’s theorem for two-nilpotent variety of class row (n,m) is car-
ried out. Baer proved that finiteness of G/Zn(G) implies that
γn+1(G) is finite. Hekster proved the converse of the Baer’s the-
orem with the assumption that G can be finitely generated. The
Baer’s theorem can be considered as a result of a classical theorem
by Schur denoting that finiteness of G/Z(G) leads to the finiteness
of G′. The converse of the Baer’s theorem has been proved condi-
tionally by Taghavi et al. (2019), as well. In the Main Theorem,
we prove that, if γm,n(G) ∩ Zn,m(G) = 1 and γm,n+i(G) is finite
for some n, i,m ≥ 0. Then G/Zn,m(G) is finite in which γm,n(G)
and Zn,m(G) denote verbal and marginal subgroups with respect to
two-nilpotent variety of class row (n,m). Thus the generalization of
the converse of Baer’s theorem for two-nilpotent variety of groups
valids by considering i = 0. In this article some other results are
attained by the converse of the Baer’s theorem. It is also concluded
that when n = m = 1. Similar results are obtained for variety of
the soluble groups. In addition, the converse of the Schur’s theorem
which proved by Halasi and Podoski is concluded in this paper, for
two-nilpotent variety. We have also obtained some similar results
of Chakaneh et al. (2019) for (n,m)-isoclinic family of groups and
(1,m)-stem groups.
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1. Introduction

Let G be an arbitrary group. In 1904, Schur proved that if the center of
a group G has finite index, then the derived subgroup of G is finite [10].
In 1952, Baer [1], extended this theorem and showed that if G/Zn(G)
has finite order for a group G, then γn+1(G) is also finite, where Zn(G)
and γn+1(G) are the (n+ 1)-th term of the upper central series and the
(n+1)-th term of the lower central series of G, respectively. Infinite extra
special p-groups show that the converse of Schur’s theorem is not true in
general. In 1956, Hall [5] proved a partial converse of the Baer’s theorem.
He gave a bound for G/Z2n(G) in terms of the order of γn+1(G). A result
of Hekster [8], 1986, shows that if G is a finitely generated group such
that γn+1(G) is finite, then G/Zn(G) is finite. In 2014, Hatamian et al.
[6] generalized this result by obtaining the same conclusion under the
weaker hypothesis denoting that Z2n(G)/Zn(G) is finitely generated. In
2019, Y. Taghavi et al. [11] proved the converse of Baer’s theorem as
follows: If G is a group such that for some n, i ≥ 1, γn+1(G)∩Zn(G) = 1
and γn+i(G) is finite, then G/Zn(G) is finite. Chakaneh et al. [3] showed
that for a group G with Φ(G) ∩ Z(G) = 1, the finiteness of γn+1(G)
implies the finiteness of G/Z(G). Also, by this assumption, they proved
that the existence of the isomorphism between the center factors of two
groups sufficed for those groups to be isoclinic.

In our present paper, first we state some properties of two-nilpotent
variety. The Main Theorem of the paper is: Let G be a group such that
γm,n(G) ∩ Zn,m(G) = 1 and γm,n+i(G) be finite for some n, i,m ≥ 0.
Then G/Zn,m(G) is finite. Thus, the generalization of the converse of
Baer’s theorem for two-nilpotent variety of groups of class row (n,m)
holds for these groups. Finally, we will express some of its applications
for (n,m)-isoclinic family of groups and (1,m)-stem groups.

2. NOTATION AND RELATIONS

First, we study the relation between the k-th center and marginal
subgroup in two-nilpotent variety.

Let F∞ be a free group on a countably infinite set {x1, x2, . . .} and
V be an arbitrary subset of F . Suppose that v = xi1l1 . . . x

ir
lr

∈ V where
ij = ±1, 1 ≤ j ≤ r and y1, . . . , yt be distinct elements in xl1 , . . . , xlr .
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Consider t arbitrary distinct elements g1, . . . , gt ∈ G. By uniformly
replacement of gi in xij , some elements of G are obtained that is said to
be the value of the word v at (g1, . . . , gt). The subgroup of G generated
by all values of G of words in V is called the verbal subgroup of G
determined by V (G),

V (G) = ⟨v(g1, g2, . . . , gn)|gi ∈ G, 1 ≤ i ≤ n, n ∈ N, v ∈ V ⟩.
The marginal subgroup of G with respect to V denoted by V ∗(G) is
defined by

V ∗(G) = {a ∈ G|v(g1, . . . , gi−1,gia, gi+1, . . . , gk) = v(g1, . . . , gk);

v ∈ V, gi ∈ G, 1 ≤ i ≤ k, k ∈ N}.

Verbal and marginal subgroups are fully-invariant and characteristic
subgroups, respectively. Also the class of groups with respect to V ,
i.e. V = {G|V (G) = 1}, is called the variety of groups defined by the
set V , (see [8] for more details).

The following lemma will be useful for the rest of this paper. For
more information see [8].

Lemma 2.1. ([8], Proposition 2.3) Let G be a group with normal sub-
group N and V be a variety. If N ∩ V (G) = 1, then N ⊆ V ∗(G) and
V ∗(G/N) = V ∗(G)/N .

In particular, if V = {[x, y]}, in which [x, y] = x−1y−1xy then V (G) =
G′, V ∗(G) = Z(G) and V = Ab is the variety of abelian groups.

In special case, for any c ∈ N, when V = {[x1, . . . , xc+1]} then V (G) =
γc+1(G), V ∗(G) = Zc(G) and V = Nc is the variety of nilpotent groups
of the class at most c.

The structure of verbal and marginal subgroups of a group with re-
spect to the two-nilpotent variety of the class row (m,n) are described
as follows.

Suppose that V =
{
γm,n :=

[
[x11 , . . . , xm+11 ], . . . , [x1n+1 , . . . , xm+1n+1 ]

]}
and V is the variety of the two-nilpotent groups of the class row (m,n),
V = Nm,n. Given a group G, we have V (G) = γn+1 (γm+1(G)) and there
are two following trivial series

G = γ1(γ1(G)) ⊇ G′ = γ2(γ1(G)) ⊇ · · · ⊇ γn+1(γ1(G)) = γn+1(G)

⊇ γn+1(γ2(G)) ⊇ · · · ⊇ γn+1(γm+1(G)),

and

G = γ1(γ1(G)) ⊇ G′ = γ1(γ2(G)) ⊇ · · · ⊇ γ1(γm+1(G)) = γm+1(G)

⊇ γ2(γm+1(G)) ⊇ · · · ⊇ γn+1(γm+1(G))
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We denote the marginal subgroup of a group G with respect to Nn,m,
by Zn,m(G). The following lemma shows a description for the elements
of Zn,m(G).
Lemma 2.2. Let G be a group. a ∈ Zn,m(G) if and only if[

[a, g21 , . . . , gm+11 ], . . . , [g1n+1 , . . . , gm+1n+1 ]
]
= 1,

for all gij ∈ G, if j = 1, then 2 ≤ i ≤ m+ 1 and if 2 ≤ j ≤ n+ 1, then
1 ≤ i ≤ m+ 1.
Proof. Suppose that a ∈ Zn,m(G). Then by considering gi = 1 in defi-
nition of marginal subgroup we have[[
a1, g21 , . . . , gm+11 ], . . . , [g1n+1 , . . . , gm+1n+1

]]
=[

[1, g21 , . . . , gm+11 ], . . . , [g1n+1 , . . . , gm+1n+1 ]
]
= 1.

Now, if
[
[a, g21 , . . . , gm+11 ], . . . , [g1n+1 , . . . , gm+1n+1 ]

]
= 1, then for each

gij ∈ G, 1 ≤ i ≤ m+ 1, 1 ≤ j ≤ n+ 1 we can write[
[ag11 , g21 , . . . , gm+11 ], . . . , [g1n+1 , . . . , gm+1n+1 ]

]
=

[
[[a, g21 ]

g11 [g11 , g21 ], g31 , . . . , gm+11 ] , . . . , [g1n+1 , . . . , gm+1n+1 ]
]

=
[[
[[a, g21 ]

g11 , g31 ]
[g11 ,g21 ] [g11 , g21 , g31 ], g41 , . . . , gm+11

]
, . . . , [g1n+1 , . . . , gm+1n+1 ]

]
= . . .
=

[
[a, g21 , . . . , gm+11 ], . . . , [g1n+1 , . . . , gm+1n+1 ]

]k [
[g11 , . . . , gm+11 ], . . . , [g1n+1 , . . . , gm+1n+1 ]

]
=

[
[g11 , . . . , gm+11 ], . . . , [g1n+1 , . . . , gm+1n+1 ]

]
,

for some k ∈ G. Thus if a is in the arbitrary place then[
[g11 , g21 , . . . , gm+11 ], . . . , [g1i , . . . , gj−1i , agji , gj+1i , . . . , gm+1i ],

. . . , [g1n+1 , . . . , gm+1n+1 ]
]

=
[
[g11 , g21 , . . . , gm+11 ], . . . ,

[
[agji , [g1i , . . . , gj−1i ]]

−1, gj+1i , . . . , gm+1i

]
,

. . . , [g1n+1 , . . . , gm+1n+1 ]
]

=
[
[g11 , g21 , . . . , gm+11 ], . . . ,

[
[agji , [g1i , . . . , gj−1i ]

−1][g1i ,...,gj−1i
], gj+1i , . . . , gm+1i

]
, . . . , [g1n+1 , . . . , gm+1n+1 ]

]
=

[
[g11 , g21 , . . . , gm+11 ], . . . , [agji , l2i , . . . , lm+1i ]

c , . . . , [g1n+1 , . . . , gm+1n+1 ]
]

= . . .
=

[
[agji , h21 , . . . , hm+11 ], . . . , [h1n+1 , . . . , hm+1n+1 ]

]l
=

[
[gji , h21 , . . . , hm+11 ], . . . , [h1n+1 , . . . , hm+1n+1 ]

]l
=

[
[g11 , g21 , . . . , gm+11 ], . . . , [gji , l2i , . . . , lm+1i ]

c , . . . , [g1n+1 , . . . , gm+1n+1 ]
]

= . . .
=

[
[g11 , g21 , . . . , gm+11 ], . . . , [agji , l2i , . . . , lm+1i ]

c , . . . , [g1n+1 , . . . , gm+1n+1 ]
]

=
[
[g11 , g21 , . . . , gm+11 ], . . . ,

[
[gji , [g1i , . . . , gj−1i ]

−1][g1i ,...,gj−1i
], gj+1i , . . . , gm+1i

]
,

. . . , [g1n+1 , . . . , gm+1n+1 ]
]
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=
[
[g11 , g21 , . . . , gm+11 ], . . . ,

[
[gji , [g1i , . . . , gj−1i ]]

−1, gj+1i , . . . , gm+1i

]
, . . . , [g1n+1 , . . . , gm+1n+1 ]

]
= [[g11 , g21 , . . . , gm+11 ], . . . , [g1i , . . . , gj−1i , gji , gj+1i , . . . , gm+1i ],

. . . , [g1n+1 , . . . , gm+1n+1 ]
]
,

for some elements l, c ∈ G, i.e. a ∈ Zn,m(G) and the assertion holds. □

So, we can write
V ∗(G) = Zn,m(G) = {a ∈ G|[a,mG] ⊆ Zn(γm+1(G))} .

For example, for all n,m ≥ 0,
V ∗(G) = Zn,0(G) = {a ∈ G|[a, g1, . . . , gn] = 1, gi ∈ G, 1 ≤ i ≤ n} = Zn(G)
and

Z0,m(G) = {a ∈ G|[a, g1, . . . , gm] = 1, gi ∈ G, 1 ≤ i ≤ m} = Zm(G).

Similarly
Z1,1(G) = {a ∈ G| [a, g1, [g2, g3]] = 1,∀gi ∈ G, 1 ≤ i ≤ 3},

and
Zn,1(G) = {a ∈ G|

[
[a, g], [g11 , g21 ], . . . , [g1n+1 , g2n+1 ]

]
= 1, g ∈ G,

gij ∈ G, i = 1, 2, j = 1, . . . , n+ 1}.
Also
Z1,m(G) = {a ∈ G|

[
[a, g2, . . . , gm+1], [g

′
1, . . . , g

′
m+1]

]
= 1, gi, g

′
j ∈ G,

2 ≤ i ≤ m+ 1, 1 ≤ j ≤ m+ 1}.
In fact, there are the following chains

1 = Z0(G) ⊆ Z1(G) = Z(G) ⊆ · · · ⊆ Zn(G) = Zn,0(G)
⊆ Zn,1(G) ⊆ · · · ⊆ Zn,k(G) ⊆ · · · ,

1 = Z0(G) ⊆ Z1(G) = Z(G) ⊆ · · · ⊆ Zm(G) = Z0,m(G)
⊆ Z1,m(G) ⊆ · · · ⊆ Zl,m(G) ⊆ · · · ,

such that m,n, k, l ≥ 0. In the following theorem, we survey the relation
between k-th center and marginal subgroup in two-nilpotent variety.
The following theorem plays an important role in our main theorem.

Theorem 2.3. For each k, n,m ≥ 0,

Zk

(
G

Zn,m(G)

)
⊆

Zn,m+k(G) ∩ Zn+k,m(G)

Zn,m(G)
.

Proof. Let x̄ = xZn,m(G) ∈ Zk

(
G

Zn,m(G)

)
, so [x, g1, . . . , gk] ∈ Zn,m(G)

for given g1, . . . , gk ∈ G. Hence [[x, g1, . . . , gk],mG] ⊆ Zn(γm+1(G)) and
so

[[x, g1, . . . , gk, gk+1, . . . , gk+m], b1, . . . , bn] = 1, (∗)
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for each gk+1, . . . , gk+m ∈ G and bi ∈ γm+1(G), 1 ≤ i ≤ m + 1. Since
γm+k+1(G) ⊆ γm+1(G), one can conclude that [x,m+k G] ⊆ Zn (γm+k+1(G))
and x ∈ Zn,m+k(G). On the other hand, the relation (∗) can be consid-
ered as

[[[x, g1, . . . , gm], gm+1, . . . , gk+m], b1, . . . , bn] = 1.
Thus we can conclude [x,mG] ⊆ Zn+k(γm+1(G)) or x ∈ Zn+k,m(G).
Hence

x̄ ∈
Zn,m+k(G) ∩ Zn+k,m(G)

Zn,m(G)
,

and the assertion holds. □

3. Main results

In this section, we show that the converse of the Baer’s theorem is
true for variety of two-nilpotent groups of class row (n,m), which is a
special case of the main theorem. Moreover, we investigate the converse
of Baer’s theorem for variety of two-nilpotent groups with trivial Frattini
subgroups and state some properties of (n,m)-isoclinism families of these
groups and (1,m)-stem groups.

The following statements generalize Theorem 2.3 and Lemma 2.5 in
[7] for two-nilpotent variety.

Lemma 3.1. Let G be a group and N ⊴G. Then for each m ≥ 0
(a) If N ∩ Z1,m(G) = 1 then N ∩ Zn,m(G) = 1, for all n ≥ 1.
(b) If N ∩ γm,n(G) = 1, for some n ≥ 0 then N ≤ Zn,m(G).

Proof. (a) Use induction on n. Let x ∈ N ∩ Zn,m(G), so [x,mG] ⊆
Zn(γm+1(G)). Hence for each gij ∈ G, 1 ≤ i ≤ n+1 and 1 ≤ j ≤ m+1,
we can write

[[x, g12 , . . . , g1m+1 ], [g21 , . . . , g2m+1 ], . . . , [gn+11 , . . . , gn+1m+1 ]] = 1.
Thus

[[x, g12 , . . . , g1m+1 ], [g21 , . . . , g2m+1 ]] ∈ Zn−1(γm+1(G)).

One can see that
[[x, g12 , . . . , g1m+1 ], [g21 , . . . , g2m+1 ],mG] ⊆ Zn−1(γm+1(G)).

Since N is normal and by using Lemma 2.2 we have
[[x, g12 , . . . , g1m+1 ], [g21 , . . . , g2m+1 ]] ∈ Zn−1,m(G) ∩N = 1.

So [x, g12 , . . . , g1m+1 ] ∈ Z(γm+1(G)) and this implies [x,mG] ⊆ Z(γm+1(G)).
Thus x ∈ Z1,m(G) ∩N = 1, as required.
(b) The assertion is an special case of Lemma 2.1 for V = N n,m. □
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Definition 3.2. Let G be an arbitrary group. If there are ordinals
n,m such that Zn,m(G) = Zn+1,m(G) = Zn+2,m(G) = · · · , we call this
terminal subgroup as two-hypercenter of G.

In the other words, consider upper central series
1 = Z0(G) ⊆ Z1(G) = Z(G) ⊆ · · · ⊆ Zm(G) = Z0,m(G) ⊆ Z1,m(G) ⊆

· · · ⊆ Zl,m(G) ⊆ · · · ,
such that m,n, l ≥ 0. This series need not reach G, but if G is finite,
the series terminates at a subgroup called the two-hypercenter.

We have seen in [11] that the converse of Baer’s theorem holds with
condition γn+1(G) ∩ Zn(G) = 1. In fact this result may be generalized
to two-nilpotent variety of groups as follows.

Theorem 3.3. Let γm,n(G) ∩ Zn,m(G) = 1, for some n,m ∈ N. Then
Zn,m(G) is the two-hypercenter of G.

Proof. Trivially γm,n(G) ∩ Z1,m(G) ⊆ γm,n(G) ∩ Zn,m(G) = 1. This
implies γm,n(G)∩Zn+i,m(G) = 1 for each i ≥ 1, by Lemma3.1(a). Thus
Zn+i,m(G) ⊆ Zn,m(G) by Lemma 3.1 (b). Hence Zn,m(G) = Zn+i,m(G),
as required. □

The following famous theorem of Hall [5] is essential in this research.
It presents a relation between upper and lower central series.

Theorem 3.4. Let G be a group and γn+1(G) be finite. Then G/Z2n(G)
is finite.

We are now equipped to prove the main theorem of this article.

Theorem 3.5. Let G be a group such that γm,n(G) ∩ Zn,m(G) = 1 and
γm,n+i(G) be finite for some n, i,m ≥ 0. Then G/Zn,m(G) is finite.

Proof. Since γm,n+i(G) = γn+i+1(γm+1(G)) is finite, by Theorem 3.4

γm+1(G)/Z2(n+i)(γm+1(G)),

is finite. On the other hands by normality of center, if x ∈ Z2(n+i)(γm+1(G))
then [x,mG] ≤ Z2(n+i)(γm+1(G)) or x ∈ Z2(n+i),m(G). It means

Z2(n+i)(γm+1(G)) ≤ Z2(n+i),m(G).

Thus the epimorphism γm+1(G)

Z2(n+i)(γm+1(G))
−→

γm+1(G)Z2(n+i),m(G)

Z2(n+i),m(G)
im-

plies that
γm+1(G)Z2(n+i),m(G)

Z2(n+i),m(G)
= γm+1

(
G

Z2(n+i),m(G)

)
is finite. Again by Theorem 3.4, one can conclude that
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G/Z2(n+i),m(G)

Z2mG/Z2(n+i),m(G)
,

is finite. By Theorem 2.3, there exists the following epimorphism
G/Z2(n+i),m(G)

Z2m

(
G

Z2(n+i),m(G)

) −→
G/Z2(n+i),m(G)

Z2(n+i),3m(G) ∩ Z2(n+i)+2m,m(G)

Z2(n+i),m(G)

.

Theorem 3.3, implies that Z2(n+i)+2m,m(G) = Zn,m(G). Also Zn,m(G) ⊆
Zn,3m(G) ⊆ Z2(n+i),3m(G). Hence

G

Z2(n+i),3m(G) ∩ Z2(n+i)+2m,m(G)
=

G

Zn,m(G)
,

is finite and the result holds. □

In special case if n = 0, the above result is a generalization of the
following theorem.

Theorem 3.6. ([11], Theorem 4.1) Let G be a group such that γn+1(G)∩
Zn(G) = 1 and γn+i(G) be finite for some n, i ≥ 0. Then G/Zn(G) is
finite.

The converse of Baer’s theorem for two-nilpotent variety of groups
valids by considering i = 0 in Theorem 3.5.

Theorem 3.7. Let G be a group such that γm,n(G) ∩ Zn,m(G) = 1 and
γm,n(G) be finite for some n,m ≥ 0. Then G/Zn,m(G) is finite.

Also, we know always γm,n(G) ∩ Zn,m(G) ⊆ Φ(G), in which Φ(G) is
the Frattini subgroup of G. Thus we can conclude that the following
corollary where is a generalization of the main results in [9, 4].

Corollary 3.8. Let G be a group such that Φ(G) = 1 and γm,n+i(G) be
finite for some m,n, i ≥ 0. Then G/Zn,m(G) is finite.

When n = m = 1 we have similar results for the soluble variety.

Corollary 3.9. Let V = S2 be the variety of soluble group of class at
most 2. If G is a group such that G′′ ∩ V ∗(G) = 1 and G′′ is finite then
G/V ∗(G) is finite.

Corollary 3.10. Let V = S2 be the variety of soluble group of class
at most 2. If G is a group such that Φ(G) = 1 and G′′ is finite then
G/V ∗(G) is finite.

Now, we try to give some structural properties of the center factor
group, G/Z1,m(G), for a group G. But first we need the next lemma.
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Lemma 3.11. Let G be a group such that γm,1(G)∩Z1,m(G) = 1. Then
Z1,m(G) is the two-hypercenter of G.
Proof. By Lemma 3.1, γm,1(G) ∩ Zn,m(G) = 1 for each n > 0 and
therefore Z1,m(G) = Zn,m(G). Hence Z1,m(G) is the two-hypercenter
of G. □

Combining Lemma 3.11 and Corollary 3.8 show that the converse of
Baer’s theorem is true for two-nilpotent variety of class row (n,m).
Corollary 3.12. Let G be a group such that Φ(G) = 1 and γm,n(G) be
finite for some positive integer n. Then G/Z1,m(G) is finite.

We need the concept of V-isologism. Isologism in fact expresses iso-
clinism with respect to a certain variety. In this way for each variety of
groups an equivalence relation on the class of all groups arises.
Definition 3.13. ([8]) Let V be a variety and G and H be two groups.
A V-isologism between G and H is a pair of isomorphisms (α, β) with
α : G/V ∗(G)

≃−→ H/V ∗(H) and β : V (G)
≃−→ V (H), such that for all

s > 0, all v(xi, . . . , xs) ∈ V (F∞) and all g1, . . . , gs ∈ G, it holds that
β(v(g1, . . . , gs)) = v(h1, . . . , hs), whenever hi ∈ α(giV

∗(G))(1 ≤ i ≤ s).
It is written by G ∼

V
H and said that G and H are V-isologism. In this

case, we write G∼
(n,m)

H instead of G ∼
Nn,m

H.

The following proposition states a relationship between the (n,m)-
isologism of two groups and one of their center factors.
Proposition 3.14. Let G and H be two groups such that γm,1(H) ∩
Z1,m(H) = γm,1(G) ∩ Z1,m(G) = 1. Then G ∼

(1,m)
H if and only if

G/Z1,m(G) ≃ H/Z1,m(H).
In the sequel, it is shown that each (n,m)-isoclinic family of groups

that γm,1(G) ∩ Z1,m(G) = 1, for each m ≥ 0, is contained in an (1,m)-
isoclinic family when n ≥ 1. The following theorem is a generalization
of Theorem 10 in [3].
Theorem 3.15. Let G and H be two groups such that γm,1(G) ∩
Z1,m(G) = 1 and G/Zn,m(G) ≃ H/Zn,m(H). Then G∼

(1,m)
H.

Proof. . By Lemma 3.11 we can write G/Z1,m(G) ≃ H/Z1,m(H). Now,
the result follows using Proposition 3.14. □

The following result shows that, under some condition, (1,m)-isoclinic
implies an (n,m)-isoclinic.
Corollary 3.16. Let G and H be two groups such that γm,1(H) ∩
Z1,m(H) = γm,1(G) ∩ Z1,m(G) = 1. Then G∼

(1,m)
H if and only if G∼

(n,m)
H.
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Now, we recall that a group S is an n-stem group if it satisfies Z(S) ⊆
γn+1(S). An stem group is a 1-stem group. The existence of at least one
stem group in each isoclinic family was proved by Hall [5]. We define an
(n,m)-stem group S to be Zn,m(S) ⊆ γm,n(S), for each m ≥ 0. Thus
by considering m = 0, n = 1 we can conclude Z(S) ⊆ S′, that is S is an
stem group. Also, each (n, 0)-stem group is actually an n-stem group.
Lemma 3.17. Let G be a group such that γm,1(G) ∩ Z1,m(G) = 1 and
S be a (1,m)-stem group (1,m)-isoclinic to G, for each m ≥ 0. Then
Zn,m(S) is trivial for each n.
Proof. Since G∼

(1,m)
S, we have γm,1(G) ∩ Z1,m(G) ≃ γm,1(S) ∩ Z1,m(S).

Thus by Lemma 3.1(a), γm,1(S) ∩ Zn,m(S) = 1. By Lemma 3.1(b), we
can conclude that Zn,m(S) ⊆ Z1,m(S) and so Zn,m(S) = Z1,m(S). Since
S is a (1,m)-stem group, therefore Zn,m(S) = Z1,m(G) = γm,1(G) ∩
Z1,m(G) = 1, as required. □

By considering m = 0, Lemma 3.17 is a generalization of Chakaneh
et. al. [3] as follows.
Corollary 3.18. ([3], Theorem 8) Let G be a group such that G′ ∩
Z(G) = 1 and S be an stem group isoclinic to G. Then Zn(S) is trivial
for each n.

If (α, β) is a V-isologism between G and H, then it is not difficult to see
that β induces an isomorphism from V ∗(G)∩V (G) onto V ∗(H)∩V (H),
(Theorems 4.3 and 4.5 in [8]). The following lemma is a conclusion of
them for two-nilpotent variety.
Lemma 3.19. Let G and H be two groups and (α, β) be an Nn,m-
isologism between G and H. Then for all i ≥ 0
(a) α(γm,i+1(G)Zn,m(G)/Zn,m(G)) = γm,i+1(H)Zn,m(H)/Zn,m(H).
(b) β(γm,n(G) ∩ Zi,m(G)) = γm,n(H) ∩ Zi,m(H).

We are going to prove an important theorem on the generalization of
converse of Baer’s theorem on two-nilpotent variety.
Theorem 3.20. Let G and H be two groups such that G∼

(n,m)
H , γm,n+i(G)

be finite for some positive integer i and γm,n(G) ∩ Zn,m(G) = 1. Then
H/Zn,m(H) is finite. In particular, H satisfies the converse of Baer’s
theorem, for two-nilpotent variety.
Proof. It follows from Lemma 3.19 and Theorem 3.5. Let two groups
are Nn,m-isologism. If each of them satisfies the Theorem 3.5 then for
another also holds. □

Now, by Corollary 3.16, we can deduce the following result with a
weaker condition for the Theorem 3.20.
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Corollary 3.21. Let G and H be two groups such that G∼
(1,m)

H, γm,n+i(G)

be finite for some positive integer i and γm,1(G) ∩ Z1,m(G) = 1. Then
H/Zn,m(H) is finite. In particular, H satisfies the converse of Baer’s
theorem, for two-nilpotent variety.

Proof. By Lemma 3.11 and Corollary 3.16, we have G∼
(n,m)

H and γm,n(G)∩

Zn,m(G) = 1. Now, the result follows using Theorem 3.20. □
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