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Abstract. This paper investigates the solvability, existence and
uniqueness of solutions for a class of nonlinear fractional hybrid
differential equations with Hilfer fractional derivative in a weighted
normed space. The main result is proved by means of a fixed point
theorem due to Dhage. An example to illustrate the results is in-
cluded.
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1. Introduction

Fractional differential equations (FDEs) have been applied in many
fields, such as physics, mechanics, chemistry, engineering etc. There
has been a significant progress in ordinary differential equations involv-
ing fractional order derivative, see the monographs of Hilfer [13], Kilbas
[16] and Podlubny [21]. Especially, numerous works have been devoted
to the study of initial value problems, for example, see [2, 11].
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In the recent years, some authors have considered Hilfer fractional de-
rivative see[7, 8, 9, 14, 15, 17] and references therein. R. Hilfer [13] pro-
posed a generalized Riemann-Liouville fractional derivative, for short,
Hilfer fractional derivative, which includes Riemann-Liouville fractional
derivative and Caputo fractional derivative. This operator has appeared
in the theoretical simulation of dielectric relaxation in glass forming ma-
terials. In [7], Furati et al. considered an initial value problem for a class
of nonlinear FDEs involving Hilfer fractional derivative. Recently, Ab-
bas et al. [1] studied the existence and stability results for FDEs with
Hilfer fractional derivative.

One of interesting problems in the field of the FDE, which has at-
tracted much attention, is hybrid fractional differential equations (HFDEs).
For some works in this topic, one can refer to [3, 4, 18, 19].

The following hybrid differential equation of the first order{
d
dt

[
x(t)

f(t,x(t))

]
= g(t, x(t)), t ∈ J := [0, T ],

x(t0) = x0 ∈ R,
(1.1)

was studied by Dhage et al. [6], under the assumptions f ∈ C(J ×
R,R| {0}) and g ∈ C(J × R,R). In [19], Zhao et al. investigated the
fractional version of the problem (1.1), i.e.,{

Dα
0+

[
x(t)

f(t,x(t))

]
= g(t, x(t)), t ∈ J, α ∈ (0, 1),

x(0) = 0,
(1.2)

where f ∈ C(J×R,R| {0}), and g ∈ C(J×R,R). A fixed point theorem
in Banach algebras was the main tool used in this work. Based on the
above works, we develop the theory of HFDEs involving Hilfer fractional
derivative. In this paper, we consider the following HFDE:

Dα,β
0+

(
x(t)

f(t, x(t))

)
= g(t, x(t)), t ∈ J := [0, T ], 0 < α < 1, 0 ≤ β ≤ 1,

(1.3)

I1−γ
0+

(
x(0)

f(0, x(0))

)
= ϕ, γ = α+ β − αβ, (1.4)

where T > 0, ϕ ∈ R, f ∈ C (J × R,R| {0}), g : C (J × R,R), and

Dα,β
0+

is the Hilfer fractional derivative operator of the order α and type
β. Moreover, the parameter γ satisfies 0 < γ ≤ 1, γ ≥ α, γ > β, and
1−γ < 1−β(1−α). Recall that I1−γ

0+
is the left-sided Riemann-Liouville

integral of order 1− γ.
The paper is arranged as follows: In Section 2, we introduce some

definitions and some lemmas about Hilfer fractional type differential
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equations. In Section 3, we estabilish the existence condition about ini-
tial value problem (1.3)-(1.4). Subsequently, we discuss the uniqueness
condition of the initial value problem (1.3)-(1.4) with ϕ = 0. In Section
5, conclusion is given.

2. Prerequisites

Recall that C(J,R) is the Banach space of all continuous real-valued
functions defined on J := [0, T ] with the norm ∥x∥ = sup {|x(t)| : t ∈ J}.
For t ∈ J , we define xr(t) = trx(t), r ≥ 0. Let Cr(J,R) be the space of
all functions x such that xr ∈ C(J,R) which is indeed a Banach space
endowed with the norm ∥x∥Cr

= sup {tr |x(t)| : t ∈ J}.
Let 0 < γ ≤ 1 and Cγ(J,R) denotes the weighted space of continuous

functions defined by

Cγ(J,R) =
{
g(t) : tγg(t) ∈ C(J,R), ∥g∥Cγ

= ∥tγg(t)∥
}
.

Definition 2.1. [16, 17] The left-sided Riemann-Liouville integral of
the order α > 0 of a function h ∈ L1 {R+} is defined by

(Iα0+h)(t) =
1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds, for a.e. t ∈ J,

where Γ(·) is the (Euler’s) Gamma function defined by

Γ(ξ) =

∫ ∞

0
tξ−1e−tdt; ξ > 0.

Notice that for all α, α1, α2 > 0 and each h ∈ C(J,R), we have Iα0+h ∈
C(J,R), and

(Iα1

0+
Iα2

0+
h)(t) = (Iα1+α2

0+
h)(t); for a.e. t ∈ J. (2.1)

Definition 2.2. [16, 17] The Riemann-Liouville fractional derivative of
the order α ∈ (0, 1] of a function h ∈ L1 {R+} is defined by

(Dα
0+h)(t) =

(
d

dt
I1−α
0+

h

)
(t)

=
1

Γ(1− α)

d

dt

∫ t

0
(t− s)−αh(s)ds; for a.e. t ∈ J.

Definition 2.3. [16, 17] The Caputo fractional derivative of the order
α ∈ (0, 1] of a function h ∈ L1 {R+} is defined by

(cDα
0+h)(t) = (I1−α

0+
d

dt
h)(t)

=
1

Γ(1− α)

∫ t

0
(t− s)−α d

ds
h(s)ds; for a.e. t ∈ J.
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In [13], R. Hilfer studied some applications of a generalized fractional
operator having the Riemann-Liouville and Caputo derivatives as spe-
cific cases (see also [14, 10]).

Definition 2.4. (Hilfer derivative). Let 0 < α < 1, 0 ≤ β ≤ 1, h ∈
L1 {R+}, I(1−α)(1−β)

0+
∈ C1

γ(J,R). The Hilfer fractional derivative of the
order α and type β of h is defined as

(Dα,β
0+

h)(t) =

(
I
β(1−α)
0+

d

dt
I
(1−α)(1−β)
0+

h

)
(t); for a.e. t ∈ J. (2.2)

The generalization (2.2) for β = 0 coincides with the Riemann-Liouville

derivative and for β = 1 with the Caputo derivative, i.e., Dα,0
0+

= Dα
0+ ,

and Dα,1
0+

=c Dα
0+ .

The following lemma shows that the solvability of the HFDE (1.3)-
(1.4) is equivalent to a Volterra singular integral equation.

Lemma 2.5. Let g : J × R → R be a function such that g(·, x(·)) ∈
Cγ(J,R) for any x ∈ Cγ(J,R). A function x ∈ Cγ(J,R) is a solution of
the Hilfer fractional initial value problem (1.3) and (1.4), if and only if
x satisfies the following Volterra integral equation:

x(t) = f(t, x(t))

(
ϕ

Γ(γ)
tγ−1 +

1

Γ(α)

∫ t

0
(t− s)α−1g(s, x(s))ds

)
.

Proof. A simple change variable (t − s)α = u allows us to prove the
following result for any function h ∈ L1 {R+}

d

dt
(Iα0+h)(t) = Iα0+(

d

dt
h(t)) + h(0)

tα−1

Γ(α)
. (2.3)

Defining y(t) := x(t)
f(t,x(t)) , and then taking the operator Iα0+ from both

sides of the equation (1.3), we have

Iα0+(D
α,β
0+

y)(t) = Iα0+g(t, x(t)),
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But, applying (2.3), the left side of the above equation can be calculated
as

Iα0+(D
α,β
0+

y)(t) = Iα0+

(
I
β(1−α)
0+

d

dt
I
(1−α)(1−β)
0+

y

)
(t)

=

(
Iα+β−αβ
0+

d

dt
I1−γ
0+

y

)
(t)

=

(
Iγ
0+

d

dt
I1−γ
0+

y

)
(t)

=
d

dt

(
Iγ
0+
I1−γ
0+

y
)
(t)−

(
(I1−γ

0+
y)(0)

) tγ−1

Γ(γ)

=
d

dt

(
I10+y

)
(t)−

(
(I1−γ

0+
y)(0)

) tγ−1

Γ(γ)

= y(t)−
(
(I1−γ

0+
y)(0)

) tγ−1

Γ(γ)
.

Therefore, the HFDE (1.3) under the condition (1.4) can be transformed
into the following Volterra singular integral equation

x(t) = f(t, x(t))

(
ϕ

Γ(γ)
tγ−1 +

1

Γ(α)

∫ t

0
(t− s)α−1g(s, x(s))ds

)
.

�

We also need to introduce a lemma as follows, which will be used in
the proof of our main theorem. We recall the Dhage’s fixed point point
theorem as follows which will be used to obtain the existence and the
uniqueness results from the Banach contraction principle.

Lemma 2.6. (Dhage [5]) Let S be a non-empty, closed convex and
bounded subset of the Banach algebra X let A : X → X and B : S → X
be two operators such that:

(a) A is Lipschitzian with a Lipschitz constant k,
(b) B is completely continuous,
(c) x = AxBy ⇒ x ∈ S for all y ∈ S, and
(d) Mk < 1, where M = ∥B(S)∥ = sup {∥B(x)∥ : x ∈ S}.

Then the operator equation x = AxBx has a solution.

3. Main results

Before starting and proving the main results, we introduce the following
hypotheses.
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(H1) The function f : J × R → R| {0} is bounded continuous and
there exists a positive bounded function χ with bound ∥χ∥ such
that

|f(t, x(t))− f(t, y(t))| ≤ χ(t) |x(t)− y(t)| ,

for t ∈ J and for all x, y ∈ R.
(H2) There exists a function p ∈ C(J,R+) and a continuous nonde-

creasing function Ω : [0,∞) → (0,∞) such that

|g(t, x(t))| ≤ p(t)Ω(|x|), (t, x) ∈ J × R.

(H3) There exists a number r > 0 such that

r ≥ K

[
|ϕ|
Γ(γ)

+
T 1−γ+α

Γ(α+ 1)
∥p∥Ω(r)

]
, (3.1)

where |f(t, x)| ≤ K, for all (t, x) ∈ J × R, and

∥χ∥
[

|ϕ|
Γ(γ)

+
T 1−γ+α

Γ(α+ 1)
∥p∥Ω(r)

]
< 1.

(H4) There exists a constant L1 > 0 such that

|f(t, x(t))− f(t, y(t))| ≤ L1 |x− y| , for all x, y ∈ R,

and set |f(t, x(t))| ≤ M1.
(H5) There exists a constant L2 > 0 such that

|g(t, x(t))− g(t, y(t))| ≤ L2 |x− y| , for all x, y ∈ R,

and set |g(t, x(t))| ≤ M2.

Theorem 3.1. Assume that (H1)-(H3) hold. Then there exists at least
a solution of the problem (1.3)-(1.4) on J.

Proof. In the following, we denote ∥x∥Cγ
by ∥x∥C . Set X = C(J,R) and

define a subset S of X as

S = {x ∈ X : ∥x∥C ≤ r} ,

where r satisfies inequality (3.1).
Clearly, S is non-empty, closed, convex and bounded subset of the

Banach algebra X. By Lemma 2.5, the initial value problem (1.3)-(1.4)
is equivalent to the integral equation

x(t) = f(t, x(t))

(
ϕ

Γ(γ)
tγ−1 +

1

Γ(α)

∫ t

0
(t− s)α−1y(s)ds

)
, (3.2)

for all t ∈ J .
Define two operators A : X → X by

Ax(t) = f(t, x(t)), t ∈ J, (3.3)
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and B : S → X by

Bx(t) =
ϕ

Γ(γ)
tγ−1 +

1

Γ(α)

∫ t

0
(t− s)α−1g(s, x(s))ds, t ∈ J. (3.4)

Then x = AxBx. We shall show that the operators A and B satisfy all
the conditions of Lemma 2.6. For the sake of clarity, we split the proof
into a sequence of steps.
Claim 1. The operator A is a Lipschitz on X, i.e. (a) of Lemma 2.6
holds.

Let x, y ∈ X. Then by (H1) we have∣∣t1−γ (Ax(t)−Ay(t))
∣∣ = t1−γ |f(t, x(t))− f(t, y(t))|
≤ χ(t)t1−γ |x(t)− y(t)|
≤ ∥χ∥ ∥x− y∥C

for all t ∈ J . Taking the supremum over the interval [0, T ], we obtain

∥Ax−Ay∥C ≤ ∥χ∥ ∥x− y∥C
for all x, y ∈ X. So A is a Lipschitz on X with Lipschitz constant ∥χ∥.
Claim 2. The operator B is completely continuous on S, i.e. (b) of
Lemma 2.6 holds.

First we show that B is continuous on S. Let {xn} be a sequence in S
converging to a point x ∈ S. Then by Lebesgue dominated convergence
theorem,

lim
n→∞

t1−γBxn(t) = lim
n→∞

(
ϕ

Γ(γ)
+

t1−γ

Γ(α)

∫ t

0
(t− s)α−1g(s, xn(s))ds

)
=

ϕ

Γ(γ)
+

t1−γ

Γ(α)

∫ t

0
(t− s)α−1 lim

n→∞
g(s, xn(s))ds

=
ϕ

Γ(γ)
+

t1−γ

Γ(α)

∫ t

0
(t− s)α−1g(s, x(s))ds

= t1−γBx(t),

for all t ∈ J . This shows that B is continuouss on S. It is sufficient
to show that B(S) is uniformly bounded and equicontinuous set in X.
First we note that

t1−γ |Bx(t)| =
∣∣∣∣ ϕ

Γ(γ)
+

t1−γ

Γ(α)

∫ t

0
(t− s)α−1g(s, x(s))ds

∣∣∣∣
≤ |ϕ|

Γ(γ)
+ ∥p∥Ω(r) t

1−γ

Γ(α)

∫ t

0
(t− s)α−1ds

≤ |ϕ|
Γ(γ)

+ ∥p∥Ω(r) T
1−γ+α

Γ(α+ 1)
,
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for all t ∈ J . Taking supremum over the interval J , the above inequality
becomes

∥Bx∥C ≤ |ϕ|
Γ(γ)

+ ∥p∥Ω(r) T
1−γ+α

Γ(α+ 1)
,

for all x ∈ S. This shows that B is uniformly bounded on S.
Next, we show that B is an equicontinuous set in X. Let t1, t2 ∈ J

with t1 < t2 and x ∈ S. Then we have∣∣∣t1−γ
2 (Bx)(t2)− t1−γ

1 (Bx)(t1)
∣∣∣

≤

∥∥∥p∥∥∥Ω(r)
Γ(α)

(∣∣∣ ∫ t1

0

[
t1−γ
2 (t2 − s)α−1 − t1−γ

1 (t1 − s)α−1
]
ds
∣∣∣

+
∣∣∣ ∫ t2

t1

t1−γ
2 (t2 − s)α−1ds

∣∣∣).
Obviously the right-hand-side of the above inequality tends to zero

independently of x ∈ S as t2 − t1 → 0. Therefore, it follows from the
Arzela-Ascoli theorem that B is a completely continuous operator on S.
Claim 3. Next, we show that Hypotheses (c) of Lemma 2.6 is satisfied.
Let x ∈ X and y ∈ S be arbitrary elements such that x = AxBy. Then
we have

t1−γ |x(t)| = t1−γ |Ax(t)| |By(t)|

= |f(t, x(t))|
∣∣∣∣( ϕ

Γ(γ)
+

t1−γ

Γ(α)

∫ t

0
(t− s)α−1g(s, y(s))ds

)∣∣∣∣
≤ K

∣∣∣∣( ϕ

Γ(γ)
+

t1−γ

Γ(α)

∫ t

0
(t− s)α−1g(s, y(s))ds

)∣∣∣∣
≤ K

∣∣∣∣( ϕ

Γ(γ)
+ ∥p∥Ω(r) t

1−γ

Γ(α)

∫ t

0
(t− s)α−1ds

)∣∣∣∣
≤ K

[
|ϕ|
Γ(γ)

+
T 1−γ+α

Γ(α+ 1)
∥p∥Ω(r)

]
.

Taking supremum for t ∈ J , we obtain

∥x∥C ≤ K

[
|ϕ|
Γ(γ)

+
T 1−γ+α

Γ(α+ 1)
∥p∥Ω(r)

]
≤ r,

that is, x ∈ S.
Claim 4. Now we show that Mk < 1, that is, (d) of Lemma 2.6 holds.

This is obvious by (H3), since we haveM = ∥B(s)∥ = sup {∥Bx∥ : x ∈ S} ≤
|ϕ|
Γ(γ) +

T 1−γ+α

Γ(α+1) ∥p∥Ω(r) and k = ∥χ∥.
Thus all the conditions of Lemma 2.6 are satisfied and hence the

operator equation x = AxBx has a solution in S. Consequently, the
problem (1.3)-(1.4) has a solution on J . This completes the proof. �
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Remark 3.2. Note that the involvement of the term ϕ
Γ(γ) t

γ−1 in the

integral solution (3.2) of the problem (1.3)-(1.4) makes it unbounded.
In this scenario, Banach’s fixed point theorem cannot be used in the
weighted normed space.

Motivated by Remark 3.2 above, we should explore other sufficient
conditions for uniqueness. In fact, we can adopt a slightly different set
of assumptions which allow us to derive the uniqueness result.

Theorem 3.3. Assume that (H4)-(H5) hold. If

Tα

Γ(α+ 1)
(L1M2 +M1L2) < 1 (3.5)

then, the problem (1.3)-(1.4) with ϕ = 0 has a unique solution on J .

Proof. Transform the problem (1.3)-(1.4) into a fixed point problem.
By Remark 3.2, if we take ϕ = 0, then we can obtain the integral
equation x = Fx.
Consider the operator F : C(J,R) → C(J,R) defined by

(Fx)(t) =
1

Γ(α)
f(t, x(t))

∫ t

0
(t− s)α−1g(s, x(s))ds. (3.6)

Clearly, the fixed point of the operator F are solutions of the prob-
lem (1.3)-(1.4). We shall use the Banach contraction principle to prove
that F defined by (3.6) has a fixed point. We shall show that F is a
contraction.

Let x, y ∈ C(J,R). Then, for each t ∈ J we have∣∣∣(Fx)(t)− (Fy)(t)
∣∣∣

=
1

Γ(α)

∣∣∣f(t, x(t))∫ t

0
(t− s)α−1g(s, x(s))ds

− f(t, y(t))

∫ t

0
(t− s)α−1g(s, y(s))ds

∣∣∣
=

1

Γ(α)

∣∣∣[f(t, x(t))− f(t, y(t))
] ∫ t

0
(t− s)α−1g(s, x(s))ds

+ f(t, y(t))

∫ t

0
(t− s)α−1

[
g(s, x(s))− g(s, y(s))

]
ds
∣∣∣

≤ max
t∈J

[ 1

Γ(α)

{(
L1M2 +M2L2

)∫ t

0
(t− s)α−1ds

}]∥∥∥x− y
∥∥∥

≤ Tα

Γ(α+ 1)

(
L1M2 +M1L2

)∥∥∥x− y
∥∥∥.

From (3.5), it follows that F has a unique fixed point which is the
solution of the problem (1.3)-(1.4) with ϕ = 0. �
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Next, we present an example illustrating Theorem 3.1.

4. An example

Consider the following Hilfer type HFDE

Dα,β
0+

(
x(t)

f(t, x(t))

)
= g(t, x), t ∈ [0, 1], (4.1)

I1−γ
0+

(
x(0)

f(0, x(0))

)
= 1, (4.2)

where

f(t, x) =
1

5
√
π

(
sin t tan−1 x+

π

2

)
,

g(t, x) =
1

10

(
1

6
|x|+ 1

8
cosx+

|x|
4(1 + |x|)

+
1

16

)
.

Denote α = 2
3 , β = 1

2 and choose γ = 5
6 . Obviously, |f(t, x)| ≤

√
π
5 =

K, χ(t) = 1
5
√
π
, |g(t, x)| ≤ 1

10

(
1
6 |x|+

7
16

)
.

We choose ∥p∥ = 1
10 , Ω(r) = 1

6r +
7
16 . Clearly all the conditions of

Theorem 3.1 are satisfied. Hence, by the conclusion of Theorem 3.1, it
follows that problem (4.1)-(4.2) has a solution.

5. Conclusion

The paper is concerned with existence of solutions of HFDEs with Hil-
fer fractional derivative which generalizes the famous Riemann-Liouville
fractional derivative. By the fixed point theorem due to Dhage, we
obtained some sufficient conditions to ensure the existence of solution.
Finally, we discussed important observations on uniqueness result.
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