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Abstract. In this paper, we study weighted composition operators
between Lipschitz algebras of complex-valued bounded functions on
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1. Introduction and preliminaries

Let X be a Hausdorff space. We denote by C(X) the set of all complex-
valued continuous functions on X. Then C(X) is a commutative com-
plex algebra with unit 1X , the constant function on X with value 1. The
set of all bounded functions in C(X) is denoted by Cb(X). It is known
that Cb(X) is a unital commutative complex Banach algebra with unit
1X when equipped with the uniform norm

‖f‖X = sup{|f(x)| : x ∈ X} (f ∈ Cb(X)).

Let X and Y be Hausdorff spaces and let S(X) and S(Y ) be complex
linear subspaces of C(X) and C(Y ), respectively. A map T : S(X) →
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S(Y ) is called a weighted composition operator if there exist a complex-
valued function u on Y , not necessarily continuous, and a map φ : Y →
X such that T (f)(y) = u(y)f(φ(y)) for all f ∈ S(X) and y ∈ Y . Then T
is denoted by uCφ and called the weighted composition operator induced
by u and φ. Clearly, uCφ is a linear operator. In the case u = 1Y , the
weighted composition operator uCφ reduces to the composition operator
Cφ.

Let (X, d) and (Y, ρ) be metric spaces and K be a nonempty subset
of Y . A map φ : K → X is called a Lipschitz mapping from (K, ρ) to
(X, d) if there exists a constant C such that d(φ(x), φ(y)) ≤ Cρ(x, y)
for all x, y ∈ K. A map φ : K → X is called a supercontractive mapping
from (K, ρ) to (X, d) if for each ε > 0, there exists δ > 0 such that
d(φ(x), φ(y))/ρ(x, y) < ε whenever x, y ∈ K with 0 < ρ(x, y) < δ.

Let (X, d) be a metric space. A function f : X → C is called a
complex-valued Lipschitz function on (X, d) if f is a Lipschitz mapping
from (X, d) to the Euclidean metric space C. We denote by p(X,d)(f)
the constant Lipschitz of f , i.e.,

p(X,d)(f) = sup{|f(x)− f(y)|
d(x, y)

: x, y ∈ X,x 6= y}.

We denote by Lip(X, d) the set of all complex-valued bounded Lipschitz
functions on (X, d). Then Lip(X, d) is a complex subalgebra of Cb(X)
containing 1X . Moreover, Lip(X, d) is a Banach space with the Lipschitz
norm

‖f‖M = max{‖f‖X , p(X,d)(f)} (f ∈ Lip(X, d))

and a commutative unital complex Banach algebra with the Lipschitz
algebra norm

‖f‖Lip(X,d) = ‖f‖X + p(X,d)(f) (f ∈ Lip(X, d)).

These algebras were first introduced by Sherbert in [9, 10]. Note that
Lipschitz algebras are semisimple.

Let (X, d) be a pointed metric space with a basepoint designated by
x0. We denote by Lip0(X, d) the set of all complex-valued Lipschitz
functions f on (X, d) for which f(x0) = 0. Then Lip0(X, d) is a Banach
space with the p(X,d)(·)-norm.

Kamowitz and Scheinberg in [7] proved that a composition endo-
morphism Cφ of Lip(X, d) is compact if and only if φ is a supercon-
traction from (X, d) to (X, d) whenever (X, d) is a compact metric
space. Jiménez-Vargas and Villegas-Vallecillos in [6] generalized some
results of [7] by omitting the compactness condition of considered metric
spaces. Chen, Li, R. Wang and Y.-S. Wang in [2] characterized compact
weighted composition operators between spaces of scalar-valued Lips-
chitz functions. Botelho and Jamison in [1] and Esmaeili and Mahyar
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in [3] studied weighted composition operators between spaces of vector-
valued Lipschitz functions. Golbaharan and Mahyar in [4] provided a
complete description of weighted composition operators on the Lips-
chitz algebras Lip(X, d) when (X, d) is a compact metric space. They
also gave necessary and sufficient conditions for the injectivity and the
surjectivity of these operators and established a necessary and sufficient
condition for a weighted composition operator on Lip(X, d) to be com-
pact.

In this paper, we provide a complete description of weighted compo-
sition operators between Lipschitz algebras of complex-valued bounded
functions on metric spaces, not necessarily compact. We generalized
some obtained results in [4].

2. Some properties of weighted composition operators

For a complex-valued function u on a nonempty set Y, we denote by
coz(u) the set of all y ∈ Y for which u(y) 6= 0.

Let (X, d) and (Y, ρ) be metric spaces. It is clear that if u belongs to
Lip(Y, ρ) and φ is a Lipschitz mapping from (Y, ρ) to (X, d), then uCφ

is a weighted composition operator from Lip(X, d) to Lip(Y, ρ). The
following example shows that there exists a nonzero weighted composi-
tion operator uCφ from Lip(X, d) to Lip(Y, ρ) where φ is not a Lipschitz
mapping from (Y, ρ) to (X, d).

Example 2.1. Let X = (−∞,∞), let d be the Euclidean metric on X,
let Y = { 1

n : n ∈ Z\{0}} and let ρ be the Euclidean metric on Y . Define
the map φ : Y → X by

φ(
1

n
) = (−1)n

1

n
(n ∈ Z \ {0}).

Then φ is not a Lipschitz mapping from (Y, ρ) to (X, d) since

d(φ( 1n), φ(
1

n+1))

ρ( 1n ,
1

n+1)
= 2n+ 1,

for all n ∈ N. Define the function u : Y → C by

u(y) = y (y ∈ Y ).

Then u is a bounded complex-valued Lipschitz function on Y and

sup{|u(x)|d(φ(x), φ(y))
ρ(x, y)

: x, y ∈ Y, x 6= y} ≤ 3.
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Set T = uCφ. We show that T (f) ∈ Lip(Y, ρ) for all f ∈ Lip(X, d). Let
f ∈ Lip(X, d). Then for each x, y ∈ Y with x 6= y, we have

|T (f)(x)− T (f)(y)|
ρ(x, y)

=
|u(x)f(φ(x))− u(y)f(φ(y))|

ρ(x, y)

≤ |u(x)| |f(φ(x))− f(φ(y))|
d(φ(x), φ(y))

d(φ(x), φ(y))

ρ(x, y)

+ |f(φ(y))| |u(x)− u(y)|
ρ(x, y)

≤ 3p(X,d)(f) + ‖f‖X
≤ 4‖f‖Lip(X,d).

This implies that T (f) is a Lipschitz function on Y . On the other hand,

|T (f)(y)| = |u(y)||f(φ(y))| ≤ ‖u‖Y ‖f‖X ,

for all y ∈ Y . Therefore, T (f) ∈ Lip(Y, ρ) and so T = uCφ is a weighted
composition operator from Lip(X, d) to Lip(Y, ρ).

Theorem 2.2. Let (X, d) and (Y, ρ) be metric spaces, let u be a complex-
valued function on Y and let φ be a map from Y to X. Suppose that
T = uCφ is a weighted composition operator from Lip(X, d) to Lip(Y, ρ).
Then u ∈ Lip(Y, ρ) and T is a bounded linear operator. Moreover, if
1Y ∈ T (Lip(X, d)), then u(y) 6= 0 for all y ∈ Y .

Proof. Since 1X ∈ Lip(X, d) and T is a weighted composition operator,
we have u = T (1X) and so u ∈ Lip(Y, ρ). Let {fn}∞n=1 be a sequence
in Lip(X, d) that converges to the function 0 in (Lip(X, d), ‖ · ‖Lip(X,d))
and {T (fn)}∞n=1 converges to a function g ∈ Lip(Y, ρ) in (Lip(Y, ρ), ‖ ·
‖Lip(Y,ρ)). Since the uniform norm is weaker than the Lipschitz algebra
norm, we have limn→∞ fn(φ(y)) = 0 and limn→∞ T (fn)(y) = g(y) for all
y ∈ Y . The boundedness of u implies that limn→∞ u(y)(fn(φ(y))) = 0
for all y ∈ Y . Therefore, g = 0 and by the closed graph theorem T is
continuous and so bounded.

We now assume that 1Y ∈ T (Lip(X, d)). Then there exists a function
f in Lip(X, d) such that T (f) = 1Y . Hence, u(y)f(φ(y)) = 1 for all
y ∈ Y and so u(y) 6= 0 for all y ∈ Y . �

Notation 2.3. Let (X, d) and (Y, ρ) be metric spaces, let u be a complex-
valued function on Y and let φ be a map from Y to X. We denote

C(u, φ) = sup{|u(x)|d(φ(x), φ(y))
ρ(x, y)

: x, y ∈ Y, x 6= y}.

Here, we give a sufficient condition for the operator T = uCφ to be a
weighted composition operator from Lip(X, d) to Lip(Y, ρ).
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Theorem 2.4. Let (X, d) and (Y, ρ) be metric spaces, let u be a complex-
valued function on Y and let φ be a map from Y to X. If u ∈ Lip(Y, ρ)
and C(u, φ) < ∞, then T = uCφ is a weighted composition operator
from Lip(X, d) to Lip(Y, ρ) and ‖T‖ ≤ C(u, φ) + ‖u‖Lip(Y,ρ).

Proof. Suppose that u ∈ Lip(Y, ρ) and C(u, φ) <∞. Let f ∈ Lip(X, d).
Then for each x, y ∈ Y with φ(x) 6= φ(y), we have

|T (f)(x)− T (f)(y)|
ρ(x, y)

=
|u(x)f(φ(x))− u(y)f(φ(y))|

ρ(x, y)

≤ |u(x)| |f(φ(x))− f(φ(y))|
d(φ(x), φ(y))

d(φ(x), φ(y))

ρ(x, y)

+ |f(φ(y))| |u(x)− u(y)|
ρ(x, y)

≤ C(u, φ)p(X,d)(f) + ‖f‖Xp(Y,ρ)(u).
Moreover, for each x, y ∈ Y with x 6= y and φ(x) = φ(y), we have

|T (f)(x)− T (f)(y)|
ρ(x, y)

=
|u(x)− u(y)|

ρ(x, y)
|f(φ(y))| ≤ p(Y,ρ)(u)‖f‖X .

Therefore, T (f) is a Lipschitz function on (Y, ρ).
On the other hand,

|T (f)(y)| = |u(y)||f(φ(y))| ≤ ‖u‖Y ‖f‖X ,
for all y ∈ Y . Hence, T (f) ∈ Lip(Y, ρ) and

‖T (f)‖Lip(Y,ρ) ≤ ‖u‖Y ‖f‖X + C(u, φ)p(X,d)(f) + ‖f‖Xp(Y,ρ)(u)
≤ (C(u, φ) + ‖u‖Lip(Y,ρ))‖f‖Lip(X,d).

Therefore, T is bounded and ‖T‖ ≤ C(u, φ)+‖u‖Lip(Y,ρ). This completes
the proof. �
Theorem 2.5. Let (X, d) and (Y, ρ) be metric spaces, let u be a complex-
valued function on Y and let φ be a map from Y to X. Suppose that
diam(φ(coz(u))) < ∞ and T = uCφ is a weighted composition operator
from Lip(X, d) to Lip(Y, ρ). Then

C(u, φ) ≤ ‖T‖(1 + diam(φ(coz(u)))).

Proof. Let x, y ∈ coz(u) with x 6= y. Define the function fy : φ(coz(u)) →
R by

fy(t) = d(t, φ(y)) (t ∈ φ(coz(u))). (2.1)

Then ‖fy‖φ(coz(u)) ≤ diam(φ(coz(u))) and

|fy(s)− fy(t)| = |d(s, φ(y))− d(t, φ(y))| ≤ d(s, t),

for all s, t ∈ φ(coz(u)). By Sherbert’s extension theorem [10, Proposition
1.4], there exists a function Fy : X → R with Fy |φ(coz(u))= fy, ‖Fy‖X ≤
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diam(φ(coz(u))) and |Fy(s) − Fy(t)| ≤ d(s, t) for all s, t ∈ X. Hence,
Fy ∈ Lip(X, d) and

‖Fy‖Lip(X,d) ≤ diam(φ(coz(u))) + 1. (2.2)

By (2.1) and (2.2), we have

|u(x)|d(φ(x), φ(y))
ρ(x, y)

=
|u(x)fy(φ(x))− u(y)fy(φ(y))|

ρ(x, y)

=
|u(x)Fy(φ(x))− u(y)Fy(φ(y))|

ρ(x, y)

=
|T (Fy)(x)− T (Fy)(y)|

ρ(x, y)

≤ p(Y,ρ)(T (Fy))

≤ ‖T (Fy)‖Lip(Y,ρ)
≤ ‖T‖‖Fy‖Lip(X,d)

≤ ‖T‖(1 + diam(φ(coz(u)))).

Therefore,

C(u, φ) ≤ ‖T‖(1 + diam(φ(coz(u)))

Hence, the proof is complete. �

Corollary 2.6. Let (X, d) and (Y, ρ) be metric spaces, let u be a complex-
valued function on Y , let φ be a map from Y to X such that
diam(φ(coz(u))) <∞ and let T = uCφ be a weighted composition oper-
ator from Lip(X, d) to Lip(Y, ρ). Then φ is a Lipschitz mapping from
(K, ρ) to (X, d) for each nonempty compact subset K of coz(u).

Proof. Let K be a nonempty compact subset of coz(u). Take C =
inf{|u(y)| : y ∈ K}. The continuity of u on coz(u) implies that C > 0.
Suppose that x, y ∈ K with x 6= y. By Theorem 2.5, we deduce that

d(φ(x), φ(y))

ρ(x, y)
≤ ‖T‖(1 + diam(φ(coz(u))))

C
.

Hence, φ is a Lipschitz mapping from (K, ρ) to (X, d). �

Theorem 2.7. Let (X, d) and (Y, ρ) be metric spaces, let u be a complex-
valued function on Y , let φ be a map from Y to X and let T = uCφ be
a weighted composition operator from Lip(X, d) to Lip(Y, ρ). Then φ is
continuous on coz(u).

Proof. Suppose that there exists y ∈ coz(u) such that φ is not continuous
at y. Then there exist a positive number ε and a sequence {yn}∞n=1 in
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Y such that ρ(yn, y) <
1
n and d(φ(yn), φ(y)) ≥ ε for all n ∈ N. Define

the function h : X → C by

h(x) = max{0, 1− d(φ(y), x)

ε
} (x ∈ X).

Clearly, h ∈ Lip(X, d). Since limn→∞ yn = y in (Y, ρ) and T (h) ∈
Lip(Y, ρ), we deduce that

lim
n→∞

T (h)(yn) = T (h)(y),

that is
lim
n→∞

u(yn)h(φ(yn)) = u(y)h(φ(y)). (2.3)

Since h(φ(yn)) = 0 for all n ∈ N, we have

lim
n→∞

u(yn)h(φ(yn)) = 0. (2.4)

By (2.3) and (2.4), we get u(y)h(φ(y)) = 0 which is a contradiction
since u(y) 6= 0 and h(φ(y)) = 1. Therefore, φ is continuous at every
y ∈ coz(u) and the proof is complete. �

3. Injectivity and surjectivity of weighted composition
operators

In this section, we give necessary and sufficient conditions for the in-
jectivity and the surjectivity of weighted composition operators between
Lipschitz algebras. We first obtain a generalization of [4, Theorem 3.2]
as the following.

Theorem 3.1. Let (X, d) and (Y, ρ) be metric spaces, let u be a complex-
valued function on Y , let φ be a map from Y to X and let T = uCφ be
a weighted composition operator from Lip(X, d) to Lip(Y, ρ). Then T is
injective if and only if φ(coz(u)) is dense in X.

Proof. Suppose that φ(coz(u)) is not dense in X. Choose x1 ∈ X such
that dist(x1, φ(coz(u))) > 0. Take δ = dist(x1, φ(coz(u))). Then δ > 0.
Define the function hx1,δ : X → C by

hx1,δ(x) = max{0, 1− d(x1, x)

δ
} (x ∈ X).

Clearly hx1,δ ∈ Lip(X, d). On the other hand, T (hx1,δ) = 0 and hx1,δ(x1)
= 1. Hence, T is not injective.

Conversely, suppose that φ(coz(u)) is dense in X. Let f ∈ Lip(X, d)
with T (f) = 0. Assume that x ∈ φ(coz(u)) and choose y ∈ coz(u)
such that x = φ(y). Since u(y) 6= 0 and 0 = T (f)(y) = u(y)f(φ(y)) =
u(y)f(x), we deduce that f(x) = 0. Hence, the continuous complex-
valued function f on X vanishes on the dense subset φ(coz(u)) of X.
This implies that f = 0 on X. Therefore, T is injective. �
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We now give an extension of the sufficiency part of [4, Theorem 3.5].

Theorem 3.2. Let (X, d) and (Y, ρ) be metric spaces. Suppose that u is
a complex-valued function on Y such that u(y) 6= 0 for all y ∈ Y and 1

u ∈
Lip(Y, ρ) . Let φ be a map from Y to X and let T = uCφ be a weighted

composition operator from Lip(X, d) to Lip(Y, ρ). If inf{d(φ(x),φ(y))
ρ(x,y) :

x, y ∈ Y, x 6= y} > 0, then T is surjective.

Proof. Suppose that

inf{d(φ(x), φ(y))
ρ(x, y)

: x, y ∈ Y, x 6= y} > 0. (3.1)

We can consider (φ(Y ), d) as a metric space. Define the map ψ : φ(Y ) →
Y by

ψ(φ(y)) = y (y ∈ Y ).

Then ψ is well-defined since φ is injective. Moreover, (3.1) implies that
ψ is a Lipschitz mapping from (φ(Y ), d) to (Y, ρ). Let g ∈ Lip(Y, ρ).
Then g

u ◦ ψ ∈ Lip(φ(Y ), d) since 1
u ∈ Lip(Y, ρ). By [11, Theorem 1.5.6],

there exists a function f ∈ Lip(X, d) such that f = g
u ◦ ψ on φ(Y ).

Hence,

T (f)(y) = u(y)f(φ(y)) = u(y)(
g

u
◦ ψ)(φ(y)) = g(y)

for all y ∈ Y . Therefore, T (f) = g and so T is surjective. �
Here, we obtain a generalization of the necessity part of [4, Theorem

3.5]. For this purpose, we need the following lemma.

Lemma 3.3. Let (X, d) and (Y, ρ) be metric spaces, let diam(Y ) <∞,
let φ be a map from Y to X and let S = Cφ be a composition operator
from Lip(X, d) to Lip(Y, ρ). If S is surjective, then φ is injective and

inf{d(φ(x),φ(y)
ρ(x,y) : x, y ∈ Y, x 6= y} > 0.

Proof. Suppose that S is surjective. Let y ∈ Y and define the function
gy : Y → C by

gy(z) = ρ(y, z) (z ∈ Y ).

Since diam(Y ) < ∞, we deduce that |gy(z)| ≤ diam(Y ) for all z ∈ Y ,
gy is a complex-valued Lipschitz function on (Y, ρ) and p(Y,ρ)(gy) ≤ 1.
Hence, gy ∈ Lip(Y, ρ) and ‖gy‖Lip(Y,ρ) ≤ diam(Y ) + 1.

To prove the injectivity of φ, we assume that x, y ∈ Y with φ(x) =
φ(y). Since gy ∈ Lip(Y, ρ) and S is surjective, there exists a function
fy ∈ Lip(X, d) such that gy = S(fy) = Cφ(fy) = fy ◦ φ. This implies
that

ρ(x, y)=gy(x)=S(fy)(x)=fy(φ(x))=fy(φ(y))=S(fy)(y)=gy(y)=0,

and so x = y. Hence, φ is injective.
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Define the map ρ′ : Y × Y → R by

ρ′(x, y) = d(φ(x), φ(y)) (x, y ∈ Y ).

Since d : X ×X → R is a metric on X and φ : Y → X is injective, we
conclude that ρ′ is a metric on Y . We claim that Lip(Y, ρ) is a subset of
Lip(Y, ρ′). Suppose that g ∈ Lip(Y, ρ). Then g is a bounded complex-
valued function on Y . The surjectivity of S implies that there exists a
function f ∈ Lip(X, d) such that g = Cφ(f). Let x, y ∈ Y with x 6= y.
Then

|g(x)− g(y)|
ρ′(x, y)

=
|Cφ(f)(x)− Cφ(f)(y)|

d(φ(x), φ(y))
=

|f(φ(x))− f(φ(y))|
d(φ(x), φ(y))

≤ p(X,d)(f) ≤ ‖f‖Lip(X,d).

This implies that g is a Lipschitz function on (Y, ρ′). Hence, g ∈
Lip(Y, ρ′) and so our claim is justified. Therefore, the map g 7→ g :
Lip(Y, ρ) → Lip(Y, ρ′) is an algebra homomorphism. Since Lip(Y, ρ)
and Lip(Y, ρ′) are unital semisimple commutative Banach algebras, we
deduce that the map mentioned is continuous linear mapping. Hence,
there exists a positive constant M such that

‖g‖Lip(Y,ρ′) ≤M‖g‖Lip(Y,ρ),

for all g ∈ Lip(Y, ρ).
Let x, y ∈ Y with x 6= y. Since gy ∈ Lip(Y, ρ) and ‖gy‖Lip(Y,ρ) ≤

diam(Y ) + 1, we deduce that

|gy(x)− gy(y)|
ρ′(x, y)

≤ p(Y,ρ′)(gy) ≤ ‖gy‖Lip(Y,ρ′)

≤M‖gy‖Lip(Y,ρ) ≤M(diam(Y ) + 1).

Take M ′ = 1
M(diam(Y )+1) . Then M

′ > 0 and

d(φ(x), φ(y))

ρ(x, y)
=

ρ′(x, y)

|gy(x)− gy(y)|
≥M ′.

Hence,

inf{d(φ(x), φ(y))
ρ(x, y)

: x, y ∈ Y, x 6= y} ≥M ′ > 0,

and so the proof is complete. �

Theorem 3.4. Let (X, d) and (Y, ρ) be metric spaces, let diam(Y ) <∞,
let u be a complex-valued function on Y , let φ be a map from Y to X
and let T = uCφ be a weighted composition operator from Lip(X, d)
to Lip(Y, ρ). Suppose that T is surjective. If φ is Lipschitz mapping

or 1
u ∈ Lip(Y, ρ), then inf{d(φ(x),φ(y))

ρ(x,y) : x, y ∈ Y, x 6= y} > 0 and
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inf{|u(x)|d(φ(x),φ(y))ρ(x,y) : x ∈ K, y ∈ Y, x 6= y} > 0, where K is a nonempty

compact subset of Y .

Proof. The surjectivity of T implies that u(y) 6= 0 for all y ∈ Y since
1Y ∈ Lip(Y, ρ) and 1Y = T (f1) = u ·(f1◦φ) for some f1 ∈ Lip(X, d). We
first assume that φ is a Lipschitz mapping from (Y, ρ) to (X, d). Then
f ◦φ ∈ Lip(Y, ρ) for all f ∈ Lip(X, d) and so Cφ is composition operator
from Lip(X, d) to Lip(Y, ρ). We now assume that 1

u ∈ Lip(Y, ρ). Then

f ◦φ = 1
uT (f) ∈ Lip(Y, ρ) for all f ∈ Lip(X, d) and so Cφ is composition

operator from Lip(X, d) to Lip(Y, ρ).
We claim that Cφ is surjective. Suppose that g ∈ Lip(Y, ρ). Then

ug ∈ Lip(Y, ρ). The surjectivity of T implies that ug = T (f) for some
f ∈ Lip(X, d) and so g = f ◦ φ = Cφ(f) for some f ∈ Lip(X, d). Hence,
our claim is justified.

By Lemma 3.3, φ : Y → φ(Y ) is injective and

inf{d(φ(x), φ(y))
ρ(x, y)

: x, y ∈ Y, x 6= y} > 0. (3.2)

We now assume that K is a nonempty compact subset of Y . Then
inf{|u(x)| : x ∈ K} = |u(x1)| for some x1 ∈ K. This implies that

|u(x)|d(φ(x),φ(y))ρ(x,y) ≥ |u(x1)|d(φ(x),φ(y))ρ(x,y) for all x ∈ K, y ∈ Y with x 6= y.

Hence, by (3.2) and |u(x1)| > 0, we have

inf{|u(x)|d(φ(x), φ(y))
ρ(x, y)

:x ∈ K, y ∈ Y, x 6= y}

≥ |u(x1)| inf{
d(φ(x), φ(y))

ρ(x, y)
: x, y ∈ Y, x 6= y}

> 0.

Therefore, the proof is complete. �

4. Compactness of weighted composition operators

Let (X, d) be a metric space, let (X̃, d̃) be the completion of (X, d) and
let (Y, ρ) be a complete metric space. By [11, Proposition 1.7.1], every
Lipschitz mapping φ from (X, d) to (Y, ρ) has a Lipschitz extension φ̃

from (X̃, d̃) to (Y, ρ) such that

sup{ρ(φ̃(x̃), φ̃(ỹ))
d̃(x̃, ỹ)

: x̃, ỹ ∈ X̃, x̃ 6= ỹ}= sup{ρ(φ(x), φ(y))
d(x, y)

: x, y ∈ X,x 6= y}.

In fact φ̃(x̃) = limn→∞ φ(xn), where x̃ ∈ X̃ and {xn}∞n=1 is a sequence

in X such that limn→∞ xn = x̃ in (X̃, d̃). We assume that A = Lip(X, d)

and Ã = Lip(X̃, d̃). By [8, Lemma 2.8], Ã = {f̃ : f ∈ A} and the map
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f  f̃ : A→ Ã is an isometrical isomorphism from (A, ‖ · ‖Lip(X,d)) onto

(Ã, ‖ · ‖
Lip(X̃,d̃)

).

Here we obtain an extension of [4, Theorem 4.3], whenever φ is a
Lipschitz mapping from (Y, ρ) to (X, d). For this purpose we need the
following lemma.

Lemma 4.1. Let (X, d) and (Y, ρ) be metric spaces, let A = Lip(X, d)
and B = Lip(Y, ρ) and let T : A→ B be a linear mapping. Suppose that

(X̃, d̃) and (Ỹ , ρ̃) are the completions of (X, d) and (Y, ρ), respectively,

Ã = Lip(X̃, d̃) and B̃ = Lip(Ỹ , ρ̃). Define the map T̃ : Ã → B̃ by

T̃ (f̃) = T̃ (f) (f ∈ A). Then the following statements hold.

(1) T̃ is a linear mapping.

(2) T̃ is bounded if and only if T is bounded. Moreover, ‖T̃‖ = ‖T‖.
(3) T̃ is compact if and only if T is compact.

Proof. Define the maps Φ : A→ Ã and Ψ : B → B̃ by

Φ(f) = f̃ (f ∈ A), Ψ(g) = g̃ (g ∈ B).

Then Φ is an isometrical isomorphism from (A, ‖ · ‖Lip(X,d)) onto (Ã, ‖ ·
‖
Lip(X̃,d̃)

) and Ψ is an isometrical isomorphism from (B, ‖·‖Lip(Y,ρ)) onto
(B̃, ‖ · ‖

Lip(Ỹ ,ρ̃)
). It is clear that

T̃ = Ψ ◦ T ◦ Φ−1.

This implies that (1)-(3) hold. �

Theorem 4.2. Let (X, d) and (Y, ρ) be metric spaces such that (X̃, d̃)

and (Ỹ , ρ̃) are compact. Let φ be a Lipschitz mapping from (Y, ρ) to
(X, d), let u be a complex-valued function on Y and let T = uCφ be a
weighted composition operator from Lip(X, d) to Lip(Y, ρ). Then T is

compact if and only if limu(x)d(φ(x),φ(y))ρ(x,y) = 0 when d(φ(x), φ(y)) tends

to 0.

Proof. Define the map T̃ : Lip(X̃, d̃) → Lip(Ỹ , ρ̃) by

T̃ (f̃) = T̃ (f) (f ∈ Lip(X, d)).

By Lemma 4.1, T̃ is a bounded linear mapping. Since u ∈ Lip(Y, ρ),

we have ũ ∈ Lip(Ỹ , ρ̃). This implies that ũ · (g ◦ φ̃) ∈ Lip(Ỹ , ρ̃) for all

g ∈ Lip(X̃, d̃) since φ̃ : Ỹ → X̃ is a Lipschitz mapping from (Ỹ , ρ̃)

to (X̃, d̃). Therefore, ũCφ̃ is a weighted composition operator from

Lip(X̃, d̃) to Lip(Ỹ , ρ̃). We claim that ũCφ̃ = T̃ . Let g ∈ Lip(X̃, d̃).

Then there exists a function f ∈ Lip(X, d) such that g = f̃ . Let ỹ ∈ Ỹ
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and {yn}∞n=1 be a sequence in Y with limn→∞ yn = ỹ in (Ỹ , ρ̃). Then

limn→∞ φ(yn) = φ̃(ỹ) in (X̃, d̃) and so limn→∞ f(φ(yn)) = f̃(φ̃(ỹ)).

Since limn→∞ u(yn) = ũ(ỹ), hence, limn→∞(u · (f ◦ φ))(yn) = (ũ · (f̃ ◦
φ̃))(ỹ) and so limn→∞ T (f)(yn) = (ũCφ̃)(ỹ). Therefore,

T̃ (f)(ỹ) = (ũCφ̃)(f̃)(ỹ). (4.1)

Since (4.1) holds for all ỹ ∈ Ỹ , we deduce that T̃ (f) = ũCφ̃(f̃). Hence,

T̃ (g) = T̃ (f̃) = T̃ (f) = (ũCφ̃)(g). (4.2)

Since (4.2) holds for all g ∈ Lip(X̃, d̃), we have T̃ = ũCφ̃. Hence, our
claim is justified.

We first assume that T is compact. By Lemma 4.1, T̃ is compact.

According to [4, Theorem 4.3], we deduce that lim ũ(x̃) d̃(φ̃(x̃),φ̃(ỹ))ρ̃(x̃,ỹ) = 0

when d̃(φ̃(x̃), φ̃(ỹ)) tends to 0. Since

u(x)
d(φ(x), φ(y))

ρ(x, y)
= ũ(x̃)

d̃(φ̃(x̃), φ̃(ỹ))

ρ̃(x̃, ỹ)
,

for all x, y ∈ Y with x 6= y, we conclude that

limu(x)
d(φ(x), φ(y))

ρ(x, y)
= 0,

when d(φ(x), φ(y)) tends to 0.
We now assume that

limu(x)
d(φ(x), φ(y))

ρ(x, y)
= 0, (4.3)

when d(φ(x), φ(y)) tends to 0. To prove compactness of T , by Lemma

4.1, it is enough to show that T̃ is compact. Clearly, ũ ∈ Lip(Ỹ , ρ̃). To

prove the compactness of T̃ , by [4, Theorem 4.3], it is enough to show

that lim ũ(x̃) d̃(φ̃(x̃),φ̃(ỹ))ρ̃(x̃,ỹ) = 0 when d̃(φ̃(x̃), φ̃(ỹ)) tends to 0.

Let ε > 0 be given. By(4.3), there exists a δ1 > 0 such that

|u(x)|d(φ(x), φ(y))
ρ(x, y)

<
ε

2
, (4.4)

for all x, y ∈ Y with 0 < d(φ(x), φ(y)) < δ1. Choose δ = δ1
2 . Let

x̃, ỹ ∈ Ỹ with 0 < d̃(φ̃(x̃), φ̃(ỹ)) < δ. There exist two sequences {xn}∞n=1

and {yn}∞n=1 in Y such that limn→∞ ρ̃(xn, x̃) = 0 and limn→∞ ρ̃(yn, ỹ) =

0 and so limn→∞ d̃(φ(xn), φ̃(x̃)) = 0 and limn→∞ d̃(φ(yn), φ̃(ỹ)) = 0.
Hence, there exists N1 ∈ N such that

|d(φ(xn), φ(yn))− d̃(φ̃(x̃), φ̃(ỹ))| < δ,
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and d̃(φ̃(x̃),φ̃(ỹ))
2 < d(φ(xn), φ(yn)) for all n ∈ N with n ≥ N1. Therefore,

0 < d(φ(xn), φ(yn)) < 2δ = δ1 for all n ∈ N with n ≥ N1. Hence, by
(4.4), we have

|u(xn)|
d(φ(xn), φ(yn))

ρ(xn, yn)
<
ε

2
, (4.5)

for all n ∈ N with n ≥ N1. Since

|ũ(x̃)| d̃(φ̃(x̃), φ̃(ỹ))
ρ̃(x̃, ỹ)

= lim
n→∞

|u(xn)|
d(φ(xn), φ(yn))

ρ(xn, yn)
,

there exists N2 ∈ N such that

||u(xn)|
d(φ(xn), φ(yn))

ρ(xn, yn)
− |ũ(x̃)| d̃(φ̃(x̃), φ̃(ỹ))

ρ̃(x̃, ỹ)
| < ε

2
, (4.6)

for all n ∈ N with n ≥ N2. Let N = max{N1, N2}. Then (4.5) and (4.6)
hold for n = N and so

|ũ(x̃)| d̃(φ̃(x̃), φ̃(ỹ))
ρ̃(x̃, ỹ)

< ε.

This implies that lim ũ(x̃) d̃(φ̃(x̃),φ̃(ỹ))ρ̃(x̃,ỹ) = 0 when d̃(φ̃(x̃), φ̃(ỹ)) tends to 0.

Therefore, T̃ is compact and the proof is complete. �

We recall that the essential norm of a bounded linear operator T on
a Banach space (E, ‖ · ‖) is denoted by ‖T‖e and defined by

‖T‖e = inf{‖T −K‖ : K is a compact linear operator on E}.

For each α ∈ (0, 1], the map dα : X ×X → R defined by

dα(x, y) = (d(x, y))α , ((x, y) ∈ X ×X)

is a metric on X and the induced topology on X by dα coincides with
the induced topology on X by d.

For a weighted composition operator T = uCφ from Lip(X, dα) to
Lip(X, dα), we obtain a lower bound for the essential norm ‖T‖e of

T , whenever (X̃, d̃) is a compact metric space, 0 < α < 1 and φ is a
Lipschitz mapping from (X, d) to (X, d).

Theorem 4.3. Let (X, d) be a metric space such that (X̃, d̃), the com-
pletion of (X, d), is compact. Let α ∈ (0, 1), let φ be a Lipschitz map-
ping from (X, d) to (X, d), let u be a complex-valued function on X
and let T = uCφ be a weighted composition operator from Lip(X, dα) to
Lip(X, dα). Then

lim sup
d(φ(x),φ(y))→0

|u(x)|(d(φ(x), φ(y))
d(x, y)

)α ≤ ‖T‖e.



Weighted composition operators 113

Proof. Define the map T̃ : Lip(X̃, d̃α) → Lip(X̃, d̃α) by

T̃ (f̃) = T̃ (f) (f ∈ Lip(X, dα)).

By the argument given in the proof of Theorem 4.2, we deduce that T̃ is

a weighted composition operator from Lip(X̃, d̃α) to Lip(X̃, d̃α) induced
by ũ and φ̃. By [4, Theorem 5.1], we have

lim sup
d̃(φ̃(x̃),φ̃(ỹ))→0

|ũ(x̃)|( d̃(φ̃(x̃), φ̃(ỹ))
d̃(x̃, ỹ)

)α ≤ ‖T̃‖e. (4.7)

On the other hand,

‖T̃‖e = ‖T‖e, (4.8)

by [8, Proposition 2.13]. Since (X̃, d̃α) is a compact metric space and

T̃ = ũCφ̃ is a weighted composition operator from Lip(X̃, d̃α) to

Lip(X̃, d̃α), we deduce that

sup{|ũ(x̃)| d̃
α(φ̃(x̃), φ̃(ỹ))

d̃α(x̃, ỹ)
: x̃, ỹ ∈ X̃, x̃ 6= ỹ} <∞,

by [4, Theorem 2.1]. This implies that

sup{|u(x)|d
α(φ(x), φ(y))

dα(x, y)
: x, y ∈ X,x 6= y} <∞.

For each t > 0, set

Et = {|u(x)|(d(φ(x), φ(y))
d(x, y)

)α : x, y ∈ X,x 6= y, 0 < d(φ(x), φ(y)) < t},

and

Ẽt = {|ũ(x̃)|( d̃(φ̃(x̃), φ̃(ỹ))
d̃(x̃, ỹ)

)α : x̃, ỹ ∈ X̃, x̃ 6= ỹ, 0 < d̃(φ̃(x̃), φ̃(ỹ)) < t}.

By the argument above, we have supEt < ∞ and sup Ẽt < ∞ for all
t > 0.

Let t > 0 be given. If x, y ∈ X with 0 < d(φ(x), φ(y)) < t, then

|u(x)|(d(φ(x), φ(y))
d(x, y)

)α = |ũ(x)|( d̃(φ̃(x), φ̃(y))
d̃(x, y)

)α ≤ sup Ẽt.

Hence,

supEt ≤ sup Ẽt. (4.9)

Since (4.9) holds for each t > 0, we deduce that

inf{supEt : t > 0} ≤ inf{sup Ẽt : t > 0}.
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This implies that

lim sup
d(φ(x),φ(y))→0

|u(x)|(d(φ(x), φ(y))
d(x, y)

)α ≤ lim sup
d̃(φ̃(x̃),φ̃(ỹ))→0

|ũ(x̃)|( d̃(φ̃(x̃), φ̃(ỹ))
d̃(x̃, ỹ)

)α.

(4.10)

From (4.10), (4.7) and (4.8), we conclude that

lim sup
d(φ(x),φ(y))→0

|u(x)|(d(φ(x), φ(y))
d(x, y)

)α ≤ ‖T‖e.

Hence, the proof is complete. �

We now give a generalization of [4, Corollary 4.2]. To this purpose
we need the following lemma.

Lemma 4.4. Let (X, d) be a metric space. Then every bounded se-
quence {fn}∞n=1 in (Lip(X, d), ‖ · ‖Lip(X,d)) has a subsequence that con-
verges pointwise on X to a function f ∈ Lip(X, d). Moreover, this
convergence is uniform on each totally bounded subset of X.

Proof. Let {fn}∞n=1 be a bounded sequence in (Lip(X, d), ‖ · ‖Lip(X,d)).
Since the norms ‖ · ‖Lip(X,d) and ‖ · ‖M are equivalent on complex linear
space Lip(X, d), {fn}∞n=1 is a bounded sequence in Lip(X, d) with norm
‖·‖M . Let x0 /∈ X and X0 = X∪{x0}. Define the map d0 : X0×X0 → R
by

d0(x, y) = min{d(x, y), 2} (x, y ∈ X),

d0(x, x0) = d0(x0, y) = 1 (x, y ∈ X),

d0(x0, x0) = 0.

Then d0 is a metric on X0 and Lip0(X0, d0) is a complex Banach space
with the norm p(X0,d0)(·). Define the map Φ : Lip(X, d) → Lip0(X0, d0)
by

Φ(f)(x) = f(x) (x ∈ X), Φ(f)(x0) = 0.

By [11, Proposition 1.7.1 and Theorem 1.7.2], Φ is a complex linear
isometry from (Lip(X, d), ‖ · ‖M ) onto (Lip0(X0, d0), p(X0,d0)(·)). Hence,
{Φ(fn)}∞n=1 is a bounded sequence in Lip0(X0, d0). By [6, Lemma 2.5],
there exists a subsequence {fnk

}∞k=1 of {fn}∞n=1 such that {Φ(fnk
)}∞k=1

converges pointwise on X0 and this convergence is uniform on all totally
bounded sets in (X0, d0). Hence, there exists a function g in Lip0(X0, d0)
such that

g(y) = lim
k→∞

Φ(fnk
)(y),

for all y ∈ X0 and {Φ(fnk
)}∞k=1 converges to the function g uniformly on

all totally bounded sets in (X0, d0). The surjectivity of Φ implies that
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there exists a function f in Lip(X, d) with Φ(f) = g. Since Φ(h)(x) =
h(x) for all h ∈ Lip(X, d) and x ∈ X, we deduce that

f(x) = lim
k→∞

fnk
(x),

for all x ∈ X. Let E ⊆ X be a totally bounded set in (X, d) and let
ε > 0 be given. Take ε′ = min{ε, 1}. Then there exist x1, . . . , xn ∈ E
such that

E ⊆ ∪n
j=1Bd(xj , ε

′).

It is easy to see that
E ⊆ ∪n

j=1Bd0(xj , ε).

Hence, E is a totally bounded set in (X0, d0). By the argument above,
{Φ(fnk

)}∞k=1 converges uniformly on E to the function g. This implies
that {fnk

}∞k=1 converges uniformly on E to the function f . Hence, the
proof is complete. �
Theorem 4.5. Let (X, d) and (Y, ρ) be metric spaces, let u be a complex-
valued function on Y , let φ be a map from Y to X and let T = uCφ be
a weighted composition operator from Lip(X, d) to Lip(Y, ρ). Then T is
compact if and only if for each bounded sequence {fn}∞n=1 in (Lip(X, d), ‖·
‖Lip(X,d)) which converges to the function 0 uniformly on totally bounded
subsets of X, there exists a subsequence {fnk

}∞k=1 of {fn}∞n=1 such that
{T (fnk

)}∞k=1 converges to the function 0 in (Lip(Y, ρ), ‖ · ‖Lip(Y,ρ)).

Proof. Suppose that T = uCφ is a compact operator from Lip(X, d) to
Lip(Y, ρ) and {fn}∞n=1 is a bounded sequence in (Lip(X, d), ‖ · ‖Lip(X,d))
that converges uniformly to the function 0 on totally bounded subsets
of X. By the compactness of T , there exist a subsequence {fnk

}∞k=1 of
{fn}∞n=1 and a function g ∈ Lip(Y, ρ) such that {T (fnk

)}∞k=1 converges
to the function g in (Lip(Y, ρ), ‖ · ‖Lip(Y,ρ)). Since ‖h‖Y ≤ ‖h‖Lip(Y,ρ)
for all h ∈ Lip(Y, ρ), the sequence {u(y)fnk

(φ(y))}∞k=1 converges to g(y)
for all y ∈ Y . On the other hand, for each y ∈ Y the set {φ(y)} is
totally bounded in (X, d). Hence, limk→∞ fnk

(φ(y)) = 0 for all y ∈ Y .
This implies that limk→∞ u(y)fnk

(φ(y)) = 0 for all y ∈ Y since u is
a complex-valued bounded function on Y . Therefore, g(y) = 0 for all
y ∈ Y and so g = 0.

Conversely, assume that every bounded sequence {fn}∞n=1 in the Ba-
nach algebra (Lip(X, d), ‖ · ‖Lip(X,d)) which converges to the function 0
uniformly on totally bounded subsets of X has a subsequence {fnk

}∞k=1
such that {T (fnk

)}∞k=1 converges to the function 0 in (Lip(Y, ρ), ‖ ·
‖Lip(Y,ρ)). Let {fn}∞n=1 be a bounded sequence in (Lip(X, d), ‖·‖Lip(X,d)).
By Lemma 4.4, there exist a strictly increasing function γ : N → N and
a function f ∈ Lip(X, d) such that {fγ(k)}∞k=1 converges to the function
f uniformly on totally bounded subsets of X. Hence, {fγ(k) − f}∞k=1
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converges to the function 0 uniformly on totally bounded subsets of X.
Thus, there exists a strictly increasing function η : N → N such that

lim
k→∞

‖T (fη(γ(k)) − f)‖Lip(Y,ρ) = 0.

For each k ∈ N, set nk = (η ◦ γ)(k). Then {fnk
}∞k=1 is a subsequence of

{fn}∞n=1 such that

lim
k→∞

‖T (fnk
)− T (f)‖Lip(Y,ρ) = 0.

Therefore, T = uCφ is compact. �
Now we are ready to obtain an another generalization of [4, Theorem

4.3] as follows.

Theorem 4.6. Let (X, d) and (Y, ρ) be metric spaces, let u be a complex-
valued function on Y , let φ be a map from Y to X, let φ(coz(u)) be
totally bounded in (X, d) and let T = uCφ be a weighted composition
operator from Lip(X, d) to Lip(Y, ρ). Then T is compact if and only if

limu(x)d(φ(x),φ(y))ρ(x,y) = 0 when d(φ(x), φ(y)) tends to 0.

Proof. We first assume that T = uCφ is compact. Suppose that there
exist ε > 0 and two sequence {xn}∞n=1 and {yn}∞n=1 in Y with xn 6= yn for

all n ∈ N and limn→∞ d(φ(xn), φ(yn)) = 0, but |u(xn)|d(φ(xn),φ(yn))
ρ(xn,yn)

≥ ε

for all n ∈ N. For each n ∈ N we define the function fn : X → C by

fn(t) =

{
d(t, φ(yn)) d(t, φ(yn)) ≤ d(φ(xn), φ(yn)),

d(φ(xn), φ(yn)) d(t, φ(yn)) ≥ d(φ(xn), φ(yn)),

for all t ∈ X. It is easy to see that ‖fn‖X ≤ d(φ(xn), φ(yn)) and
p(X,d)(fn) ≤ 1 for all n ∈ N. Then {fn}∞n=1 is a bounded sequence
in Lip(X, d) which converges to the function 0 uniformly on X and so
converges to the function 0 uniformly on totally bounded subsets of X.
By Theorem 4.5 and the compactness of T , there exists a subsequence
{fnk

}∞k=1 of {fn}∞n=1 such that {T (fnk
)}∞k=1 converges to the function 0

in (Lip(Y, ρ), ‖ · ‖Lip(Y,ρ)). Hence, there exists a positive integer N such
that

p(Y,ρ)(T (fnN )) + ‖T (fnN )‖Y = ‖T (fnN )‖Lip(Y,ρ) <
ε

2
.

This implies that

|u(xnN )|
d(φ(xnN ), φ(ynN ))

ρ(xnN , ynN )
=

|T (fnN )(xnN )− T (fnN )(ynN )|
ρ(xnN , ynN )

≤ p(Y,ρ)(T (fnN ))

<
ε

2
,

which is a contradiction.
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Conversely, suppose that limu(x)d(φ(x),φ(y))ρ(x,y) = 0 when d(φ(x), φ(y))

tends to 0. Let {fn}∞n=1 be a bounded sequence in (Lip(X, d), ‖·‖Lip(X,d))
that converges uniformly to the function 0 on totally bounded subsets
of X. Note that the existence of such sequence {fn}∞n=1 in Lip(X, d) is
guaranteed by Lemma 4.4. Let M > 0 with ‖fn‖Lip(X,d) < M for all
n ∈ N. Take

C = C(u, φ). (4.11)

Since φ(coz(u)) is totally bounded in (X, d) and T = uCφ is a weighted
composition operator, we deduce that diam(φ(coz(u))) < ∞, T is a
bounded linear operator and C ≤ ‖T‖(1+diam(φ(coz(u)))) by Theorem
2.5. Let ε > 0 be given.Then there exists δ > 0 such that

|u(x)|d(φ(x), φ(y))
ρ(x, y)

<
ε

2M
, (4.12)

whenever x, y ∈ Y with 0 < d(φ(x), φ(y)) < δ. Since φ(coz(u)) is
totally bounded in (X, d), the sequence {fn}∞n=1 converges uniformly to
the function 0 on φ(coz(u)). This implies that {fn ◦ φ}∞n=1 converges
uniformly to the function 0 on coz(u). Since u is bounded complex-
valued function on Y , we deduce that {Tfn}∞n=1 converges uniformly to
the function 0 on coz(u) and so on Y . Hence, there exists N ∈ N such
that for each n ∈ N with n ≥ N , we have

|fn(φ(y))| <
ε

A
(4.13)

for all y ∈ coz(u), where A = 6(1 + 2C
δ + p(Y,ρ)(u)) and

‖T (fn)‖Y <
ε

3
. (4.14)

Let n ∈ N with n ≥ N . Suppose that x, y ∈ coz(u) with φ(x) 6= φ(y).
Then we have

|T (fn)(x)− T (fn)(y)|
ρ(x, y)

=
|u(x)fn(φ(x))− u(y)fn(φ(y))|

ρ(x, y)

≤ |fn(φ(x))− fn(φ(y))|
ρ(x, y)

|u(x)|

+
|u(x)− u(y)|

ρ(x, y)
|fn(φ(y))|

<
|fn(φ(x))− fn(φ(y))|

d(φ(x), φ(y))

d(φ(x), φ(y))

ρ(x, y)
|u(x)|

+
ε

6
,
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by (4.13). If 0 < d(φ(x), φ(y)) < δ, then

|T (fn)(x)− T (fn)(y)|
ρ(x, y)

≤ p(X,d)(fn)
ε

2M
+
ε

6

≤ ‖fn‖Lip(X,d)
ε

2M
+
ε

6

<
2ε

3
,

by (4.12). If d(φ(x), φ(y)) ≥ δ, then

|T (fn)(x)− T (fn)(y)|
ρ(x, y)

≤ |fn(φ(x))|+ |fn(φ(y))|
δ

C +
ε

6

<
2Cε

δA
+
ε

6

<
2ε

3
,

by (4.11).
Suppose that x, y ∈ coz(u) with x 6= y and φ(x) = φ(y). Then

|T (fn)(x)− T (fn)(y)|
ρ(x, y)

≤ |u(x)− u(y)|
ρ(x, y)

|fn(φ(y))|

<
2ε

3
,

by (4.13).
Suppose that x ∈ coz(u) and u(y) = 0. Then

|T (fn)(x)− T (fn)(y)|
ρ(x, y)

=
|u(x)fn(φ(x))|

ρ(x, y)

=
|u(x)− u(y)|

ρ(x, y)
|fn(φ(x))|

<
2ε

3
,

by (4.13).
Suppose that u(x) = 0 and y ∈ coz(u). By similar to the argument

above, we have

|T (fn)(x)− T (fn)(y)|
ρ(x, y)

<
2ε

3
.

Suppose that x, y ∈ Y with x 6= y and u(x) = u(y) = 0. Then

|T (fn)(x)− T (fn)(y)|
ρ(x, y)

= 0.
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Hence,
|T (fn)(x)− T (fn)(y)|

ρ(x, y)
<

2ε

3
for all x, y ∈ Y with x 6= y.This

implies that

p(Y,ρ)(T (fn)) <
2ε

3
. (4.15)

From (4.14) and (4.15), we have

‖T (fn)‖Lip(Y,ρ) < ε,

for all n ∈ N with n ≥ N . Hence, limn→∞ ‖T (fn)‖Lip(Y,ρ) = 0. There-
fore, T is compact by Theorem 4.5. �

Note that in the sufficiency part of Theorem 4.6, we can not remove
the totally boundedness of φ(coz(u)) in (X, d) in general. To show this
assertion we need the following lemmas.

Lemma 4.7. Let (X, d) and (Y, ρ) be metric spaces and let φ be a uni-

formly continuous mapping from (Y, ρ) to (X, d). Then lim d(φ(x),φ(y))
ρ(x,y) =

0 when d(φ(x), φ(y)) tends to 0 if and only if φ is supercontractive from
(Y, ρ) to (X, d).

Proof. We first assume that lim d(φ(x),φ(y))
ρ(x,y) = 0 when d(φ(x), φ(y)) tends

to 0. Let ε > 0 be given. Then there exists δ1 > 0 such that d(φ(x),φ(y))
ρ(x,y) <

ε, when x, y ∈ Y with 0 < d(φ(x), φ(y)) < δ1. Since φ is a uniformly
continuous mapping from (Y, ρ) to (X, d), we deduce that there exists
δ > 0 such that d(φ(s), φ(t)) < δ1, when s, t ∈ Y with ρ(s, t) < δ.
Suppose that x, y ∈ Y with 0 < ρ(x, y) < δ. Then d(φ(x), φ(y)) < δ1.

If φ(x) = φ(y), then d(φ(x),φ(y))
ρ(x,y) = 0 < ε. If 0 < d(φ(x), φ(y)) < δ1,

then by the argument above, we have d(φ(x),φ(y))
ρ(x,y) < ε. Therefore, φ is

supercontractive from (Y, ρ) to (X, d).
We now assume that φ is supercontractive. Let ε > 0 be given.

Then there exists δ0 > 0 such that d(φ(x),φ(y))
ρ(x,y) < ε when x, y ∈ Y with

0 < ρ(x, y) < δ0. Take δ = εδ0 and assume that 0 < d(φ(x), φ(y)) < δ

when x, y ∈ Y . If 0 < ρ(x, y) < δ0, then
d(φ(x),φ(y))

ρ(x,y) < ε. If ρ(x, y) ≥ δ0,

then d(φ(x),φ(y))
ρ(x,y) ≤ d(φ(x),φ(y))

δ0
< δ

δ0
= ε. Therefore, lim d(φ(x),φ(y))

ρ(x,y) = 0

when d(φ(x), φ(y)) tends to 0. Hence, the proof is complete. �
Lemma 4.8. Let (X, d) and (Y, ρ) be metric spaces, let φ be a Lipschitz
mapping from (Y, ρ) to (X, d) and let u ∈ Lip(Y, ρ) with |u(y)| = 1 for
all y ∈ Y . Then Cφ : Lip(X, d) → Lip(Y, ρ) is compact if and only if
uCφ : Lip(X, d) → Lip(Y, ρ) is compact.

Proof. Since u ∈ Lip(Y, ρ) and |u(y)| = 1 for all y ∈ Y , we deduce
that 1

u ∈ Lip(Y, ρ) and | 1u(y)| = 1 for all y ∈ Y . It is easy to see
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that if {fn}∞n=1 be a sequence in Lip(X, d), then {fn ◦ φ}∞n=1 converges
in (Lip(Y, ρ), ‖ · ‖Lip(Y,ρ)) if and only if {u · (fn ◦ φ)}∞n=1 converges in
(Lip(Y, ρ), ‖ · ‖Lip(Y,ρ)). This implies that Cφ is compact if and only if
uCφ is compact. �

Theorem 4.9. Let (X, d) be a metric space, let φ be a supercontractive
Lipschitz mapping from (X, d) to (X, d) such that φ(X) is not totally
bounded in (X, d) and let u ∈ Lip(X, d) with |u(x)| = 1 for all x ∈ X.
Then T = uCφ is a weighted composition operator from Lip(X, d) to
Lip(X, d) which is not compact.

Proof. By Lemma 4.7, lim d(φ(x),φ(y))
ρ(x,y) = 0 when d(φ(x), φ(y)) tends to

0. This implies that limu(x)d(φ(x),φ(y))ρ(x,y) = 0 when d(φ(x), φ(y)) tends to

0 since |u(x)| = 1 for all x ∈ X. Since φ(X) is not totally bounded in
(X, d), Cφ is not compact operator from Lip(X, d) to Lip(X, d) by [6,
Theorem 1.1]. Hence, T = uCφ is not compact by Lemma 4.8. �

In the following examples we give a metric space (X, d), a supercon-
tractive Lipschitz mapping φ from (X, d) to (X, d) and a complex-valued
function u on X satisfying the conditions of Theorem 4.9.

Example 4.10. Let {zn}n∈Z be an unbounded sequence in C\{0} that
|zm − zn| ≥ 1 for all m,n ∈ Z with m 6= n. Let X = {zn : n ∈ Z} and d
be the Euclidean metric on X. Define the map φ : X → X by

φ(z) = z (z ∈ X).

It is easy to see that φ is a supercontractive Lipschitz mapping from
(X, d) to (X, d) and φ(X) is not totally bounded in (X, d). Let T be the
unit circle in the complex plane C and let λ ∈ T. Define the function
uλ : X → C by

uλ(z) =
λz

|z|
(z ∈ X).

Then for each z, w ∈ X with z 6= w, we have

|uλ(z)− uλ(w)|
d(z, w)

≤ |λz
|z|

− λw

|w|
| ≤ 2.

Hence, uλ is a Lipschitz function on (X, d). Moreover, |uλ(z)| = 1 for all
z ∈ X. It is clear that Tλ = uλCφ is a weighted composition operator
from Lip(X, d) to Lip(X, d).

Example 4.11. Let X = { 1
n : n ∈ Z\{0}} and d be the discrete metric

on X. Define the map φ : X → X by

φ(x) = x (x ∈ X).
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Then φ is a supercontractive Lipschitz mapping from (X, d) to (X, d)
and φ(X) is not totally bounded in (X, d). Let λ ∈ T and define the
function uλ : X → C by

uλ(x) = λ sgn(x) (x ∈ X).

Then uλ is a complex-valued Lipschitz function on (X, d) and |uλ(x)| = 1
for all x ∈ X. It is clear that Tλ = uλCφ is a weighted composition
operator from Lip(X, d) to Lip(X, d).

As a consequence of Theorem 4.6, we obtain the following result which
is generalization of [4, Theorem 4.5(ii)].

Theorem 4.12. Let (X, d) and (Y, ρ) be metric spaces, let u be a complex-
valued function on Y , let φ be a map from Y to X, let φ(coz(u)) be
totally bounded in (X, d) and let T = uCφ be a weighted composition
operator from Lip(X, d) to Lip(Y, ρ). If φ is supercontractive on coz(u),
then T is compact.

Proof. Assume that φ is supercontractive on coz(u). Let ε > 0 be
given. Then there exists a positive number δ0 with δ0 < 1 such that
d(φ(x),φ(y))

ρ(x,y) < ε
1+∥u∥Lip(Y,ρ)

when x, y ∈ coz(u) with 0 < ρ(x, y) < δ0. Take

δ = εδ0
1+∥u∥Lip(Y,ρ)

and assume that x, y ∈ Y with 0 < d(φ(x), φ(y)) < δ.

If x, y ∈ coz(u) with 0 < ρ(x, y) < δ0, then

|u(x)|d(φ(x), φ(y))
ρ(x, y)

≤ ‖u‖Y
d(φ(x), φ(y))

ρ(x, y)

< ‖u‖Y
ε

1 + ‖u‖Lip(Y,ρ)
< ε.

If x, y ∈ coz(u) with ρ(x, y) ≥ δ0, then

|u(x)|d(φ(x), φ(y))
ρ(x, y)

≤ ‖u‖Y
d(φ(x), φ(y))

δ0

<
‖u‖Y εδ0

δ0(1 + ‖u‖Lip(Y,ρ))
< ε.
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If x ∈ coz(u) and u(y) = 0, then

|u(x)|d(φ(x), φ(y))
ρ(x, y)

=
|u(x)− u(y)|

ρ(x, y)
d(φ(x), φ(y))

< p(Y,ρ)(u)δ

=
p(Y,ρ)(u)εδ0

1 + ‖u‖Lip(Y,ρ)
< ε.

If u(x) = 0 and y ∈ coz(u), then

|u(x)|d(φ(x), φ(y))
ρ(x, y)

= 0 < ε.

Hence, limu(x)d(φ(x),φ(y))ρ(x,y) = 0 when d(φ(x), φ(y)) tends to 0. Therefore,

T is compact by Theorem 4.6. �

The following example shows that the converse of Theorem 4.12, is
not valid and Theorem 4.6 is an extension of [2, Theorem 11] for α = 1.

Example 4.13. Let X = (−2, 2) and let d be the Euclidean metric on
X. Define the function u : X → C by

u(x) = x (x ∈ X).

Then u ∈ Lip(X, d). Define the map φ : X → X by

φ(x) = sgn(x) (x ∈ X).

It is easy to see that C(u, φ) < 2. Hence, T = uCφ is a weighted
composition operator on Lip(X, d), by Theorem 2.4. Moreover, it is

clear that limu(x)d(φ(x),φ(y))ρ(x,y) = 0 when d(φ(x), φ(y)) tends to 0. Since

φ(coz(u)) = {−1, 1}, we deduce that φ(coz(u)) is a totally bounded set
in (X, d). Therefore, T is compact by Theorem 4.6.

On the other hand,

d(φ( 1n), φ(
−1
n ))

d( 1n ,
−1
n )

=
2
2
n

= n,

for all n ∈ N with n ≥ 2. Hence, φ is not supercontractive on coz(u).

We now generalize [4, Theorem 4.5(i)] as the following.

Theorem 4.14. Let (X, d) and (Y, ρ) be metric spaces, let u be a complex-
valued function on Y , let φ be a map from Y to X, let φ(coz(u)) be
totally bounded in (X, d) and let T = uCφ be a weighted composition
operator from Lip(X, d) to Lip(Y, ρ). If T is compact, then φ is super-
contractive on compact subsets of coz(u).
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Proof. Suppose that T is compact. By Theorem 4.6, limu(x)d(φ(x),φ(y))ρ(x,y) =

0 when d(φ(x), φ(y)) tends to 0. Let K be a nonempty compact subset
of coz(u). Let ε > 0 be given. Take C = inf{|u(y)| : y ∈ K}. The
continuity of u on coz(u) implies that C > 0. Then there exists δ1 > 0
such that

|u(x)|d(φ(x), φ(y))
ρ(x, y)

< Cε, (4.16)

when x, y ∈ Y with 0 < d(φ(x), φ(y)) < δ1. By Corollary 2.6, φ is a Lip-
schitz mapping from (K, ρ) to (X, d) and so φ is a uniformly continuous
mapping from (K, ρ) to (X, d). This implies that there exists δ > 0 such
that d(φ(s), φ(t)) < δ1 when s, t ∈ K with ρ(s, t) < δ. Suppose that
x, y ∈ K with 0 < ρ(x, y) < δ. Then d(φ(x), φ(y)) < δ1. If φ(x) = φ(y),

then d(φ(x),φ(y))
ρ(x,y) = 0 < ε. If 0 < d(φ(x), φ(y)) < δ1, then we have

d(φ(x), φ(y))

ρ(x, y)
≤ |u(x)|d(φ(x), φ(y))

Cρ(x, y)
<
Cε

C
= ε,

by (4.16). Therefore, φ is supercontractive from (K, ρ) to (X, d) and the
proof is complete. �
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