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ABSTRACT. In this paper, we study weighted composition operators
between Lipschitz algebras of complex-valued bounded functions on
metric spaces, not necessarily compact. We give necessary and suf-
ficient conditions for the injectivity and the surjectivity of these
operators. We also obtain sufficient and necessary conditions for a
weighted composition operator between these spaces to be compact.
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1. INTRODUCTION AND PRELIMINARIES

Let X be a Hausdorff space. We denote by C(X) the set of all complex-
valued continuous functions on X. Then C(X) is a commutative com-
plex algebra with unit 1x, the constant function on X with value 1. The
set of all bounded functions in C(X) is denoted by C?(X). It is known
that C®(X) is a unital commutative complex Banach algebra with unit
1x when equipped with the uniform norm

I£llx = sup{|f(2)] : 2 € X} (f € C*(X)).

Let X and Y be Hausdorff spaces and let S(X) and S(Y') be complex
linear subspaces of C(X) and C(Y), respectively. A map T': S(X) —
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S(Y) is called a weighted composition operator if there exist a complex-
valued function v on Y, not necessarily continuous, and a map ¢ : ¥ —
X such that T(f)(y) = u(y) f(¢(y)) forall f € S(X)andy € Y. Then T
is denoted by uC, and called the weighted composition operator induced
by u and ¢. Clearly, uC,, is a linear operator. In the case u = 1y, the
weighted composition operator uC, reduces to the composition operator
Co.
¢Let (X,d) and (Y, p) be metric spaces and K be a nonempty subset
of Y. Amap ¢ : K — X is called a Lipschitz mapping from (K, p) to
(X,d) if there exists a constant C' such that d(p(z),p(y)) < Cp(zx,y)
forall z,y € K. A map ¢ : K — X is called a supercontractive mapping
from (K, p) to (X,d) if for each ¢ > 0, there exists § > 0 such that
d(e(z),e(y))/p(z,y) < e whenever z,y € K with 0 < p(z,y) < 9.

Let (X,d) be a metric space. A function f : X — C is called a
complex-valued Lipschitz function on (X,d) if f is a Lipschitz mapping
from (X,d) to the Euclidean metric space C. We denote by p(x,aq)(f)
the constant Lipschitz of f, i.e.,

&S0 e x4

We denote by Lip(X, d) the set of all complex-valued bounded Lipschitz
functions on (X,d). Then Lip(X,d) is a complex subalgebra of C?(X)

containing 1x. Moreover, Lip(X, d) is a Banach space with the Lipschitz
norm

P(x.d) (f) = sup{

£l = max{[|fl|x, pxa)(f)}  (f €Lip(X,d))

and a commutative unital complex Banach algebra with the Lipschitz
algebra norm

| fllipx,a) = Ifllx + pxa)(f)  (f € Lip(X,d)).

These algebras were first introduced by Sherbert in [9, 10]. Note that
Lipschitz algebras are semisimple.

Let (X, d) be a pointed metric space with a basepoint designated by
xo. We denote by Lipy(X,d) the set of all complex-valued Lipschitz
functions f on (X, d) for which f(z9) = 0. Then Lip,y(X, d) is a Banach
space with the p(x q)(-)-norm.

Kamowitz and Scheinberg in [7] proved that a composition endo-
morphism C,, of Lip(X,d) is compact if and only if ¢ is a supercon-
traction from (X,d) to (X,d) whenever (X,d) is a compact metric
space. Jiménez-Vargas and Villegas-Vallecillos in [6] generalized some
results of [7] by omitting the compactness condition of considered metric
spaces. Chen, Li, R. Wang and Y.-S. Wang in [2] characterized compact
weighted composition operators between spaces of scalar-valued Lips-
chitz functions. Botelho and Jamison in [1] and Esmaeili and Mahyar
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in [3] studied weighted composition operators between spaces of vector-
valued Lipschitz functions. Golbaharan and Mahyar in [4] provided a
complete description of weighted composition operators on the Lips-
chitz algebras Lip(X,d) when (X, d) is a compact metric space. They
also gave necessary and sufficient conditions for the injectivity and the
surjectivity of these operators and established a necessary and sufficient
condition for a weighted composition operator on Lip(X,d) to be com-
pact.

In this paper, we provide a complete description of weighted compo-
sition operators between Lipschitz algebras of complex-valued bounded
functions on metric spaces, not necessarily compact. We generalized
some obtained results in [4].

2. SOME PROPERTIES OF WEIGHTED COMPOSITION OPERATORS

For a complex-valued function v on a nonempty set Y, we denote by
coz(u) the set of all y € Y for which u(y) # 0.

Let (X,d) and (Y, p) be metric spaces. It is clear that if u belongs to
Lip(Y, p) and ¢ is a Lipschitz mapping from (Y, p) to (X, d), then uC,
is a weighted composition operator from Lip(X,d) to Lip(Y,p). The
following example shows that there exists a nonzero weighted composi-
tion operator uCy, from Lip(X, d) to Lip(Y, p) where ¢ is not a Lipschitz
mapping from (Y, p) to (X, d).

Example 2.1. Let X = (—00,00), let d be the Euclidean metric on X,
let Y = {1 :n € Z\{0}} and let p be the Euclidean metric on Y. Define
the map ¢ : Y — X by

=2n+1,

for all n € N. Define the function u : Y — C by

uy)=y  (yeY).
Then u is a bounded complex-valued Lipschitz function on Y and

(@), (y))

cx,yeY,x £y} <3.
p(z,y)

sup{|u(z)]
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Set T' = uCy,. We show that T'(f) € Lip(Y, p) for all f € Lip(X,d). Let
f € Lip(X,d). Then for each z,y € Y with x # y, we have

T(f) (@) =T W) _ |ul@)flelx) —uy) fley))]

p(@.9) pla,y)
< |u(@)] |f(p(x)) = fle)l dle(z), v(y))
- d(p(z), ¢(y)) p(x,y)
" !f(w(y))lw

<3px,a)(f) + I flx
< A fllLip(x,d)-

This implies that T'(f) is a Lipschitz function on Y. On the other hand,

IT(H @) = @) f (eI < lully [ fllx;

for all y € Y. Therefore, T'(f) € Lip(Y, p) and so T' = uC), is a weighted
composition operator from Lip(X,d) to Lip(Y, p).

Theorem 2.2. Let (X,d) and (Y, p) be metric spaces, let u be a complez-
valued function on 'Y and let ¢ be a map from'Y to X. Suppose that
T = uC,, is a weighted composition operator from Lip(X, d) to Lip(Y, p).
Then u € Lip(Y,p) and T is a bounded linear operator. Moreover, if
ly € T(Lip(X,d)), then u(y) # 0 for ally € Y.

Proof. Since 1x € Lip(X,d) and T is a weighted composition operator,
we have v = T(1x) and so u € Lip(Y,p). Let {f,}>2, be a sequence
in Lip(X, d) that converges to the function 0 in (Lip(X,d), || - [|Lip(x,q))
and {T'(fn)}>2, converges to a function ¢g € Lip(Y, p) in (Lip(Y, p), || -
[Lip(v,p))- Since the uniform norm is weaker than the Lipschitz algebra
norm, we have lim,_,o fn(p(y)) = 0 and lim,,—, T'(fn)(y) = g(y) for all
y € Y. The boundedness of u implies that lim,, o u(y)(fn(©(y))) =0
for all y € Y. Therefore, g = 0 and by the closed graph theorem T is
continuous and so bounded.

We now assume that 1y € T'(Lip(X, d)). Then there exists a function
f in Lip(X,d) such that T(f) = 1y. Hence, u(y)f(¢(y)) = 1 for all
yeY and so u(y) #0 forall y € Y. O

Notation 2.3. Let (X, d) and (Y, p) be metric spaces, let u be a complex-
valued function on Y and let ¢ be a map from Y to X. We denote

d(e(x), ¢(y))
p(z,y)

Here, we give a sufficient condition for the operator 7' = uCy, to be a
weighted composition operator from Lip(X,d) to Lip(Y, p).

C(u, ) = sup{|u(z)] rz,y €Y, £ yh
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Theorem 2.4. Let (X,d) and (Y, p) be metric spaces, let u be a complez-
valued function on'Y and let ¢ be a map from'Y to X. If u € Lip(Y, p)
and C(u,p) < oo, then T = uCy, is a weighted composition operator
from Lip(X,d) to Lip(Y,p) and ||T|| < C(u, ) + [[ullLip(y,p)-

Proof. Suppose that u € Lip(Y, p) and C(u, p) < co. Let f € Lip(X,d).
Then for each z,y € Y with ¢(x) # ¢(y), we have

7)) =T _ ulz)f(e) = uly) o))l
o(xz,y) p(z,y)
< Ju(z) L&) = FeW)l dle (@), ¢ (y)
B d(p(x), ¢(y)) p(e,y)
Ot

< C(u, 0)px,a)(f) + 1 f I xpev,p)(w).
Moreover, for each z,y € Y with = # y and ¢(z) = ¢(y), we have

!T(f)(i)(;yT)(f)(y)\ _ \U(f;)(;;)(y)\,f((p(ym < Py (@)[|f ]l x-

Therefore, T'(f) is a Lipschitz function on (Y, p).
On the other hand,

T W) = [u)f )] < llully 1 fllx,
for all y € Y. Hence, T(f) € Lip(Y, p) and
1T () ipv,p) < lully £ llx + Cu, @)pix,a) () + 1 fllxpey,p) (@)
< (Cus ) + lullLipv,p) 1 f lipx,a) -

Therefore, T'is bounded and ||T'|| < C(u, )+||u[|Lip(v,p). This completes
the proof. O

Theorem 2.5. Let (X,d) and (Y, p) be metric spaces, let u be a complez-
valued function on 'Y and let ¢ be a map from'Y to X. Suppose that
diam(¢(coz(u))) < oo and T = uCy, is a weighted composition operator
from Lip(X,d) to Lip(Y,p). Then

Clu, ) < |TI[(1 + diam(p(coz(u))))-
Proof. Let x,y € coz(u) with « # y. Define the function f, : p(coz(u)) —
R by
fy() = d(t, o(y)) (8 € p(coz(u))). (2.1)
Then || fyllp(con(uy) < diam(p(coz(u))) and
1£,(5) = Fo(8)] = Id(s, 9()) — d(t, 9(w))] < d(s,1),

for all s,t € p(coz(u)). By Sherbert’s extension theorem [10, Proposition
1.4], there exists a function Fy, : X — R with Fy, |, (conu))= fy> [Fyllx <
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diam(p(coz(u))) and |Fy(s) — Fy(t)| < d(s,t) for all s,t € X. Hence,
F, € Lip(X,d) and

1y llLip(x,a) < diam(p(coz(u))) + 1. (2.2)
By (2.1) and (2.2), we have

d(p(x),o(y) _ |ule)fy(e(z)

)
=) (@)

< Pv,p) (T(Fy))

< |IT(Fy) ILip(v,p)

< NI FyllLipx.a)

< |71 + diam(p(coz(u)))).

Therefore,
C(u, ) < || T]|(1 + diam(p(coz(u)))

Hence, the proof is complete. O

Corollary 2.6. Let (X,d) and (Y, p) be metric spaces, let u be a complez-
valued function on Y, let ¢ be a map from Y to X such that
diam(¢(coz(u))) < oo and let T = uCy, be a weighted composition oper-
ator from Lip(X,d) to Lip(Y,p). Then ¢ is a Lipschitz mapping from
(K, p) to (X,d) for each nonempty compact subset K of coz(u).

Proof. Let K be a nonempty compact subset of coz(u). Take C' =
inf{|u(y)| : y € K}. The continuity of v on coz(u) implies that C' > 0.
Suppose that z,y € K with z # y. By Theorem 2.5, we deduce that

d(e(x), e(y)) _ |ITII(1 + diam(e(con(u))))
plz,y)  ~ C '

Hence, ¢ is a Lipschitz mapping from (K, p) to (X, d). O

Theorem 2.7. Let (X,d) and (Y, p) be metric spaces, let u be a complez-
valued function on'Y, let ¢ be a map from'Y to X and let T' = uCy, be
a weighted composition operator from Lip(X,d) to Lip(Y, p). Then ¢ is
continuous on coz(u).

Proof. Suppose that there exists y € coz(u) such that ¢ is not continuous
at y. Then there exist a positive number ¢ and a sequence {y,}>° ; in
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Y such that p(yn,y) < 1 and d(¢(yn), ¢(y)) > € for all n € N. Define
the function h : X — C by
h(z) = max{0,1 — } (x € X).

Clearly, h € Lip(X,d). Since lim,o0yn, = y in (Y,p) and T'(h) €
Lip(Y, p), we deduce that

lim T'(h)(y,) = T(h)(y),

d(e(y), z)
&

that is o
Jimu(yn)h(e(yn)) = u(y)h(e(y)). (2:3)
Since h(¢(yyn)) = 0 for all n € N, we have
nILI&u(yn)h(¢<yn)) =0. (2.4)

By (2.3) and (2.4), we get u(y)h(¢(y)) = 0 which is a contradiction
since u(y) # 0 and h(p(y)) = 1. Therefore, ¢ is continuous at every
y € coz(u) and the proof is complete. (]

3. INJECTIVITY AND SURJECTIVITY OF WEIGHTED COMPOSITION
OPERATORS

In this section, we give necessary and sufficient conditions for the in-
jectivity and the surjectivity of weighted composition operators between
Lipschitz algebras. We first obtain a generalization of [4, Theorem 3.2]
as the following.

Theorem 3.1. Let (X,d) and (Y, p) be metric spaces, let u be a complez-
valued function on'Y, let ¢ be a map from'Y to X and let T' = uC, be
a weighted composition operator from Lip(X,d) to Lip(Y,p). Then T is
injective if and only if ¢(coz(u)) is dense in X.

Proof. Suppose that ¢(coz(u)) is not dense in X. Choose x1 € X such
that dist(z1, p(coz(u))) > 0. Take ¢ = dist(z1, p(coz(u))). Then § > 0.
Define the function h,, s : X — C by
d(f”;’“")} (x € X).
Clearly hy, s € Lip(X,d). On the other hand, T'(hs, 5) = 0 and hy, 5(x1)
= 1. Hence, T' is not injective.

Conversely, suppose that ¢(coz(u)) is dense in X. Let f € Lip(X,d)
with T'(f) = 0. Assume that = € ¢(coz(u)) and choose y € coz(u)
such that x = ¢(y). Since u(y) # 0 and 0 = T'(f)(y) = w(y)f(¢(y)) =
u(y)f(x), we deduce that f(x) = 0. Hence, the continuous complex-
valued function f on X vanishes on the dense subset p(coz(u)) of X.
This implies that f =0 on X. Therefore, T is injective. U

ha, 5(x) = max{0,1 —
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We now give an extension of the sufficiency part of [4, Theorem 3.5].

Theorem 3.2. Let (X, d) and (Y, p) be metric spaces. Suppose that u is
a complez-valued function on'Y such that u(y) # 0 for ally € Y and % €
Lip(Y, p) . Let ¢ be a map fromY to X and let T = uCy, be a weighted
composition operator from Lip(X,d) to Lip(Y,p). If 1nf{w :
x,y €Y,z #y} >0, then T is surjective.

Proof. Suppose that

mf{w cx,y €Y, x #y} > 0. (3.1)

(
We can consider (p(Y'), d) as a metric space. Define the map ¢ : p(Y) —
Y by
Viey) =y (YeY).

Then ) is well-defined since ¢ is injective. Moreover, (3.1) implies that
1 is a Lipschitz mapping from (¢(Y),d) to (Y,p). Let g € Lip(Y,p).
Then £ 04 € Lip(¢(Y), d) since % € Lip(Y, p). By [11, Theorem 1.5.6],
there exists a function f € Lip(X,d) such that f = £ 04 on p(Y).
Hence,

T(f)(y) = u(y)fley) = U(y)(% o) (e(y) = 9(y)
for all y € Y. Therefore, T(f) = g and so T is surjective. O

Here, we obtain a generalization of the necessity part of [4, Theorem
3.5]. For this purpose, we need the following lemma.

Lemma 3.3. Let (X,d) and (Y, p) be metric spaces, let diam(Y') < oo,
let ¢ be a map from'Y to X and let S = C, be a composition operator
from Lip(X,d) to Lip(Y,p). If S is surjective, then ¢ is injective and

1nf{% z,yeY,x £y} >0.

Proof. Suppose that S is surjective. Let y € Y and define the function
gy:Y — C by

gy(2) = ply,2) (2 €Y).
Since diam(Y") < oo, we deduce that |g,(z)| < diam(Y’) for all z € Y,
gy is a complex-valued Lipschitz function on (Y, p) and py,,)(gy) < 1.
Hence, g, € Lip(Y, p) and ||gy||1ip(v,p) < diam(Y) + 1.

To prove the injectivity of ¢, we assume that z,y € Y with ¢(x) =
¢(y). Since g, € Lip(Y,p) and S is surjective, there exists a function
fy € Lip(X,d) such that g, = S(fy) = C,(fy) = fy o ¢. This implies
that

p(z,y)=gy(x)=S(fy)(x)=fy(e(x)) = fy(p(y) =S(fy)(y) =gy (y) =0,

and so ¢ = y. Hence, ¢ is injective.
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Define the map p' : Y x Y — R by
pl(z,y) =d(e(z),o(y) (z,y€Y).

Since d : X x X — R is a metric on X and ¢ : Y — X is injective, we
conclude that p’ is a metric on Y. We claim that Lip(Y, p) is a subset of
Lip(Y, p'). Suppose that g € Lip(Y, p). Then g is a bounded complex-
valued function on Y. The surjectivity of S implies that there exists a
function f € Lip(X,d) such that g = Cy(f). Let 2,y € Y with = # y.
Then

l9(x) —9(W)| _ [Co(f)(x) = Co(f)W)| _ [f(e(x)) = Fle®))]
P (x,y) d(p(z), p(y)) d(p(x
< px,a)(f) < 1 fllLipex,a)-

This implies that ¢ is a Lipschitz function on (Y,p’). Hence, g €
Lip(Y, p’) and so our claim is justified. Therefore, the map g — ¢ :
Lip(Y,p) — Lip(Y,p’) is an algebra homomorphism. Since Lip(Y, p)
and Lip(Y, p’) are unital semisimple commutative Banach algebras, we
deduce that the map mentioned is continuous linear mapping. Hence,
there exists a positive constant M such that

©
—
<
~—
~—

Hg”Lip(Y,p’) < MHg”Lip(Y,p)a

for all g € Lip(Y, p).
Let z,y € Y with x # y. Since g, € Lip(Y,p) and |gyl|Lipv,p) <
diam(Y) 4+ 1, we deduce that

gy(x) — gy (y

p'(@,y)
< M|lgyllLip(y,p) < M(diam(Y) + 1).
Take M/ = m Then M/ >0 and
/
dp@) o) _ _ P@y) gy
p(z,y) |9y(x) — gy(y)]
Hence,
d
inf{M cwyyeY,x £y > M >0,
p(z,y)
and so the proof is complete. O

Theorem 3.4. Let (X, d) and (Y, p) be metric spaces, let diam(Y") < oo,
let w be a complez-valued function on'Y, let ¢ be a map from'Y to X
and let T = uCy, be a weighted composition operator from Lip(X,d)
to Lip(Y, p). Suppose that T is surjective. If ¢ is Lipschitz mapping

or % € Lip(Y,p), then inf{w cx,y € Yo # yb > 0 and
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inf{|u(x )\% cx e K,yeY,x#y} >0, where K is a nonempty

compact subset of Y.

Proof. The surjectivity of T implies that u(y) # 0 for all y € Y since
ly € Lip(Y,p) and 1y = T(f1) = u-(fioy) for some f; € Lip(X,d). We
first assume that ¢ is a Lipschitz mapping from (Y, p) to (X,d). Then
fop e Lip(Y,p) for all f € Lip(X,d) and so Cy, is composition operator
from Lip(X,d) to Lip(Y, p). We now assume that 1 € Lip(Y, p). Then
fop= %T(f) e Lip(Y, p) for all f € Lip(X,d) and so C,, is composition
operator from Lip(X,d) to Lip(Y, p).

We claim that C, is surjective. Suppose that g € Lip(Y,p). Then
ug € Lip(Y, p). The surjectivity of T implies that ug = T'(f) for some
feLip(X,d) and so g = fop = Cy(f) for some f € Lip(X,d). Hence,
our claim is justified.

By Lemma 3.3, ¢ : Y — ¢(Y) is injective and

e (@) ey) .
inf{ oy yyeY,x#yt>0. (3.2)

We now assume that K is a nonempty compact subset of Y. Then
inf{lu(z)| : = € K} = |u(zx1)| for some x; € K. This implies that
()| LECLEWD >y ()| 220D for all ¢ € K, y € Y with @ # y.

p(z,y) p(z,y)
Hence, by (3.2) and |u(z1)| > 0, we have
. d(e(x), ¢(y))
inf{|u —:mEK,yEY,x Y
() 2272 “y)
e(@), o(y))
> |u(xq)|inf —:x,er,m Y
) inf( =2 #y)
> 0.
Therefore, the proof is complete. O

4. COMPACTNESS OF WEIGHTED COMPOSITION OPERATORS

Let (X, d) be a metric space, let ()?, J) be the completion of (X, d) and
let (Y, p) be a complete metric space. By [11, Proposition 1.7.1], every
Lipschitz mapping ¢ from (X, d) to (Y, p) has a Lipschitz extension @

from (X,d) to (Y, p) such that
pP),09)  ~ ~ 5~ ple(x), v(v))
—_— | , (= X7 = _— T
R B R
In fact $(Z) = limy, 00 (), where Z € X and {2,152, is a sequence
in X such that limy, o0 2, = 7 in (X,d). We assume that A = Lip(X, d)
and A = Lip(X,d). By [8, Lemma 2.8], A = {f : f € A} and the map

sup cx,y € Xx#yk
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f~ f:A— Ais an isometrical isomorphism from (A4, || - | Lip(x,d)) onto

A i )

Here we obtain an extension of [4, Theorem 4.3, whenever ¢ is a
Lipschitz mapping from (Y, p) to (X, d). For this purpose we need the
following lemma.

Lemma 4.1. Let (X,d) and (Y, p) be metric spaces, let A = Lip(X,d)
and B = Lip(Y, p) and let T : A — B be a linear mapping. Suppose that

()2 d) and (Y, p) are the completions of (X,d) and (Y, p), respectively,
A = Llp( c?) and B = Lip(Y,p). Define the map T:A— B by
T(f) = T(f) (f € A). Then the following statements hold.

(1) T is a linear mapping.

(2) T is bounded if and only if T is bounded. Moreover, |T|| = ||T||.
(3) T is compact if and only if T is compact.

Proof. Define the maps ¢ : A — AandU:B— B by
() =f (fed), Ug=3 (geB).

Then @ is an isometrical isomorphism from (A4, || - [|rip(x,q4)) onto (A,] -
~)) and W is an isometrical isomorphism from (B, || - [|ip(y,)) onto

||]:Jip()~(,d
(B, |- ”Lip(f/m)' It is clear that

T=UoTod
This implies that (1)-(3) hold. O

Theorem 4.2. Let (X,d) and (Y, p) be metric spaces such that (X,d)

and (}N/,[)) are compact. Let ¢ be a Lipschitz mapping from (Y, p) to
(X,d), let u be a complez-valued function on'Y and let T = uC, be a
weighted composition operator from Lip(X,d) to Lip(Y,p). Then T is

compact if and only if lim u(x)% = 0 when d(¢(x), ¢(y)) tends
to 0.

Proof. Define the map T: Lip()?, c?) — Lip(f/, p) by

T(f)=7(f)  (f €Lip(X,d)).
By Lemma 4.1, T is a bounded linear mapping. Since u € Lip(Y, p),
we have @ € Lip(Y, ). This implies that @ - (g o @) € Lip(Y, p) for all
g € Lip()z,(;lv) since @ : Y -5 X isa Lipschitz mapping from (~ Y,p)
o} ()NC ,J). Therefore uCy is a weighted compomtlon operator from
Lip(X,d) to Lip(Y,p). We claim that uCyz = T. Let g € Lip(X, d)
Then there exists a function f € Lip(X,d) such that g = f . Letjey
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and {yn}22, be a sequence in Y with lim, oy, = ¥ in (}7,[)') Then
lim, 00 0(yn) = @(y) in (X,d) and so lim, e f(p(yn)) = f(@©))

Since limy, o0 u(yn) = u(y), hence, limy, oo(u - (f o ¢))(yn) = (w- (fo
©))(y) and so limy, 00 T'(f)(yn) = (WC3)(y). Therefore,

o~ —~

T(f)(y) = wCs)(f)(Y)- (4.1)
Since (4.1) holds for all § € Y, we deduce that ﬂ}"/) = ﬂC@(]?). Hence,
T(g) = T(f) = T(f) = (@C;)(9). (4.2)

Since (4.2) holds for all g € Lip(X,d), we have T = uC3. Hence, our
claim is justified. N
We first assume that 7' is compact. By Lemma 4.1, T is compact.

According to [4, Theorem 4.3], we deduce that lim ﬂ(f)% =0

when d((Z), ¢(y)) tends to 0. Since

u(x)gﬁfﬂfglf&gzzzz m §)§£§K§QL§1§QZ
p(z,y) (T, 7)
for all z,y € Y with x # y, we conclude that

d(e(x), ¢(y))

lim u(x) (. 0) =0,
when d(¢(x), ¢(y)) tends to 0.
We now assume that
lim u(z) LEE:2W) (4.3)

p(,y)
when d(¢(z), ¢(y)) tends to 0. To prove compactness of T', by Lemma
4.1, it is enough to show that T is compact. Clearly, u € Lip(lN/, p). To
prove the compactness of f, by [4, Theorem 4.3], it is enough to show
that lim 5(5)% = 0 when d(3(Z), 3(7)) tends to 0.

Let € > 0 be given. By(4.3), there exists a §; > 0 such that

d(p(x), (y)) _ €
u(z)| DEL PN E 4.4
ua) AL < 2 (1.4
for all z,y € Y with 0 < d(¢(x),¢(y)) < 01. Choose § = %1. Let
Z,7 €Y with 0 < d(@(Z), 3(7)) < 8. There exist two sequences {2, }2_,
and {y, }>2, in Y such that lim,_ p(zp, ) = 0 and lim,, 00 p(yn, y) =

0 and so lim, o0 d(@(xy), (%)) = 0 and lim,— o0 d(©(yn), #(y)) = 0.
Hence, there exists N1 € N such that

(e (xn)s p(yn)) — d(@(@), 6@))] < 6,
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and 67(55(%;55@) < d(p(z

n),
0 < d(e(zn), p(yn)) < 26
(4.4), we have

©(yn)) for all n € N with n > Nj. Therefore,
= 01 for all n € N with n > Nj. Hence, by

d(e(xn), o(yn))

€
[u(zn)| a2 (4.5)
for all n € N with n > N;j. Since
1 d(@(@), 5(7)) d(p(n), (yn))
‘u(x)‘ ﬁ(%m@) - nll)r{.lo‘u(xn)’ p(xn7yn) ’
there exists No € N such that

P(Tns Yn) (33 @ 27

for all n € N with n > Ny. Let N = max{Nj, No}. Then (4.5) and (4.6)
hold for n = N and so

__d(@(@),%
(T, y)
This implies that lim u(x )%v@) = 0 when d(@(Z), 3()) tends to 0.

Therefore, T is compact and the proof is complete. O

We recall that the essential norm of a bounded linear operator 7' on
a Banach space (E, || - ||) is denoted by ||T'||. and defined by

IT||e = inf{||T — K|| : Kis a compact linear operator on E}.
For each « € (0, 1], the map d® : X x X — R defined by

d*(z,y) = (d(z,9))*, ((z,y) € X x X)
is a metric on X and the induced topology on X by d® coincides with
the induced topology on X by d.

For a weighted composition operator T' = uC,, from Lip(X,d®) to
Lip(X,d®), we obtain a lower bound for the essential norm ||| of
T, whenever ()? ,J) is a compact metric space, 0 < o < 1 and ¢ is a
Lipschitz mapping from (X, d) to (X, d).

Theorem 4.3. Let (X,d) be a metric space such that (X,d), the com-
pletion of (X,d), is compact. Let o € (0,1), let ¢ be a Lipschitz map-
ping from (X,d) to (X,d), let u be a complez-valued function on X
and let T = uCy, be a weighted composition operator from Lip(X,d*) to
Lip(X,d®). Then

d(e(x), ¢(y))

) <IT

limsup  |u(z)|(
d(p(2),p(y))—=0
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Proof. Define the map T : Lip()?, c?o‘) — Lip()z, Jo‘) by

T(H)=T(f) (f €Lip(X,d)).

By the argument given in the proof of Theorem 4.2, we deduce that T is
a weighted composition operator from Lip(X,d®) to Lip(X, d*) induced
by u and ¢. By [4, Theorem 5.1], we have

, o ABE), W)
timswp  [w(@)|(AEE 2@ ye 7, (47)
d(3(@),8(7)—0 d(7,7)
On the other hand,
||T”e = HTHE) (4‘8)

by [8, Proposition 2.13]. Since (X,d®) is a compact metric space and
T = 1];0,7 is a weighted composition operator from Lip(X,d®) to
Lip(X,d®), we deduce that

ga((ﬁ(%)7¢@/))5~ N‘% ~ 00
TG 2,y € X, T # gy} < oo,

by [4, Theorem 2.1]. This implies that

d*(p(x), ¢(y))
d*(z,y)

sup{[u(z)]

sup{|u(z)] r,y € Xom £y} <o

For each t > 0, set

d(e(x), (y))

B = (@) (S5

)¥rxy e X,z #y,0 <d(p(x),o(y) <t}

and

~ 1 AD2(@), 0(W) e~~~ s~ Ty
By = {a@) (L2 ye 5 56 %5 £ 5,0 < d3(3), 50)) < -
d(z,y)
By the argument above, we have sup E; < oo and sup Et < oo for all
t>0.
Let ¢ > 0 be given. If z,y € X with 0 < d(¢(z), ¢(y)) < t, then

d(p(x), o i~ d(p(x , o ~

(@) W) 0 _ gy AEBW) 0 5

Ju(@)|( () dy)

Hence,
sup E; < sup Ej. (4.9)
Since (4.9) holds for each ¢ > 0, we deduce that

inf{sup E; : t > 0} < inf{sup B : t > 0}.
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This implies that
limsup  |u(x)] M)@ < limsup |a(5)|(w)a.
d(e(2)¢(y)—0 d(z,y) HB(E).3(0) 0 d(%,7)
(4.10)
From (4.10), (4.7) and (4.8), we conclude that

. d(p(x), o
limsup  |u(x)| W) < |ITle.
d(p(@)p(y))—0 (z,y)

Hence, the proof is complete. O

We now give a generalization of [4, Corollary 4.2]. To this purpose
we need the following lemma.

Lemma 4.4. Let (X,d) be a metric space. Then every bounded se-
quence { fnply in (Lip(X,d), || - lLip(x,q0)) has a subsequence that con-
verges pointwise on X to a function f € Lip(X,d). Moreover, this
convergence is uniform on each totally bounded subset of X.

Proof. Let {fn}52, be a bounded sequence in (Lip(X,d), || - [|Lip(x,q))-
Since the norms || - [|rip(x,4) and || - [|as are equivalent on complex linear
space Lip(X, d), {fn}72 is a bounded sequence in Lip(X, d) with norm
|-llar- Let 0 ¢ X and Xo = XU{xo}. Define the map dp : Xox X9 — R
by

do(z,y) = min{d(z,y),2}  (v,y € X),
do(x, z0) = do(zo,y) = 1 (z,y € X),
do(.%'o,m()) = 0.

Then dj is a metric on Xy and Lip(Xo, dp) is a complex Banach space
with the norm p(x, 4,)(-). Define the map @ : Lip(X, d) — Lip,(Xo, do)
by
O(f)(x) = f(z) (zeX),  O(f)(x)=0.

By [11, Proposition 1.7.1 and Theorem 1.7.2], ® is a complex linear
isometry from (Lip(X,d), || - ||ar) onto (Lipy(Xo, do), P(x,,d0)())- Hence,
{®(fn)}>2, is a bounded sequence in Lipy(Xo, dp). By [6, Lemma 2.5],
there exists a subsequence {fn, }72, of {fn}o2; such that {®(f,,)}72,
converges pointwise on Xy and this convergence is uniform on all totally
bounded sets in (X, dy). Hence, there exists a function g in Lipy(Xo, do)
such that

g(y) = im &(fn,)(y),

for all y € X and {®(f,, )}, converges to the function g uniformly on
all totally bounded sets in (Xp,dp). The surjectivity of ® implies that
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there exists a function f in Lip(X,d) with ®(f) = g. Since ®(h)(x) =
h(zx) for all h € Lip(X,d) and = € X, we deduce that

fl@) = lim fo, (@),

for all z € X. Let F C X be a totally bounded set in (X,d) and let
e > 0 be given. Take ¢’ = min{e,1}. Then there exist z1,...,2, € E
such that

EC U?Zle(:L‘j,el).
It is easy to see that

E C U?:leo ($j,€).
Hence, FE is a totally bounded set in (Xg,dp). By the argument above,
{®(fn,)}32; converges uniformly on E to the function g. This implies
that {fn,}32, converges uniformly on E to the function f. Hence, the
proof is complete. O

Theorem 4.5. Let (X,d) and (Y, p) be metric spaces, let u be a complez-
valued function on'Y, let ¢ be a map from'Y to X and let T' = uCy, be
a weighted composition operator from Lip(X,d) to Lip(Y,p). Then T 1is
compact if and only if for each bounded sequence { f}22; in (Lip(X,d), ||
ILip(x,d)) which converges to the function O uniformly on totally bounded
subsets of X, there exists a subsequence { fn, }32, of {fu}plq such that
{T(fri) 32, converges to the function 0 in (Lip(Y, p), || - [|Lip(y,p))-

Proof. Suppose that T' = uC,, is a compact operator from Lip(X,d) to
Lip(Y, p) and {fn}52, is a bounded sequence in (Lip(X, d), || - [|Lip(x,q))
that converges uniformly to the function 0 on totally bounded subsets
of X. By the compactness of T, there exist a subsequence {fy, }3>, of
{fn}>, and a function g € Lip(Y, p) such that {T'(f,,)}3>, converges
to the function g in (Lip(Y,p), || - [lLip(v,p))- Since [|Ally < [[Al[Lip(v;p)
for all h € Lip(Y, p), the sequence {u(y)fn, (¢(y))}32, converges to g(y)
for all y € Y. On the other hand, for each y € Y the set {p(y)} is
totally bounded in (X, d). Hence, limj_,o fn, (¢(y)) =0 for all y € Y.
This implies that limy_,oo u(y) fn, (p(y)) = 0 for all y € Y since u is
a complex-valued bounded function on Y. Therefore, g(y) = 0 for all
y €Y and so g = 0.

Conversely, assume that every bounded sequence {f,}22; in the Ba-
nach algebra (Lip(X,d), || - ||Lip(x,q)) Which converges to the function 0
uniformly on totally bounded subsets of X has a subsequence { fy, }72
such that {T'(f,,)}?2, converges to the function 0 in (Lip(Y,p),| -
ILip(v,p))- Let {fn}neq be a bounded sequence in (Lip(X, d), || ||Lip(x,q))-
By Lemma 4.4, there exist a strictly increasing function v : N — N and
a function f € Lip(X,d) such that {f,x)}72, converges to the function
[ uniformly on totally bounded subsets of X. Hence, {f,u) — [},
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converges to the function 0 uniformly on totally bounded subsets of X.
Thus, there exists a strictly increasing function 7 : N — N such that

S (1T (fyyi) = lleipvip) = 0-

For each k € N, set ny, = (no~)(k). Then {f,, }3?2, is a subsequence of
{fn}>2, such that

T [7(fn,) = T(lluinr) = 0
Therefore, T' = uC, is compact. (]

Now we are ready to obtain an another generalization of [4, Theorem
4.3] as follows.

Theorem 4.6. Let (X,d) and (Y, p) be metric spaces, let u be a complez-
valued function on Y, let ¢ be a map from'Y to X, let p(coz(u)) be
totally bounded in (X,d) and let T = uCy, be a weighted composition
operator from Lip(X,d) to Lip(Y,p). Then T is compact if and only if

limu(m)% =0 when d(p(z),¢(y)) tends to 0.

Proof. We first assume that T' = uC, is compact. Suppose that there
exist € > 0 and two sequence {x,,}5°; and {y, }2>, in Y with z,, # y,, for
all n € N and lim,, o d((xy), ©(y,)) = 0, but ‘u(xn)’W > ¢

for all n € N. For each n € N we define the function f, : X — C by

f(ﬂ:{«aw%» d(t, o(yn)) < d((xn), @ (yn)),
" d(p(@n), ()t 9(ya)) = d((xn), 9(yn)).
(

for all ¢ € X. It is easy to see that [[fn]lx < d(p(zn),¢(yn)) and
px,d)(fn) < 1 for all n. € N. Then {f,};2; is a bounded sequence
in Lip(X, d) which converges to the function 0 uniformly on X and so
converges to the function 0 uniformly on totally bounded subsets of X.
By Theorem 4.5 and the compactness of T', there exists a subsequence
{frn 1724 of {fu}s2, such that {T'(f,,)}7>, converges to the function 0
in (Lip(Y; p), || - lip(v,p))- Hence, there exists a positive integer N such
that

€
Pev) (T (fun ) + 1T (Frn)lly = 1T (frn) lLinerp) < 5-
This implies that

(i) 22 )2 W) _ [T ) @) = T ) ()|
nN p(ﬂan,ynN) p(a:nN,ynN)

< Py,p) (T(an ))

A

€
57
which is a contradiction.
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Conversely, suppose that lim u(x)w = 0 when d(p(z), ¢(y))

tends to 0. Let {f,};2; be a bounded sequence in (Lip(X, d), |- [|Lip(x,q))
that converges uniformly to the function 0 on totally bounded subsets
of X. Note that the existence of such sequence {f,}2° in Lip(X,d) is
guaranteed by Lemma 4.4. Let M > 0 with || fullripx,q) < M for all
n € N. Take

C =C(u, ). (4.11)

Since ¢(coz(u)) is totally bounded in (X, d) and T' = uCy, is a weighted
composition operator, we deduce that diam(¢(coz(u))) < oo, T is a
bounded linear operator and C' < ||T'||(1+diam(y(coz(u)))) by Theorem
2.5. Let € > 0 be given.Then there exists § > 0 such that

dle(x),e(y) €
’u(x)’—p(x,y) < oup (4.12)

whenever z,y € Y with 0 < d(¢(x),p(y)) < d. Since p(coz(u)) is
totally bounded in (X, d), the sequence {f,,}°°; converges uniformly to
the function 0 on ¢(coz(u)). This implies that {f, o ¢}, converges
uniformly to the function 0 on coz(u). Since u is bounded complex-
valued function on Y, we deduce that {T'f,,}°°; converges uniformly to
the function 0 on coz(u) and so on Y. Hence, there exists N € N such
that for each n € N with n > N, we have

[ fule())] < % (4.13)

for all y € coz(u), where A = 6(1 + % + P(v,p)(u)) and
<
3

Let n € N with n > N. Suppose that x,y € coz(u) with ¢(x) # ¢(y).
Then we have

[ T(fn) () = T(fn) W) _ |u(@)fule(z))
(

p(z,y) p(@,y)

1T (fr)lly < (4.14)

+ = fale(y))]

Falo(@) — Falo@))] d(o@), o(5))
d(p(x), p(y)) p(z,y)

ju(@)|
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by (4.13). If 0 < d(p(z), ¢(y)) < 0, then
T (fn) (@) = T(fn) ()]

€ €
<pxa)(fa)o7r + =

p(,y) 2M 6
€ €
< anHLip(X,d)m + 6
2
3 )

by (4.12). If d(o(z), ¢(y)) > J, then

Z(f) (@) = TU)W _ (o@D [ fnle@)] - €
p(z,y) B 0 6

<205+§
0A 6
<25
3?

by (4.11).
Suppose that z,y € coz(u) with x # y and ¢(x) = ¢(y). Then

[ T(fa)(@) = T(fa) W) _ u(z) — uly)

|
Sy M)

<4
3
by (4.13).
Suppose that = € coz(u) and u(y) = 0. Then

T (fn) () = T(f) W) _ |u(@)fulo())|

p(x,y) p(x,y)
_ Ju(z) —u(y)]
p(x,y)

<25
3’

(e (2))]

by (4.13).
Suppose that u(xz) = 0 and y € coz(u). By similar to the argument
above, we have

T(fu)(@) = T(fa) )| _ 2¢
p(z,y)
Suppose that z,y € Y with x # y and u(z) = u(y) = 0. Then

IT(fn)(x) = T(fn) ()|
p(z,y)

=0.
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T(fn)(@) = T(fn) W)l
p(,y)

2
Hence, < ?6 for all z,y € Y with z # y.This

implies that
2e
p(Y,p)(T(fn)) < ? (4'15)

From (4.14) and (4.15), we have

1T (fr)llLip(y,p) < €

for all n € N with n > N. Hence, limy, o0 ||T(fn)llLip(v,p) = 0. There-
fore, T' is compact by Theorem 4.5. U

Note that in the sufficiency part of Theorem 4.6, we can not remove
the totally boundedness of ¢(coz(u)) in (X, d) in general. To show this
assertion we need the following lemmas.

Lemma 4.7. Let (X,d) and (Y, p) be metric spaces and let ¢ be a uni-

formly continuous mapping from (Y, p) to (X,d). Then lim W

0 when d(e(x), ¢(y)) tends to 0 if and only if ¢ is supercontractive from
(Y, p) to (X, d).

Proof. We first assume that lim % = 0 when d(¢(z), p(y)) tends

to 0. Let € > 0 be given. Then there exists §; > 0 such that W <

g, when z,y € Y with 0 < d(¢(x),¢(y)) < 61. Since ¢ is a uniformly
continuous mapping from (Y, p) to (X,d), we deduce that there exists
d > 0 such that d(p(s),¢(t)) < 41, when s,t € Y with p(s,t) < 6.
Suppose that z,y € Y with 0 < p(x,y) < . Then d(¢(x), ¢(y)) < 01.

If ¢(z) = ¢(y), then MEDEW) — 0 < . 1F 0 < d(p(), () < 1,

"L.7y
then by the argument above, we have %’Sy)) < €. Therefore, ¢ is

)

supercontractive from (Y, p) to (X, d).

We now assume that ¢ is supercontractive. Let € > 0 be given.
Then there exists dg > 0 such that W < € when z,y € Y with
0 < p(z,y) < 6. Take 6 = edp and assume that 0 < d(p(z),e(y)) <o
when z,y € Y. If 0 < p(z,y) < dp, then % < e If p(z,y) > do,

d(p(x), d(p(x), 5 : d(p(x),
then (@((i}@)(y)) < (e (S)Ow(y)) <i=e Therefore, lim (sol()(i’s;)(y)) -0

when d(¢(x), ¢(y)) tends to 0. Hence, the proof is complete. O

Lemma 4.8. Let (X,d) and (Y, p) be metric spaces, let ¢ be a Lipschitz
mapping from (Y, p) to (X,d) and let w € Lip(Y, p) with |u(y)| =1 for
ally € Y. Then C, : Lip(X,d) — Lip(Y, p) is compact if and only if
uC,, : Lip(X, d) — Lip(Y, p) is compact.

Proof. Since u € Lip(Y,p) and |u(y)| = 1 for all y € Y, we deduce
that 1 € Lip(Y,p) and |L(y)| = 1 for all y € Y. It is easy to see
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that if {f,}°2; be a sequence in Lip(X,d), then {f, o ¢}>2, converges
in (Lip(Y, p), || - llLip(v,p)) if and only if {u - (fy o ¢)};2; converges in
(Lip(Y; p), || - ILip(v,p))- This implies that Cy, is compact if and only if
uCy, is compact. O

Theorem 4.9. Let (X, d) be a metric space, let ¢ be a supercontractive
Lipschitz mapping from (X,d) to (X,d) such that p(X) is not totally
bounded in (X,d) and let v € Lip(X,d) with |u(x)| =1 for all x € X.
Then T = uCy, is a weighted composition operator from Lip(X,d) to
Lip(X, d) which is not compact.

Proof. By Lemma 4.7, lim% = 0 when d(¢(x),p(y)) tends to

0. This implies that lim u(x)% = 0 when d(¢(x), ¢(y)) tends to

0 since |u(x)| = 1 for all x € X. Since p(X) is not totally bounded in
(X,d), C, is not compact operator from Lip(X,d) to Lip(X,d) by [6,
Theorem 1.1]. Hence, T' = uC, is not compact by Lemma 4.8. (]

In the following examples we give a metric space (X, d), a supercon-
tractive Lipschitz mapping ¢ from (X, d) to (X, d) and a complex-valued
function v on X satisfying the conditions of Theorem 4.9.

Example 4.10. Let {z,},cz be an unbounded sequence in C\ {0} that
|2m — 2zn| > 1 for all m,n € Z with m # n. Let X = {z, :n € Z} and d
be the Euclidean metric on X. Define the map ¢ : X — X by

o(z) =z (z € X).

It is easy to see that ¢ is a supercontractive Lipschitz mapping from
(X,d) to (X,d) and ¢(X) is not totally bounded in (X, d). Let T be the
unit circle in the complex plane C and let A € T. Define the function
uy : X = C by
A
ux(z) = é (z € X).

Then for each z,w € X with z # w, we have

[ur(z) —ua(w)| _ Az )\w|
d(z,w) Tzl fw T
Hence, u) is a Lipschitz function on (X, d). Moreover, |uy(z)| = 1 for all

z € X. It is clear that T\ = u)\C,, is a weighted composition operator
from Lip(X,d) to Lip(X,d).

Example 4.11. Let X = {1 : n € Z\ {0}} and d be the discrete metric
on X. Define the map ¢ : X — X by

olr) ==z (x € X).
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Then ¢ is a supercontractive Lipschitz mapping from (X,d) to (X,d)
and ¢(X) is not totally bounded in (X,d). Let A € T and define the
function uy : X — C by

ux(x) = Asgn(x) (x € X).

Then wu) is a complex-valued Lipschitz function on (X, d) and |uy(z)| =1
for all z € X. It is clear that T\ = u)C, is a weighted composition
operator from Lip(X,d) to Lip(X, d).

As a consequence of Theorem 4.6, we obtain the following result which
is generalization of [4, Theorem 4.5(ii)].

Theorem 4.12. Let (X, d) and (Y, p) be metric spaces, let u be a complex-
valued function on Y, let ¢ be a map from'Y to X, let p(coz(u)) be

totally bounded in (X,d) and let T = uCy, be a weighted composition

operator from Lip(X,d) to Lip(Y, p). If ¢ is supercontractive on coz(u),

then T s compact.

Proof. Assume that ¢ is supercontractive on coz(u). Let ¢ > 0 be
given. Then there exists a positive number §; with §y < 1 such that

d(p(x), .
(@’E(ij)(y)) < 1+”u”iip(w) when z,y € coz(u) with 0 < p(z,y) < do. Take

J = ﬁ and assume that z,y € Y with 0 < d(p(z), p(y)) < 0.
ip(Y,p
If x,y € coz(u) with 0 < p(z,y) < dp, then

dp(x), £(y))

p(x,y)
&

de@), 2W) _ 1,
R

<|lully —————
L+ [JullLipy,p)

<e.

If x,y € coz(u) with p(z,y) > do, then

d(e(x),0(y) _ 0 de(a), oY)
IU(w)I—p@,y) < ||y—50
- [|u]lyedo

So(1 + lullLipey,p)
<e.



122 D. Alimohammadi , S. Daneshmand

If x € coz(u) and u(y) = 0, then

p(w y) p(x,y)
< P(v,p) (u)d
Py (u)edo
L ulluipyp)
<e.
If u(z) =0 and y € coz(u), then

dp(@), #(y)

u(z =0<e.

o)
Hence, lim u(x)% = 0 when d(¢(x), ¢(y)) tends to 0. Therefore,
T is compact by Theorem 4.6. O

The following example shows that the converse of Theorem 4.12, is
not valid and Theorem 4.6 is an extension of [2, Theorem 11] for a = 1.

Example 4.13. Let X = (—2,2) and let d be the Euclidean metric on
X. Define the function v : X — C by

u(zr) ==z (x € X).
Then u € Lip(X, d). Define the map ¢ : X — X by

p(r) =sgn(z)  (z € X).

It is easy to see that C(u,p) < 2. Hence, T = uC, is a weighted
composition operator on Lip(X,d), by Theorem 2.4. Moreover, it is

clear that lim u(x )% = 0 when d(¢(x), p(y)) tends to 0. Since
o(coz(u)) = {—1,1}, we deduce that ¢(coz(u)) is a totally bounded set
n (X,d). Therefore, T is compact by Theorem 4.6.

On the other hand,

for all n € N with n > 2. Hence, ¢ is not supercontractive on coz(u).
We now generalize [4, Theorem 4.5(i)] as the following.

Theorem 4.14. Let (X, d) and (Y, p) be metric spaces, let u be a complez-
valued function on'Y, let ¢ be a map from'Y to X, let p(coz(u)) be

totally bounded in (X,d) and let T = uCy, be a weighted composition

operator from Lip(X,d) to Lip(Y, p). If T is compact, then ¢ is super-

contractive on compact subsets of coz(u).
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Proof. Suppose that T'is compact. By Theorem 4.6, lim u(az)w =

0 when d(¢(x), ¢(y)) tends to 0. Let K be a nonempty compact subset
of coz(u). Let ¢ > 0 be given. Take C' = inf{|u(y)| : y € K}. The
continuity of u on coz(u) implies that C' > 0. Then there exists 6; > 0
such that

d(e(z), p(y))
u(x < Cke, 4.16
uta) A2 (4.16)
when z,y € Y with 0 < d(¢(z), ¢(y)) < d;. By Corollary 2.6, ¢ is a Lip-

schitz mapping from (K, p) to (X, d) and so ¢ is a uniformly continuous
mapping from (K, p) to (X, d). This implies that there exists 6 > 0 such
that d(p(s),¢(t)) < 01 when s,t € K with p(s,t) < 0. Suppose that
x,y € K with 0 < p(x,y) <. Then d(¢o(x),p(y)) < d1. If p(x) = p(y),

then 4e@LW) — g ¢ 1f0 < d(p(z),e(y)) < 01, then we have

p(z,y)
de(@).p(v) _ u@)ld(e(@). pv) _ Ce _
p(z,y) Cp(z,y) c 7
by (4.16). Therefore, ¢ is supercontractive from (K, p) to (X, d) and the
proof is complete. O
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