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Abstract. In this paper, indirect collocation approach based on
compactly supported radial basis function (CSRBF) is applied for
solving Volterras population model. The method reduces the solu-
tion of this problem to the solution of a system of algebraic equa-
tions. Volterras model is a non-linear integro-differential equation
where the integral term represents the effect of toxin. To solve the
problem, we use the well-known CSRBF: Wendland3,5. Numerical
results and residual norm (∥R(t)∥2) show good accuracy and rate
of convergence.

Keywords: Volterras population model, Compact support radial
basis functions, Collocation method.

2000 Mathematics subject classification: 65L05, 65L60.

1. Introduction

The Volterras model for population growth of a species within a closed
system is given in [1, 2] as

dp

dt
= ap− bp2 − cp

∫ t

0
p(x)dx, p(0) = p0, (1.1)
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where a > 0 is the birth rate coefficient, b > 0 is the crowding coefficient
and c > 0 is the toxicity coefficient. the coefficient c indicates the essen-
tial behaviour of the population evolution before its level falls to zero in
the long term. p0 is the initial population and p = p(t) denotes the pop-
ulation at time t. This model includes the well-known terms of a logistic

equation, and in addition it, includes an integral term cp
∫ t
0 p(x)dx that

characterizes the accumulated toxicity produced since time zero[2, 3].
We apply scale time and population by introducing the non-dimensional
variables

t =
tc

b
, u =

pb

a
, (1.2)

to obtain the non-dimensional problem

κ
du

dt
= u− u2 − u

∫ t

0
u(x)dx, u(0) = u0, (1.3)

where u(t) is the scaled population of identical individuals at time t and
κ = c

ab is a prescribed non-dimensional parameter. The only equilibrium
solution of Eq. (1.3) is the trivial solution u(t) = 0 and the analytical
solution [2]

u(t) = u0 exp(
1

κ

∫ t

0
[1− u(τ)−

∫ τ

0
u(x)dx]dτ) (1.4)

shows that u(t) > 0 for all t if u0 > 0.
The solution of Eq. (1.1) has been of considerable concern. Although

a closed form solution has been achieved in [1, 4], it was formally shown
that the closed form solution cannot lead to any insight into the be-
haviour of the population evolution [1]. Some approximate and numer-
ical solutions for Volterras population model have been reported. the
successive approximations method was suggested for the solution of Eq.
(1.3), but was not implemented. In this case, the solution u(t) has a
smaller amplitude compared to the amplitude of u(t) for the case κ ≪ 1.

TeBeest [2] obtained several numerical algorithms namely the Euler
method, the modified Euler method, the classical fourth-order Runge-
Kutta method and Runge-Kutta-Fehlberg method for the solution of
Eq. (1.3). Moreover, a phase-plane analysis is implemented. In [2],
the numerical results are correlated to give insight on the problem and
its solution without using perturbation techniques. However, the per-
formance of the traditional numerical techniques is well-known in that
it using provides grid points only, and in addition, it requires a large
amounts of calculations.

The series solution method and the decomposition method are imple-
mented independently to Eq. (1.3) and to a related non-linear ordinary
differential equation used in [3]. Furthermore, the Padé approximations



ICSRBF FOR VOLTERRAS POPULATION MODEL 79

are used in the analysis to capture the essential behaviour of the pop-
ulations u(t) of identical individuals and approximation of umax and
exact value of umax for different κ were compared. Small [4] solved the
Volterras population Model by the singular perturbation method. This
author scaled out the parameters of Eq. (1.1) as much as possible and
considered four different ways to do this. He considered two cases κ = c

ab
small and κ = c

ab large.
It is shown in [4] that for the case κ ≪ 1, where populations are

weakly sensitive to toxins, a rapid rise occurs along the logistic curve
that will reach a peak and then is followed by a slow exponential decay.
And, for large κ, where populations are strongly sensitive to toxins, the
solutions are proportional to sech2(t).

Adomian decomposition method and Sinc-Galerkin method were com-
pared for the solution of the same integral equation in [5]. This showed
that Adomian decomposition method is more efficient and easier to use
for the solution of Volterras Population Model.

Ramezani [7] applied an approach based upon composite spectral
functions approximations. The properties of composite spectral func-
tions consisting of few terms of orthogonal functions utilized to reduce
the solution of the Volterras model to the solution of a system of alge-
braic equations.

Rational Chebyshev and Hermite functions collocation approach were
compared for the solution of Volterras Population Model growth model
of a species within a closed system by Parand et al. [6]. They reduced
the solution of this problem to the solution. of a system of algebraic
equations.

Parand et al. [8] applied two common collocation approaches based
on radial basis functions to solve Volterras Population Model.

Marzban et al. [9] proposed a numerical method based on Hybrid
function approximations to solve Volterras Population Model. These
Hybrid functions consist of block-pulse and Lagrange-interpolating poly-
nomials.

Also, in [10] Volterras population growth model of a species within
a closed system is approximated by collocation method based on two
orthogonal functions, Sinc and Rational Legendre functions. Momani
et al. [11] and Xu [12] used a numerical and analytical algorithm for
approximate solutions of a fractional population growth model, respec-
tively. The first algorithm is based on Adomian decomposition method
(ADM) with Pad approximants and the second algorithm is based on
homotopy analysis method (HAM).

2. ICSRBF method
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2.1. CSRBF. The use of the RBF [13, 14] is an one of the popular
meshfree method for solving the differential equations [15, 16]. For
many years the global radial basis functions such as Gaussian, Multi
quadric, Thin plate spline, Inverse multiqudric and etc was used. These
functions are globally supported and generate a system of equations
with ill-condition full matrix.To convert the ill-condition matrix to a
well-condition matrix, CSRBFs can be used instead of global RBFs.
CSRBFs[17] can convert the global scheme into a local one with banded
matrices, Which makes the RBF method more feasible for solving large-
scale problem [18].

Wendland’s functions. The most popular family of CSRBF areWend-
land functions. This function introduced by Holger Wendland in 1995
[19]. Wendland starts with the truncated power function ϕl(r) = (1−r)l+
which be strictly positive definite and radial on Rs for l ≥ ⌊ s2⌋+1 , and
then he walks through dimension by repeatedly applying the operator I.
Definition [20] with ϕl(r) = (1− r)l+ we define

ϕs,k = Ikϕ⌊ s
2
⌋+k+1, (2.1)

it turns out that the functions ϕs,k are all supported on [0,1].
Theorem 1 [20] The function ϕs,k are strictly positive definite (SPD)
and radial on Rs and are of the form

ϕs,k(r) =

{
ps,k(r) r ∈ [0, 1],

0 r > 1,

with a univariate polynomial ps,k of degree ⌊ s2⌋ + 3k + 1. Moreover,

ϕs,k ∈ C2k(R) are unique up to a constant factor, and the polynomial
degree is minimal for given space dimension s and smoothness 2k [20].
Wendland gave recursive formulas for the functions ϕs,k for all s, k. We
instead list the explicit formulas of [21].
Theorem 2 [20] The function ϕs,k, k = 0, 1, 2, 3, have form

ϕs,0 = (1− r)l+,

ϕs,1
.
= (1− r)l+1

+ [(l + 1)r + 1],

ϕs,2
.
= (1− r)l+2

+ [(l2 + 4l + 3)r2 + (3l + 6)r + 3],

ϕs,3
.
= (1− r)l+3

+ [(l3 + 9l2 + 23l + 15)r3 + (6l2 + 36l + 45)r2

+(15l + 45)r + 15],

where l = ⌊ s2⌋ + k + 1, and the symbol
.
= denotes equality up to a

multiplicative positive constant.
The case k = 0 follows directly from the definition. application of the



ICSRBF FOR VOLTERRAS POPULATION MODEL 81

definition for the case k = 1 yields

ϕs,1(r) = (Iϕl)(r) =

∫ ∞

r
tϕl(t)dt

=

∫ ∞

r
t(1− t)l+dt =

∫ 1

r
t(1− t)ldt

=
1

(l + 1)(l + 2)
(1− r)l+1[(l + 1)r + 1],

where the compact support of ϕl reduces the improper integral to a def-
inite integral which can be evaluated using integration by parts. The
other two cases are obtained similarly by repeated application of I.[20]
We showed the most of wendland functions in table 1 . Wu’s and Buh-

Table 1. Wendland’s compactly supported radial function for various

choices of k and s=3.

ϕs,k smoothness SPD

ϕ3,0(r) = (1− r)2+ C0 R3

ϕ3,1(r)
.
= (1− r)4+(4r + 1) C2 R3

ϕ3,2(r)
.
= (1− r)6+(35r2 + 18r + 3) C4 R3

ϕ3,3(r)
.
= (1− r)8+(32r3 + 25r2 + 8r + 1) C6 R3

ϕ3,4(r)
.
= (1− r)10+ (429r4 + 450r3 + 210r2 + 50r + 5) C8 R3

ϕ3,5(r)
.
= (1− r)12+ (2048r5 + 2697r4 + 1644r3 + 566r2 + 108r + 9) C10 R3

mann’s functions are the other kind of CSRBFs[22, 23]. For obtaining
Wu’s functions operator D is used on convolution function

ϕ(r) = (1− r2)l+, l ∈ N

and Buhmann’s functions contain a logarithmic term in addition to a
polynomial. Buhmann’s functions have the general form

ϕ(r) =

∫ ∞

0
(1− r2

t
)λ+t

α(1− tδ)ρ+dt.

where 0 < δ ≤ 0.5 and ρ ≥ 1. α and λ values change on construting
SPD functions on Rs for different s[20].

2.2. Interpolation by CSRBFs. The one-dimensional function y(x)
to be interpolated or approximated can be represented by an CSRBF as

y(x) ≈ yn(x) =
N∑
i=1

ξiϕi(x) = ΦT (x)Ξ,
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where

ϕi(x) = ϕ(
∥x− xi∥

rω
),

ΦT (x) = [ϕ1(x), ϕ2(x), · · · , ϕN (x)],

Ξ = [ξ1, ξ2, · · · , ξN ]T ,

(2.2)

x is the input, rω is the local support domain and ξis are the set of
coefficients to be determined. By using the local support domain, we
mapped the domain of problem to CSRBF local domain. By choosing
N interpolate nodes (xj , j = 1, 2, · · · , N) in domain:

yj =
N∑
i=1

ξiϕi(xj)(j = 1, 2, · · · , N).

To summarize the discussion on the coefficients matrix, we define

AΞ = Y, (2.3)

where :

Y = [y1, y2, · · · , yN ]T ,

A = [ΦT (x1),Φ
T (x2), · · · ,ΦT (xN )]T

=


ϕ1(x1) ϕ2(x1) · · · ϕN (x1)
ϕ1(x2) ϕ2(x2) · · · ϕN (x2)

...
...

. . .
...

ϕ1(xN ) ϕ2(xN ) · · · ϕN (xN )

 .

Note that ϕi(xj) = ϕ(
∥xi − xj∥

rω
), by solving the system (2.3), the un-

known coefficients ξi will be achieved.

2.3. ICSRBF method. In the indirect method, the formulation of the
problem starts with the decomposition of the highest order derivative
under consideration into CRBF. The obtained derivative expression is
then integrated to yield expressions for lower order derivatives and finally
for the original function itself.
We approximate du

dt for solving the model by ICSRBF:

du

dt
≃ ûN (t) =

N∑
i=1

ξiϕi(t) = ΦT (t)Ξ, (2.4)
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by using integral operator Iϑf(t) =
∫ t
0 f(x)dx we have∫ t

0
du ≃

∫ t

0
ûN (v)dv = IϑΦ

T (t)Ξ,

u(t) = IϑΦ
T (t)Ξ + u0, (2.5)

Iϑu = I2ϑΦ
T (t)Ξ + u0t. (2.6)

Now, to obtain {ξi}Ni=1 we define the residual functions by substituting
Eqs. (1.4)-(2.6) in Eq. (1.3)

R̂(t) = κΦT (t)Ξ− (IϑΦ
T (t)Ξ + u0)(1− ITϑ (t)Ξ− u0 − I2ϑΦ

T (t)Ξ− u0t).
(2.7)

The set of equations for obtaining the coefficients {ξi}Ni=1 come from
equalizing Eq. (2.6) to zero at N interpolate nodes {ti}Nj=1 from tj =

L( j
N )ρ, j = 1, 2, · · · , N where L is a last interpolate node and ρ is a

arbitrary parameter.

R̂(tj) = 0, j = 1, 2, · · · , N. (2.8)

3. Application

We applied the method presented in this paper to examine the math-
ematical structure of u(t). Table (2) shows the maximum of u(x) for
some κ and u0 = 0.1 by using in comparison with exact solution and
ADM solution by Wazwaz [3]. The resulting graph of Eq. (1.3) is shown
in Fig. (1).

Table 2. A comparison of ADM[3] and the present method with exact

values for umax.

κ umax rω ρ N ICSRBF ADM

0.02 0.9234271 1 1.766000 15 0.92342716 0.9234270

0.04 0.8737199 1 1.780000 18 0.8737193 0.8612401

0.1 0.7697414 1 1.811000 18 0.7697414 0.7651130

0.2 0.6590503 2 1.032770 18 0.6590493 0.6579123

0.5 0.4851902 2 1.114035 27 0.4851903 0.4852823

The local support domain rω and arbitrary parameter ρ must be spec-
ified by the user.An important unsolved problem is to find a approach
to determine the optimal size of rω[18]. The accuracy of these CSRBF
depends on the choice of rω and ρ. By the meaning of residual function
in case of Eq. (2.6), we try to minimize ∥R(t)∥2 by choosing good rω
and ρ parameters. We define ∥R(t)∥2 as

∥R(t)∥2 =
∫ L

0
R2(t)dt ≃ L

2

m∑
j=0

ωjR
2(
L

2
sj +

L

2
), (3.1)
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Figure 1. Plot of approximate solutions of Eq. (1.3) for
u0 = 0.1 and κ = 0.02, 0.04, 0.1, 0.2, 0.5.

Table 3. Minimum value of ∥Res∥2 which is obtained
with rω and ρ for ICSRBF.

κ ∥Res∥2-ICSRBF
0.5 2.11e− 08
0.2 2.87e− 07
0.1 1.34e− 07
0.04 7.86e− 05
0.02 4.41e− 05

were

ωj =
L

(1− s2j )(
d
dxPm+1(s)|s=sj )

2
, j = 0, 1, · · · ,m, Pm+1(sj) = 0, j = 0, 1, · · · ,m,

Pm+1(x) is (m + 1)th-order Legendre polynomial. Table (3) show the
minimum of ∥R(t)∥2 which is obtained with local support domain rω
and arbitrary parameter ρ .

4. Conclusion

A method has been presented for solving Volterras population model
which is an integro-ordinary differential equation, based on the com-
pactly supported radial basis functions approximation. In this work,
we applied two common ICSRBF methods on the Volterras population
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model without converting it to an ordinary differential equation. We
used Wendland3,5 function. This function are proposed to provide an
effective but simple way to improve the convergence of the solution by
collocation method. As appeared from the Figures, we have shown that,
when the constant κ = c

ab is small, this type of population is relatively
insensitive to toxins, and when c = ab is large, population of this type
are extremely sensitive to toxins. Additionally, through the compari-
son with ADM, we have showed that the ICSRBF approach have good
reliability and efficiency.
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