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M.H. Rahmani Doust 1

Department of Mathematics, University of Neyshabur, Neyshabur, Iran

Abstract. The food chain refers to a natural system by which
energy is transmitted from one organism to another. In fact, a food
chain consists of producers, consumers and decomposition. Pres-
ence of complex food web increase the stability of the ecosystem.
Classical food chain theory arises from Lotka-Volterra model. In
the present paper, the dynamics behavior of three level food chain
is studied. A system of 3 nonlinear ODEs for interaction model-
ing of three-species food chain where intraspcies competition exists
indeed is studied. The first population is the prey for the second
which is prey for the third one. It is clear that it is the top of
food pyramid. The techniques of linearization and first integral are
employed.
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1. Introduction

In the 1920’s, the Italian mathematician Vito-Volterra[1] proposed
differential equation model to describe the population dynamics of two
interaction species a predator and its prey. The same equations were
studied by Alfred-Lotka to describe a hypothetical chemical reaction
independently [2].
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The ecosystem that we wish to model is a nonlinear three-species food
chain where the lowest-level prey x is preyed upon a mid-level species y,
which in turn is preyed upon the top level predator z. The three species
food chain model is an extension of the general two species model given
by Lotka and Volterra. Some related topics may be found in [3,4,5,6] and
references therein. Having existed competition within each species and
assumption that interaction terms be constant coefficients, the system
(1.1) will be obtained.

x
′
1 = x1(r1 − a11x1 − a12x2)
x
′
2 = x2(−r2 + a21x1 − a22x2 − a23x3)
x
′
3 = x3(−r3 + a32x2 − a33x3).

(1.1)

Here all parameters ri and aij are real positive constants [7]. Having
considered i, j = 1, 2, 3; the parameter ri represents the natural growth
rate of the ith population, and coefficients aij describes the effect of

jth upon the ith population, which is positive provided it enhances and
negative if it inhibits the growth.

The functions x(t), y(t) and z(t) represent the population densities of
first, second and third species respectively. Let us restrict our attention
to nonnegative octant: {(x, y, z) ∈ R3|x, y, z ∈ R+}.

2. Mathematical Model of Three Species Food Chain

Now, for the sake of convenience, we denote system (1.1) by the fol-
lowing system: 

x
′

= x(a− bx− cy)

y
′

= y(−d+ ex− fy − gz)
z
′

= z(−h+ iy − jz).
(2.1)

Following model is studied in [8]:
x
′

= x(a− by)

y
′

= y(−c+ dx− ez)
z
′

= z(−h+ iy).

(2.2)

We extend the same study to (2.1). In the absence of the top predator
(i.e. z = 0 in (2.1)), the model simply reduces to the Lotka-Volterra
predator-prey model with interaspecies competition [9]:{

x
′

= x(a− bx− cy)

y
′

= y(−d+ ex− fy).

In the analysis of system of differential equations{
x
′
i = fi(t, x1, x2, x3, ..., xn)
xi(a) = ai.

(2.3)
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where t ∈ [a, b], xi ∈ C1[a, b] and fi ∈ C[[a, b], Rn]; for i = 1, 2, 3, ..., n.
Indeed, it is system of nonlinear differential equations which is an initial
value problem.

It is useful to consider solution that don’t have change with time, that
is x

′
i = 0 for all i = 1, 2, 3, ..., n. Such solution are called equilibria. An

equilibrium is called stable provided solution starting close enough to the
equilibrium remains close to this point and it is called asymptotically
stable provided solution starting close enough to equilibrium, tend to
that equilibrium.

If the system of differential equations (2.3) can be linearized, that is,
provided for all i = 1, 2, 3, ..., n; fi has continuous partial in xi for all
i = 1, 2, 3, ..., n;

Then the stability of an equilibrium often can be determined by the
stability of this point in the following associated linearized system:

X
′

= JX. (2.4)

where X = (x1, x2, x3, ..., xn) ∈ Rn , J = ( ∂fi
∂xj

) is Jacobian matrix and

all partial derivatives are evaluated atX0 = (x1(0), x2(0), x3(0), , ..., xn(0)),
for i, j = 1, 2, 3, ..., n.

The behavior of the linearized system at X0 is determined by the
eigenvalues of the Jacobian matrix, evaluated at X0.

A surface S is invariant with respected to a system of differential
equations provided every solution that starts in S doesn’t escape S. The
property of invariant coordinates planes matches biological consideration
since some species is exist, it will not reappear. The invariant surface S
is usually given as the level set of a function G(x, y, z) which is known
as first integral.

3. Analysis of The Model

We first show that each coordinate plane is invariant with respected
to the system (2.1). We need the following theorem appears in most
advanced text on differential equations [10].

Theorem 3.1. Let S be a smooth surface without boundary in R3 and
x
′

= f(x, y, z)

y
′

= g(x, y, z)

z
′

= h(x, y, z).

(3.1)

wher f, g and h are continuously differentiable. Suppose that n is a
normal vector to the surface S at the point (x, y, z) and for all (x, y, z) ∈
S, we have that n. < x, y, z >= 0.

Then S is invariant for system (3.1).
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Now consider system (2.1). Let S be the plane y = 0, note that the
vector < 0, 1, 0 > is always normal to S, and that at the point (x, 0, z)
of S we have

< x
′
, y
′
, z
′
>=< x(a− bx), 0, z(−h− jz) >

⇒< 0, 1, 0 > . < x(a− bx), 0, z(−h− jz) >= 0.

Having considered S be the plane x = 0,
we see that vector < 1, 0, 0 > is always normal to S and the point

(x, 0, z) of S. We obtain

< x
′
, y
′
, z
′
>=< 0, y(−d− fy − gz), z(−h+ iy − jz) >

⇒< 1, 0, 0 > . < 0, y(−d− fy − gz), z(−h+ iy − jz) >= 0.

Finally, let S be the plane z = 0, vector < 0, 0, 1 > is always normal
to S and the point (x, 0, z) of S. It is easy to see that

< x
′
, y
′
, z
′
>=< x(a− bx− cy), y(−d+ ex− fy), 0 >

⇒< 0, 0, 1 > . < x(a− bx− cy), y(−d+ ex− fy), 0 >= 0.

Now, we solve each of the three corresponding planar (two variable)
system in the respective coordinate planes. The case of z = 0 has been
analyzed in [11].

Theorem 3.2. For system (2.2) with making assumption that y = 0 the
following statements hold:

i) x(t) = a
b is asymptotically stable.

ii) z(t)→ 0 as t→∞.
iii) z = h

(a−bx
kx

)(
h
a )−j

where k is constant real number.

Proof. i)
For a trajectory starting on the plane y = 0 , system (2.2) reduces to

x
′

= x(a− bx)

y
′

= 0

z
′

= z(−h− jz).
(3.2)

First equation in the system (2.2) is logistic equation.

x
′

= x(a− bx). (3.3)

Having assumed k = b and M = a
b , one can see easily the above

equation is equivalent with the following equation:

x
′

= kx(M − x). (3.4)

The solutions of the above equation are given by

x(t) =
Mc1

c1 + (M − c1)e−kMt
. (3.5)
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where c1 is constant integral. Provided making initial value popula-
tion x(0) = x0 for equation (3.4), we obtain

x(t) =
Mx0

x0 + (M − x0)e−kMt
. (3.6)

Equation (3.6) implies that provided initial value population x be
less than carrying capacity of ecosystem (M), the variable x grows ex-
ponentially to parameter M as t→∞. Then x(t) = M is asymptotically
stable for equation (3.4).

t

x

o

M

r
M
2

Fig 1: Solution curves, corresponding to logistic equation(3.4)

ii)

Second equation system (2.2) is a extinction equation.

z
′

= z(−h− jz). (3.7)

Being negative the right side of equation (3.7) implies that z(t) → 0
as t→∞.

iii)
Notwithstanding the unbounded growth of x, this behavior fits with

what we expected biological in the absence of mid-level species y. That
is, x is free from predation and z is without a source of food. The trajec-
tory in xz-plane can be directly computed from the separable equations.

dz
dx = dz

dt
dt
dx = z(−h−jz)

x(a−bx) .

⇒ −1
z(h+jz)dz = 1

x(a−bx)dx.

⇒
∫ −1

z(h+jz)dz =
∫

1
x(a−bx)dx+ c2.

Now, we denote the left and right sides of recent equation by I1 and
I2 respectively. Using the method of fractal partial, one can find the
last integrals as following form:{

I1 = 1
h

∫
dz
z −

j
h

∫
dz

h+jz = 1
h ln( z

h+jz )

I2 = 1
a

∫
dx
x −

b
a

∫
dx

a−bx = 1
a ln( x

x−bx).
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⇒ 1

h
ln(

z

h+ jz
) =

1

a
ln(

kx

x− bx
).

where k is the integration constant.
After simplification, we obtain:

z =
h( kx

a−bx)(
h
a )

1− j( kx
a−bx)(

h
a
)
.

where a, b, k, h and j are constant real numbers.
As regarding kx

a−bx 6= 0 , we obtain

z =
h

(a−bx
kx )(

h
a
) − j

. (3.8)

This concludes the proof of the theorem. �

For solution starting in the plane x = 0, one see that system (2.1)
reduces to {

y
′

= y(−d− fy − gz)
z
′

= z(−h+ iy − jz). (3.9)

Which is system of nonlinear differential equations describes a special
class of Lotka-Volterra predator- prey model. Because of denoting{

M(y, z) = y(−d− fy − gz)
N(y, z) = z(−h+ iy − jz).

The Kolmogorov equations (3.9) will be obtained:{
y
′

= M(y, z)

z
′

= N(y, z).
(3.10)

Having given attention to systems (3.9) and (3.10), we see that{ ∂M
∂z = −g < 0
∂N
∂y = i > 0.

(3.11)

And hence, the above inequalities prove that system (3.9) is predator-
prey model.
The first equation in (3.9) implies that y(t) → 0 as t → 0 and the
second equation in (3.9) implies, in absence y , z(t)→ 0 as t→∞ and
it enhances as y increases as t→∞.

Theorem 3.3. For system (2.1) with making assumption that x = 0
the following statements hold:

i) Origin is stable point.
ii) There is no any equilibrium point in R2

+.
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Proof. i)
Consider x = 0. Then the system (2.1) leads into the system (3.9).

Having linearized system (3.9) at origin , one can find the solution be-
havior around this equilibrium point.

It’s Jacobian matrix is given by

J =

[
d− 2fy − gz −gz

iz −h+ iy − 2jz

]
. (3.12)

After evaluating the Jacobian matrix J at origin and denoting with
J0, we obtain

J0 =

[
−d 0
0 −h

]
. (3.13)

Simply examine eigenvalues of J0 gives us information about the dy-
namics near the equilibrium points of original system. Because of being
negative both of it’s eigenvalues (λ1 = −d and λ2 = −h), it is easy to
conduct that origin is stable point for system(3.9).

ii)
Let A = (y, z) be equilibrium point in R2

+ for system (3.8). Hence
the point A should satisfy in the following equations system:{

fy + gz = −d
iy − jz = h.

The solution of recent equations system is given by
y = dj−hg

−fj−gi

z = fh+id
−fj−gi .

On one hand z = −fh+id
fg+gi implies that z < 0, on another hand z > 0

because A ∈ R2
+.

This leads to a contradiction and so, the proof of theorem is done. �

4. Conclusion

By using differential equations, scientists are able to analyze almost
all of the ecological models. In the above models, the equilibrium points
explain the equilibrium populations. It is obvious that the stability and
asymptotically stability are main concepts in this area. In the present
work, we focused on food chain models having three species. Indeed,
by adding some conditions on existing parameters we determined the
stability and asymptotically stability which are analyzed in theorems
3.2 and 3.3.
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