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Abstract. In this paper, we establish exact solutions for the time-
fractional Klein-Gordon equation, and the time-fractional Hirota-
Satsuma coupled KdV system. The Hes semi-inverse and the Kudryashov
methods are used to construct exact solutions of these equations.
We apply Hes semi-inverse method to establish a variational the-
ory for the time-fractional Klein-Gordon equation, and the time-
fractional Hirota-Satsuma coupled KdV system. Based on this
formulation, a solitary solution can be easily obtained using the
Ritz method. The Kudryashov method is used to construct ex-
act solutions of the time-fractional Klein-Gordon equation, and the
time-fractional Hirota-Satsuma coupled KdV system. Moreover, it
is observed that the suggested techniques are compatible with the
physical nature of such problems.
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1. Introduction

The effort in finding exact solutions of nonlinear equations is very im-
portant for understanding most nonlinear physical phenomena [1-6]. For
instance, the nonlinear wave phenomena observed in fluid dynamics,

1 Corresponding author: m−akbari@guilan.ac.ir
Received: 23 February 2014
Revised: 09 September 2014
Accepted: 09 September 2014

215

http://cjms.journals.umz.ac.ir


216 M. Akbari , N. Taghizadeh

plasma and optical fibers are often modeled by the bell-shaped sech so-
lutions and the kink-shaped tanh solutions. The exact solution [7,8], if
available, of those nonlinear equations facilitates the verification of nu-
merical solvers and aids in the stability analysis of solutions. In the past
few years, many new approaches to nonlinear equations were proposed
to search for solitary solutions, among which the variational iteration
method [9-11], the homotopy perturbation method [12-14] and the exp
function method [15, 16] have been shown to be effective, easy and ac-
curate for a large class of nonlinear problems. Recently, several powerful
methods have also been provided to construct the approximate or ex-
act solutions of fractional ordinary differential equations, integral equa-
tions and fractional partial differential equations, such as the fractional
variational iteration method [17], the homotopy perturbation method
[18], the fractional sub-equation method [19] and so on. Using these
methods, solutions with various forms for some given fractional differ-
ential equations have been established. In this paper we will use Hes
semi-inverse and the Kudryashov methods to the time-fractional Klein-
Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV
system [20-29].

2. The modified Riemann-Liouville derivative and He′s
semi-inverse method

Jumaries modified Riemann-Liouvill derivative of order α is defined
as

Dα
xf(x) =



1
Γ(−α)

∫ x
0 (x− ξ)−α−1[f(ξ)− f(0)]dξ, α < 0,

1
Γ(1−α)

d
dx

∫ x
0 (x− ξ)−α[f(ξ)− f(0)]dξ, 0 < α < 1,

(f (n)(x))(α−n), n ≤ α ≤ n+ 1, n ≥ 1.

(2.1)

where f : R → R, x → f(x) denote a continuous (but not necessarily
differentiable) function. For some properties of the above modified de-
rivative, we refer the reader to [30, 31].
We now describe Hes semi-inverse method for exact solution of nonlinear
time fractional differential equations as follows.

Step 1. Let us consider the time- fractional differential equation with
independent variable {t, x, y, z, . . .} and a dependent variable u

F (u,Dα
t u, ux, uy, uz, D

2α
t u, uxy, uyz, uxz, . . .) = 0, (2.2)
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where the subscript denotes partial derivative. Using the variable trans-
formation

u(t, x, y, z, . . .) = U(ξ), ξ = l1x+ l2y + l3z + · · · − λtα

Γ(1 + α)
(2.3)

where li and λ are constant to be determined later; the fractional dif-
ferential equation (2.2) is reduced to an ordinary differential equation
(ODE)

H(U(ξ), U ′(ξ), U ′′(ξ), . . .) = 0. (2.4)

where ′ = d
dξ .

Step 2. If possible, integrate Eq. (2.4) term by term one or more
times. This yields constant(s) of integration. For simplicity, the inte-
gration constant(s) can be set to zero.

Step 3. According to the Hes semi-inverse method, we construct the
following trialfunctional

J(U) =

∫
Ldξ, (2.5)

where L is an unknown function of U and its derivatives.
Step 4. By Ritz method, we can obtain different forms of solitary

wave solutions, such as U(ξ) = Asech(Bξ) , U(ξ) = Acsch(Bξ), U(ξ) =
Atanh(Bξ), U(ξ) = Acoth(Bξ) and so on. For example in this paper we
search a solitary wave solution in the form

U(ξ) = Asech(Bξ), (2.6)

where A and B are constants to be further determined. Substituting
Eq. (2.6) into Eq. (2.5) and making J stationary with respect to A and
B , we have

∂J

∂A
= 0, (2.7)

∂J

∂B
= 0. (2.8)

Solving simultaneously the Eq. (2.7) and Eq. (2.8) we obtain and .
Hence, the solitary wave solution Eq. (2.6) is well determined.

3. The modified Riemann-Liouville derivative and the
Kudryashov method

The main steps of the Kudryashov method are the following:
Step 1. Determination of the dominant term with highest order of

singularity. To find dominant terms, we substitute

U = ξ−p, (3.1)



218 M. Akbari , N. Taghizadeh

to all terms of Eq. (2.4). Then we compare degrees of all terms of Eq.
(2.4) and choose two or more with the lowest degree. The maximum
value of p is the pole of Eq. (2.4) and we denote it as N . This method
can be applied when N is integer. If the value N is non-integer, one can
transform the equation studied.

Step 2. We look for exact solution of Eq. (2.4) in the form

u(z) =
N∑
i=0

biQ
i(ξ), (3.2)

where bi (i = 0, 1, . . . , N) are constants to be determined later, such
that bN 6= 0, while Q(ξ) has the form

Q(ξ) =
1

1 + d exp(ξ)
, (3.3)

which is a solution to the Riccati equation

Q′(ξ) = Q2(ξ)−Q(ξ), (3.4)

where d is arbitrary constant.
Step 3. We can calculate necessary number of derivative of function

U . It is easy to do using Maple or Mathematica package. Using case
N = 1 we have some derivatives of function U(ξ) in the form

U = b0 + b1Q,

Uξ = −b1Q+ b1Q
2,

Uξξ = b1Q− 3b1Q
2 + 2b1Q

3, (3.5)

Uξξξ = −b1Q+ 7b1Q
2 − 12b1Q

3 + 6b1Q
4.

Step 4. We substitute expressions given by Eqs. (3.5) in Eq. (2.4).
Then we collect all terms with the same powers of function Q(ξ) and
equate expressions to zero. As a result we obtain algebraic system of
equations. Solving this system we get the values of unknown parameters.

4. Applications

In this section we apply the proposed methods to solve the time-
fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma
coupled KdV system.

4.1. Time-fractional Klein-Gordon equation. We consider the non-
linear fractional Klein-Gordon equation

∂2αu(x, t)

∂t2α
=
∂2u(x, t)

∂x2
+ au(x, t) + cu3(x, t), t > 0, 0 < α ≤ 1, (4.1)
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where a and c are arbitrary constants. For our purpose, we introduce
the following transformations:

u(x, t) = U(ξ), ξ = lx− λtα

Γ(1 + α)
(4.2)

where λ, l are constants.
Substituting (4.2) into equation (4.1), we can know that equation

(4.1) is reduced into an ordinary differential equation:

λ2∂
2U

∂ξ2
= l2

∂2U

∂ξ2
+ aU + cU3 (4.3)

By He′s semi-inverse method , we can obtain the following variational
formulation

J =

∫ ∞
0

[−1

2
(l2 − λ2)(U ′)2 +

a

2
U2 +

c

4
U4]dξ (4.4)

By Ritz-like method, we search for a solitary wave solution in the form

U(ξ) = Asech(Bξ), (4.5)

where A and B are unknown constant to be further determined.
Substituting Eq. (4.4) into Eq. (4.5), we have

J =

∫ ∞
0

[−1

2
(l2 − λ2)A2B2sech2(Bξ)tanh2(Bξ) +

aA2

2
sech2(Bξ)

+
cA4

4
sech4(Bξ)]dξ

= −1

6
(l2 − λ2)A2B +

aA2

2B
+
cA4

6B
. (4.6)

Making J stationary with A and B results in

∂J

∂A
= −1

3
(l2 − λ2)AB +

aA

B
+

2cA3

3B
= 0, (4.7)

∂J

∂B
= −1

6
(l2 − λ2)A2 − aA2

2B2
− cA4

6B2
= 0, (4.8)

From Eq. (4.7) and Eq. (4.8), we get

A =

√
2a

−c
, B =

√
a

λ2 − l2
(4.9)

The solitary solution is, therefore, obtained as follows

u(x, t) =

√
2a

−c
sech(

√
a

λ2 − l2
(lx− λtα

Γ(1 + α)
)).
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4.2. Time-fractional Hirota-Satsuma coupled KdV system. The
HirotaSatsuma system of equations was introduced to describe the in-
teraction of two long waves with different dispersion relations. In this
section, we consider the solution of generalized HirotaSatsuma coupled
KdV of time-fractional order, which is presented by a system of nonlin-
ear partial differential equations, of the form:

Dα
t u =

1

4
uxxx + 3uux + 3(−v2 + w)x,

Dα
t v = −1

2
vxxx − 3uvx,

Dα
t w = −1

2
wxxx − 3uwx, 0 < α ≤ 1, (4.10)

where u = u(x, t), v = v(x, t) and w = w(x, t).
For our purpose, we introduce the following transformations:

u(x, t) =
1

λ
U2(ξ), v(x, t) = −λ+ U(ξ),

w(x, t) = 2λ2 − λU(ξ), ξ = x− λtα

Γ(1 + α)
, (4.11)

where λ is a constant. Substituting (4.11) into equations (4.10), we
can know that equations (4.10) is reduced into an ordinary differential
equation:

λ
∂2U

∂ξ2
+ 2U3 − 2λ2U = 0, (4.12)

A variational formulation should be established using the semi-inverse
method:

J =

∫ ∞
0

[−λ
2

(U ′)2 +
1

2
U4 − λ2U2]dξ (4.13)

By Ritz-like method, we search for a solitary wave solution in the form

U(ξ) = Asech(Bξ), (4.14)

where A and B are unknown constant to be further determined.
Substituting Eq. (4.14) into Eq. (4.13), we have

J =

∫ ∞
0

[−λ
2
A2B2sech2(Bξ)tanh2(Bξ) +

A4

2
sech4(Bξ)

−λ2A2sech2(Bξ)]dξ

= −λ
6
A2B +

A4

3B
− λ2A2

B
. (4.15)
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Making J stationary with A and B results in

∂J

∂A
= −λ

3
AB +

4A3

3B
− 2λ2A

B
= 0, (4.16)

∂J

∂B
= −λ

6
A2 − A4

3B2
+
λ2A2

B2
= 0. (4.17)

From Eq. (4.16) and Eq. (4.17), we get

A =
√

2λ, B =
√

2λ. (4.18)

The solitary solution is, therefore, obtained as follows

u(x, t) = 2λsech2(
√

2λ(x− λtα

Γ(1 + α)
)),

v(x, t) = λ(−1 +
√

2sech(
√

2λ(x− λtα

Γ(1 + α)
))),

w(x, t) = 2λ2(1−
√

2sech(
√

2λ(x− λtα

Γ(1 + α)
))).

5. The Kudryashov method

In this subsection, we apply the Kudryashov method to solve the
time-fractional Klein-Gordon equation, and the time-fractional Hirota-
Satsuma coupled KdV system.

5.1. Time-fractional Klein-Gordon equation. The pole order of
Eq. (4.3) is N = 1. So we look for solution of Eq. (4.3) in the fol-
lowing form

U(ξ) = b0 + b1Q. (5.1)

Substituting Eq. (5.1) into Eq. (4.3), we obtain the system of algebraic
equations in the following form

Q0 : ab0 + cb30 = 0,

Q1 : (l2λ2)b1 + ab1 + 3cb20b1 = 0,

Q2 : −3(l2λ2)b1 + 3b0b
2
1 = 0,

Q3 : 2(l2λ2)b1 + cb31 = 0,

Solving the algebraic equations above, yields:
Case1.

b0 =
1

2

√
−2(l2λ2)

c
, b1 = −1

2

√
−2(l2λ2)

c
, l = ±

√
λ2 + 2a (5.2)

Substituting (5.2) into (5.1), we have

U(ξ) =
1

2

√
−2(l2λ2)

c
−
√
−2(l2λ2)

c
Q, (5.3)
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Now, the exact solution of Eq. (4.1) has the form

u(x, t) = (
1

2

√
−2(l2λ2)

c
−
√
−2(l2λ2)

c

1

1 + de
±
√
λ2+2a λtα

Γ(1+α)

),

where d is arbitrary constant.
Case 2.

b0 = −1

2

√
−2(l2λ2)

c
, b1 = +

1

2

√
−2(l2λ2)

c
, l = ±

√
λ2 + 2a (5.4)

Substituting (5.4) into (5.1), we have

U(ξ) = −1

2

√
−2(l2λ2)

c
+

√
−2(l2λ2)

c
Q, (5.5)

Now, the exact solution of Eq. (4.1) has the form

u(x, t) = (−1

2

√
−2(l2λ2)

c
+

√
−2(l2λ2)

c

1

1 + de
±
√
λ2+2a λtα

Γ(1+α)

),

where d is arbitrary constant.

5.2. Time-fractional Hirota-Satsuma coupled KdV system. Next,
the pole order of Eq. (4.12) is N = 1. So we look for solution of Eq.
(4.12) in the following form

U(ξ) = b0 + b1Q. (5.6)

Substituting Eq. (5.6) into Eq. (4.12), we obtain the system of algebraic
equations in the following form

Q0 : 2b0 − 2λ2b30 = 0,

Q1 : λb1 + 6b20b1 − 2λ2b1 = 0,

Q2 : −3λb1 + 6b0b
2
1 = 0,

Q3 : 2λ2b1 + 2b31 = 0,

Solving the algebraic equations above, yields:
Case1.

b0 =
1

4
, b1 = −1

2
, λ = −1

4
(5.7)

Substituting (5.7) into (5.6), we have

U(ξ) =
1

4
− 1

2
Q, (5.8)
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Now, the exact solution of Eq. (4.10) has the form

u(x, t) = −4(
1

4
− 1

2

1

1 + de
(x− λtα

Γ(1+α)
)
)2,

v(x, t) =
1

4
+ (

1

4
− 1

2

1

1 + de
(x− λtα

Γ(1+α)
)
),

w(x, t) =
1

8
+

1

2
(
1

4
− 1

2

1

1 + de
(x− λtα

Γ(1+α)
)
).

where d is arbitrary constant.
Case 2.

b0 = −1

4
, b1 = +

1

2
, λ = −1

4
(5.9)

Substituting (5.9) into (5.6), we have

U(ξ) = −1

4
+

1

2
Q, (5.10)

Now, the exact solution of Eq. (4.10) has the form

u(x, t) = −4(−1

4
+

1

2

1

1 + de
(x− λtα

Γ(1+α)
)
)2,

v(x, t) =
1

4
+ (−1

4
+

1

2

1

1 + de
(x− λtα

Γ(1+α)
)
),

w(x, t) =
1

8
+

1

2
(−1

4
+

1

2

1

1 + de
(x− λtα

Γ(1+α)
)
).

where d is arbitrary constant.

6. Results and discussion

It is well known that the nonlinear KleinGordon equation has many
applications in physics and the HirotaSatsuma system of equations was
introduced to describe the interaction of two long waves with differ-
ent dispersion relations. Hes semi-inverse method and the Kudryashov
method are used for constructing exact soliton solutions of the time-
fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma
coupled KdV system. Solutions obtained are potentially significant
physical problems. The results show that these methods are efficient
in finding the exact solutions of fractional partial differential equations.

7. Conclusions

We established variational formulations for the time-fractional Klein-
Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV
system by Hes semi-inverse method. It is obvious that the employed
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approach is useful and manageable and remarkably simple to find various
kinds of solitary solutions. Also the Kudryashov method was used to
conduct an analytic study on the time-fractional Klein-Gordon equation,
and the time-fractional Hirota-Satsuma coupled KdV system. Moreover,
the methods are capable of greatly minimizing the size of computational
work compared to other existing techniques.
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