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Abstract. In this paper an approximate analytical solution of the
fractional Zakharov-Kuznetsov equations will be obtained with the
help of the reduced differential transform method (RDTM). It is in-
dicated that the solutions obtained by the RDTM are reliable and
present an effective method for strongly nonlinear fractional partial
differential equations.
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1. Introduction

In the recent years, fractional differential operators have played a very
important role in various fields such as electrical circuits, biology, biome-
chanics, viscoelasticity, etc. Such operators are the generalization, to
real (or complex) order of the classical derivatives and integrals [1–4].
Recently various methods such as the Adomian decomposition method
(ADM), the homotopy perturbation method (HPM), the variational
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iteration method (VIM) and the homotopy analysis method (HAM)
have been applied for fractional PDEs [5–8]. The differential trans-
form method (DTM) is a powerful mathematical technique which was
introduced in 1986 by Zhou [9].
The DTM has been extended to obtain analytical approximate solu-
tions to linear and nonlinear partial differential equations of fractional
order [10–12]. Afterwards, the Reduced differential transform method
(RDTM) has been used by many authors to obtain analytical and ap-
proximate solutions to nonlinear problems [13–17]. This method gives
an analytical solution in the form of a polynomial, but, it is different
from Taylor series method that requires computation of the high order
derivatives.
In the present work, we are concerned with the application of RDTM for
the fractional version of the Zakharov-Kuznetsov equations (FZK(p, q, r))
[18–22]:

Dα
t u+ a(up)x + b(uq)xxx + c(ur)yyx = 0, (1.1)

where u = u(x, y, t), α is parameter describing the order of the fractional
derivative (0 < α ≤ 1), a, b and c are arbitrary constants and p, q and
r are integers. The Zakharov-Kuznetsov equation was first derived for
describing weakly nonlinear ion-acoustic waves in strongly magnetized
lossless plasma in two dimensions [22].

2. Fractional calculus

In this section, we present a review of the notations, definitions and
preliminary of fractional calculus, according to the refferences [1] and
[2].

Definition 2.1. A real function f(x), x > 0 is said to be in the space
Cµ, µ ∈ R, if there exists a real number q(> µ), such that f(x) = xqg(x),

where g(x) ∈ C[0,∞], and it is said to be in the space Cm
µ if f (m) ∈ Cµ,

m ∈ N.
Definition 2.2. For a function f ∈ Cµ, µ ≥ −1, the Riemann-Liouville
fractional integral operator of order α ≥ 0, is defined as

Jαf(x) = 1
Γ(α)

∫ x
0 (x− t)α−1f(t)dt, α > 0, x > 0,

J0f(x) = f(x).

(2.1)

For f ∈ Cµ, µ ≥ −1 and ∀α, β ∈ R+, the operator Jα has the proper-
ties:
i)JαJβf(x) = Jα+βf(x).
ii)JαJβf(x) = JβJαf(x).
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We all know that, the Riemann-Liouville approach leads to initial
conditions containing the limit values of the Riemann-Liouville frac-
tional derivatives which there is no known physical interpretation for
such types of initial conditions. A modified fractional differential oper-
ator Dα which proposed by Caputo in his work on the theory of vis-
coelasticity [23] is

Dαf(x) = Jm−αDmf(x) =
1

Γ(m− α)

∫ x

0
(x− t)m−α−1f (m)(t)dt, (2.2)

for m− 1 < α ≤ m, m ∈ N, x > 0 and f ∈ Cm
−1.

The main advantage of Caputo’s approach is that the initial conditions
for fractional differential equations with Caputo derivatives take on the
same form as for integer-order differential equations.

Definition 2.3. For m to be the smallest integer that exceeds α, the
Caputo time-fractional derivative operator of order α > 0 is defined as

Dα
t u(x, t) =

∂αu(x, t)

∂ tα
=


1

Γ(m−α)

∫ t
0 (t− τ)m−α−1 ∂mu(x,τ)

∂ τm dτ, m− 1 < α < m,

∂mu(x,t)
∂ tm , α = m ∈ N.

(2.3)

3. Reduced differential transform method

In this section, we apply the reduced differential transform method
for three variables function u(x, y, t) which has been developed in [16]
and [17].
Consider a function of three variables u(x, y, t) which is analytic and
differentiated continuously in the domain of interest, and suppose that
it can be represented as u(x, y, t) = f(x, y)g(t).

Definition 3.1. If function u(x, y, t) is analytic and differentiated con-
tinuosly with respect to x, y and t in the domain of interest, then let

Uk(x, y) =
1

Γ(kα+ 1)

[
∂kα

∂tkα
u(x, y, t)

]
t=0

, (3.1)

where the t-dimensional spectrum function Uk(x, y) is the transformed
function which is called T-function.

The differential inverse transform of Uk(x, y) is defined as

u(x, y, t) =

∞∑
k=0

Uk(x, y)t
kα. (3.2)
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Combining Eqs. (3.1) and (3.2) gives that

u(x, y, t) =

∞∑
k=0

1

Γ(kα+ 1)

[
∂kα

∂tkα
u(x, y, t)

]
t=0

tkα. (3.3)

In real applications, by consideration of U0(x, y) = h(x, y) as transfor-
maiton of initial condition

u(x, y, 0) = h(x, y), (3.4)

the function u(x, y, t) can be approximated by a finite series of Eq. (3.2)
as

ũn(x, y, t) =
n∑

k=0

Uk(x, y)t
kα. (3.5)

A straightforward iterative calculations, gives the Uk(x, y) values for
k = 1, 2, · · · , n. Then the inverse transformation of the {Uk(x, y)}nk=0
gives the approximation solutoin as ũn(x, y, t), where n is order of ap-
proximation solution. Next, the exact solutoin is obtained by

u(x, y, t) = lim
n−→∞

ũn(x, y, t).

Some basic properties of the reduced differential transformation, ob-
tained from Eqs. (3.1) and (3.2), are summarized in Table 1. Note, in
this table

Γ(z) :=

∫ ∞

0
e−ttz−1dt, z ∈ C.

Function Form Transformed Form

u(x, y, t) = v(x, y, t) + w(x, y, t) Uk(x, y) = Vk(x, y) +Wk(x, y)

u(x, y, t) = cv(x, y, t) Uk(x, y) = cVk(x, y) (c is a constant)

u(x, y, t) = v(x, y, t)w(x, y, t) Uk(x, y) =
k∑

k1=0
Vk1

(x, y)Wk−k1
(x, y)

u(x, y, t) = ∂Nα

∂tNα v(x, y, t) Uk(x, y) =
Γ(kα+Nα+1)

Γ(kα+1)
Vk+N (x, y)

u(x, y, t) = ∂m+n

∂xm∂yn vn(x, y, t) Uk(x, y) =
k∑

kn−1=0

kn−1∑
kn−2=0

· · ·
k3∑

k2=0

k2∑
k1=0

∂m+n

∂xm∂yn Vk1
(x, y)Vk2−k1

(x, y)

· · ·Vkn−1−kn−2
(x, y)Vk−kn−1

(x, y)

Table 1. Some basic reduced differential transformations.

According to the RDTM and Table 1, we can construct the following
iteration for the Eq. (1.1) as
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Γ(kα+ α+ 1)

Γ(kα+ 1)
Uk+1(x, y)

+ a
∂

∂x

( k∑
kp−1=0

kp−1∑
kp−2=0

· · ·
k3∑

k2=0

k2∑
k1=0

Uk1(x, y)Uk2−k1(x, y) · · ·Ukp−1−kp−2(x, y)Uk−kp−1(x, y)
)

+ b
∂3

∂x3

( k∑
kq−1=0

kq−1∑
kq−2=0

· · ·
k3∑

k2=0

k2∑
k1=0

Uk1(x, y)Uk2−k1(x, y) · · ·Ukq−1−kq−2(x, y)Uk−kq−1(x, y)
)

+ c
∂3

∂y2∂x

( k∑
kr−1=0

kr−1∑
kr−2=0

· · ·
k3∑

k2=0

k2∑
k1=0

Uk1(x, y)Uk2−k1(x, y) · · ·Ukr−1−kr−2(x, y)Uk−kr−1(x, y)
)
= 0.

(3.6)

4. A test example

We consider the time-fractional FZK(2, 2, 2) in the form :

Dα
t u+ (u2)x +

1

8
(u2)xxx +

1

8
(u2)yyx = 0, (4.1)

where 0 < α ≤ 1 is order of the fractional time derivative. The exact
solution to (4.1) when α = 1 and subject to the initial condition

u(x, y, 0) = −4

3
λcosh2(x+ y), (4.2)

where λ is an arbitrary constant, was derived in [19] and is given as:

u(x, y, t) = −4

3
λcosh2(x+ y − λt). (4.3)

By using the basic properties of the differential transform and Table 1,
we can find transformed form of (4.1) and (4.2) as:

Uk+1(x, y) =− Γ(kα+ 1)

Γ(kα+ α+ 1)

( ∂

∂x

k∑
r=0

Ur(x, y)Uk−r(x, y)

+
1

8

∂3

∂x3

k∑
r=0

Ur(x, y)Uk−r(x, y) +
1

8

∂3

∂y2∂x

k∑
r=0

Ur(x, y)Uk−r(x, y)
)
,

(4.4)

and

U0(x, y) =
4

3
λ cosh2(x+ y). (4.5)

The recurrence relation (4.4) and the transformed initial condition (4.5)
yield
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U1(x, y) =
8λ2

9Γ(1 + α)

(
4 sinh[2(x+ y)] + 5 sinh[4(x+ y)]

)
,

U2(x, y) =
512λ4

81
(
Γ(1 + α)

)2
Γ(1 + 3α)

sinh
(
2(x+ y)

)[
(
3396 + 7380 cosh[2(x+ y)] + 6600 cosh[4(x+ y)] + 5100 cosh[6(x+ y)]

)(
Γ(1 + α)

)2

+
(
140 + 465 cosh[2(x+ y)] + 300 cosh[4(x+ y)] + 425 cosh[6(x+ y)]

)
Γ(1 + 2α)]

, · · · .

(4.6)

For a comparison between the exact and approximate soluton, we
consider α = 1 and λ = 0.001. Consequently, the next terms of Uk(x, y)
become

U1(x, y) = 0.0000248889 cosh3(x+ y) sinh(x+ y)

+ 0.0000106667 cosh(x+ y) sinh3(x+ y),

U2(x, y) = −1.87259× 10−7 cosh6(x+ y)

− 1.73274× 10−6 cosh4(x+ y) sinh2(x+ y)

− 9.03111× 10−7 cosh2(x+ y) sinh4(x+ y)

− 2.13333× 10−8 sinh6(x+ y),

U3(x, y) = 8.00658× 10−11 sinh(2(x+ y))

+ 1.24313× 10−9 sinh(4(x+ y))

+ 3.79259× 10−9 sinh(6(x+ y)) + 3.13416× 10−9 sin([8(x+ y)), · · · .

The comparision is shown in Table 2 by taking only 5 terms into account,
i.e.

u(x, y, t) =

5∑
k=0

Uk(x, y)t
kα.

In addition, this approximate solution for α = 0.4 and α = 0.75 are
given in Table 3. (See also Fig 1.)
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x, y t α = 1 Exact(α = 1)

x=0.3 t=0.2 -1.86792072E-3 -1.87336795E-3

y=0.3 t=0.6 -1.85668352E-3 -1.87256368E-3
t=1 -1.84599651E-3 -1.87176018E-3

x=0.6 t=0.2 -4.31581061E-3 -4.36984075E-3
y=0.6 t=0.6 -4.21637816E-3 -4.36692779E-3

t=1 -4.12395983E-3 -4.36401721E-3

x=0.9 t=0.2 -1.23373501E-2 -1.28703109E-2
y=0.9 t=0.6 -1.08457601E-2 -1.28605665E-2

t=1 -5.71066844E-2 -1.28508299E-2
Table 2. The exact solutions and the approximate solutions for α = 1 when λ = 0.001 .

x, y t α = 0.4 α = 0.75

x=0.3 t=0.2 -1.85729531E-3 -1.86438816-3
y=0.3 t=0.6 -1.84889497E-3 -1.85308338E-3

t=1 -1.84362452E-3 -1.84417536E-3

x=0.6 t=0.2 -4.21312814E-3 -4.28450478E-3
y=0.6 t=0.6 -4.01901448E-3 -4.18406080E-3

t=1 -4.70477241E-3 -4.07471651E-3

x=0.9 t=0.2 1.03971416E-2 -1.19571008E-2
y=0.9 t=0.6 2.00072564E-2 -1.23552425E-2

t=1 5.89035854E-1 6.33400868E-2
Table 3. The approximate solutions for different values of α when λ = 0.001 and y = 0.9.

5. conclusion

In this paper, the reduced differential transform method (RDTM), has
been successfully applied for the fractional Zakharov-Kuznetsov equa-
tion. It can be concluded that, RDTM is a very powerful and efficient
technique for finding approximate solutions for wide classes of problems
and can be applied to many complicated linear and non-linear problems,
and does not require linearization, discretization or perturbation.
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