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1. Introduction and Preliminaries

All algebras we deal with in this paper are complex and unital. The
identity element of an algebra A will be denoted e, or eA, for distinction.
For a given algebra A and a ∈ A, σ(a) and r(a) will denote the spectrum
and the spectral radius of a, respectively. Let A and B be two Banach
algebras. A linear map φ : A → B is said to be spectrum preserving
if σ(φ(a)) = σ(a) for all a ∈ A. Furthermore, φ is said to be unital if
φ(eA) = eB and it is called invertibility preserving if φ(a) is invertible
in B whenever a is invertible in A. Now, if A is a Banach algebra, the
set of all non-zero complex homomorphisms of A is a compact Hausdorff
space in its usual (weak∗) topology, the so-called Gelfand topology. This
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space will be called the maximal ideal space of A, and it will be denoted
by MA.

Spectrum preserving linear mappings were studied for the first time
by G. Frobenius [8]. He proved that a surjective linear mapping
ϕ : Mn(C) −→ Mn(C) which preserves the spectrum has one of the
forms ϕ(T ) = ATA−1 or ϕ(T ) = AtTA−1 for some invertible A. In
[12] Jafarian and sourour proved that a surjective linear map preserving
spectrum from B(X) onto B(Y ) is either an isomorphism or an anti-
isomorphism where X and Y are complex Banach spaces and B(X) is
the Banach algebra of all bounded linear operators acting on X. The
following conjecture seems to be still open:

Any spectrum-preserving linear map from a unital Banach algebra
onto a unital semi-simple (non-commutative) Banach algebra that pre-
serves the unit is a Jordan homomorphism, (Kaplansky’s conjecture).

The G-K-Z Theorem ([15], [14]) asserts that a unital linear functional
defined on a Banach algebra is multiplicative if it is invertibility preserv-
ing and the theorem has inspired a number of papers on more general
preserver problems. It is a straightforward conclusion of the G-K-Z The-
orem that a unital and invertibility preserving linear map from a Banach
algebra into a semi-simple commutative Banach algebra is a homomor-
phism. This conjecture is still unsolved. The most important partial
results obtained this direction are [1], [2], [4], [6], [9], [10], [11], [12], [13],
[19], [20], [21], [22].

Recently Aupetit [2] showed that a spectrum preserving surjective
linear map from a von Neumann algebra onto another is a Jordan iso-
morphism.

A C∗-subalgebra B of A is hereditary if 0 ≤ a ≤ b, a ∈ A, b ∈ B
implies a ∈ B. A projection in a C∗-algebra A is called infinite if it is
equivalent to a proper subprojection of itself. A C∗-algebra is purely
infinite if every hereditary subalgebra contains an infinite projection.

In this paper we show that if A is a unital Banach algebra, B is a
purely infinite C∗-algebra such that has a non-zero commutative max-
imal ideal and φ : A → B is a unital surjective spectrum preserving
linear map, then φ is a Jordan isomorphism (Theorem 2.2).

There are many results on the conjecture of Kaplansky. One of the
most important results is [2, Theorem 1.3] of Aupetit. Among other
theorems, Larwrence Harris proved the following.

Theorem 1.1. [9] Let A be a unital Banach algebra, B be a unital
semi-simple commutative Banach algebra and φ : A→ B is a unital in-
vertibility preserving linear map. Then φ is a continuous multiplicative.

Theorem 1.2. [17] Let A be a C∗-algebra, and a ∈ A. Then there is
an irreducible representation π of A such that ‖a‖ = ‖π(a)‖.
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Remark 1.3. By Theorem 5.1.6 (2) in [17], it follows that if A is a non-
commutative C∗-algebra, then irreducible representations π in Theorem
1.2 has dimension greater than 1.

Theorem 1.4. [16] Let φ : A → B be a unital surjective spectrally
bounded operator from a unital C∗-algebra A onto a unital semisimple
Banach algebra B. If A is a purely infinite C∗-algebra of real rank zero,
then φ is a Jordan homomorphism.

2. Main results

Recall that all algebras we deal with have an identity element. Moreover,
note that by an ideal we always mean a 2-sided ideal.

Remark 2.1. We recall that if A,B and D are C∗-algebras, and if homo-
morphisms ϕ : A −→ D and ψ : B −→ D are given, then the C∗-algebra
A⊕D B is defined as

A⊕D B = {(a, b) ∈ A⊕D B : ϕ(a) = ψ(b)}.
Let A be a C∗-algebra, by [18, Lemmas 10 and 11] A has a unique max-
imal commutative ideal I (I may be obtained as the intersection of the
kernels of all irreducible representations of A of dimension greater than
1) and a closed ideal J such that I ∩ J = {0} and A/J is commuta-
tive, furthermore, A ∼= A/J ⊕A/(I+J) A/I by ∗-isomorphism ϕ : A −→
A/J ⊕A/(I+J) A/I such that ϕ(a) = (a+ J, a+ I).

Theorem 2.2. Let A be a unital Banach algebra and B be a purely
infinite C∗-algebra such that it has a non-zero commutative maximal
ideal. Suppose that φ : A→ B is a unital surjective spectrum preserving
linear map, then φ is a Jordan homomorphism.

Proof. By [18, Lemmas 10 and 11] B has a unique maximal commuta-
tive ideal I and a closed ideal J with the properties I ∩ J = 0, B/J is
commutative and B ∼= B/J ⊕B/(I+J) B/I. Define φ1 : A −→ B/J and
φ2 : A −→ B/I by φ1(a) = φ(a) + J and φ2(a) = φ(a) + I for every
a ∈ A.

We can show that φ1 and φ2 are well-defined and non-zero unital lin-
ear maps. For any a ∈ A, if φ(a) is invertible then φ1(a) and φ2(a)
are invertible. Hence φ1 and φ2 preserve invertibility. Therefore, φ1 is
continuous homomorphism by Theorem 1.1. (Note that B/J is com-
mutative C∗-algebra). Since I contains every commutative ideal by the
hypothesis I is a commutative maximal ideal in B (see proof of Lemma
10 in [18]). It is clear that B/I is purely infinite simple C∗-algebra, so
B/I has real rank zero by [7, Theorem V.7.4].

We prove that φ2 is injective. To prove this, suppose a ∈ A such
that φ2(a) = 0, so φ(a) ∈ I, and Theorem 1.2, Remarks 1.3 and 2.1
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imply that ‖φ(a)‖ = ‖π(φ(a))‖ = 0 for some irreducible representation
with dimension greater than 1. On the other hand φ is continuous and
injective (see [2] and [3]), so φ2 is injective. Also, by Theorem 1.5, φ−1

2
is Jordan isomorphism and hence φ2 is Jordan isomorphism.

Now, we show that φ is a Jordan homomorphism. We have φ1(a) =
φ(a) + J and φ2(a) = φ(a) + I for all a ∈ A. Hence for every a ∈ A
(1) φ1(a)2 = φ(a)2 + J, φ2(a)2 = φ(a)2 + I.

Also we have

(2) φ1(a
2) = φ(a2) + J, φ2(a

2) = φ(a2) + I.

Since φ1 and φ2 are Jordan homomorphism, (1) and (2) imply that
φ(a)2 − φ(a2) ∈ J and φ(a)2 − φ(a2) ∈ I. But I ∩ J = 0. Therefore,
φ(a2) = φ(a)2 for all a ∈ A, that is, φ is a Jordan homomorphism. This
completes the proof.

Corollary 2.3. Let A be a unital Banach algebra and B be a purely in-
finite C∗-algebra such that it has a non-zero commutative ideal. Suppose
that φ : A→ B is a surjective spectrum preserving linear map, so φ is a
Jordan homomorphism multiplied by an invertible element.

Proof. For b ∈ B, denote Lb the linear map from B into itself defined
by multiplying by b from the left hand, that is, Lb(x) = bx for every
x ∈ B. Let ψ = Lφ(e)−1 ◦ φ, then ψ(e) = e. As a preserver, ψ has the
same property as φ has. It is easy to check ψ preserves invertibility.
Now by Theorem 2.2, ψ is a Jordan homomorphism and φ = Lφ(e) ◦ ψ.
This completes the proof.
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