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Abstract. Let X,Y be normed spaces with L(X,Y ) the space of
continuous linear operators from X into Y . If {Tj} is a sequence
in L(X,Y ), the (bounded) multiplier space for the series

∑
Tj is

defined to be

M∞(
∑

Tj) = {{xj} ∈ l∞(X) :

∞∑
j=1

Tjxj converges}

and the summing operator S : M∞(
∑

Tj) → Y associated with
the series is defined to be S({xj}) =

∑∞
j=1 Tjxj . In the scalar case

the summing operator has been used to characterize completeness,
weakly unconditionall Cauchy series, subseries and absolutely con-
vergent series. In this paper some of these results are generalized
to the case of operator valued series The corresponding space of
weak multipliers is also considered.
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1. Introduction

In a series of papers Aizpuru, Benitez-Trujillo and Perez-Fernandez
([PBA], [AP1] ,[AP2]) used the multiplier space

M∞(
∑

xj) = {{tj} ∈ l∞ :
∞∑
j=1

tjxj converges}

and the summing operator S({tj}) =
∑∞

j=1 tjxj of an arbitrary sequence

{xj} in a normed spaceX to characterize weakly unconditionally Cauchy
(wuc) series

∑
xj and completeness and barrelledness of the normed

space X. In an additional paper Swartz ([Sw3]) used the multiplier space
and the summing operator to give characterizations of subseries and
absolutely convergent series in terms of the summing operator. In this
paper we will extend some of these results to the case of operator valued
series and vector valued multipliers. The first question which arises, is
what is the analogue of wuc series in the operator valued setting? There
are several known characterizations of wuc series given in Proposition 3.8
of [Sw2]. The one which seems to be appropriate is the fact that a series∑
xj is wuc iff it is c0 multiplier Cauchy (that is, the series

∑∞
j=1 tjxj

is Cauchy for every {tj} ∈ c0); this condition is easily adapted to the
operator valued case and gives results which are analogous to those
obtained by Aizpuru, Benitez-Trujillo and Perez-Fernandez.

Main Results

Throughout let X,Y be normed spaces, L(X,Y ) the space of contin-
uous linear operators from X into Y and Tj ∈ L(X,Y ) for j ∈ N. If E
is an X valued sequence space, the series

∑
Tj is E multiplier conver-

gent (E multiplier Cauchy) if the series
∑∞

j=1 Tjxj converges in Y (is

Cauchy in Y ) for every sequence {xj} ∈ E. c0(X) (l∞(X), c00(X)) is
the space of all X valued sequences which converge to 0 (are bounded,
are eventually 0). The multiplier space for the series

∑
Tj is defined to

be

M∞(
∑

Tj) = {{xj} ∈ l∞(X) :
∞∑
j=1

Tjxj converges};

the multiplier space for
∑
Tj is assumed to be equipped with the sup-

norm ‖·‖∞. The summing operator associated with the series is defined
to be

S : M∞(
∑

Tj)→ Y, S({xj}) =

∞∑
j=1

Tjxj .

Similarly, the weak multiplier space is defined to be
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M∞w (
∑

Tj) = {{xj} ∈ l∞(X) :

∞∑
j=1

Tjxj converges weakly}

and the weak summing operator is defined to be

S : M∞w (
∑

Tj)→ Y, S({xj}) =
∞∑
j=1

Tjxj (weak sum).

For a sufficient condition for equality betweenM∞w (
∑
Tj) andM∞(

∑
Tj),

we have

Proposition 1.1. If
∑
Tj is l∞(X) multiplier Cauchy, then

M∞(
∑

Tj) = M∞w (
∑

Tj).

Proof. Let x ∈M∞w (
∑
Tj) and let y =

∑∞
j=1 Tjxj (weak sum). The par-

tial sums of the series
∑∞

j=1 Tjxj form a norm Cauchy sequence since∑
Tj is l∞ multiplier Cauchy and the series

∑∞
j=1 Tjxj is weakly conver-

gent so the series
∑∞

j=1 Tjxj is norm convergent since the norm and weak

topologies are linked ([Wi]6.1.9,6.1.11, [Sw2]A.4) so x ∈M∞(
∑
Tj).

See [PBA], Lemma 3.3 and [Sw2], Lemma 8.26 for the scalar ana-
logues. �

Continuity
We show that the continuity of the summing operator S can be char-

acterized by the c0(X) multiplier Cauchy property of the series
∑
Tj .

For one of the implications below, we require the following lemma.

Lemma 1.2. If
∑
Tj is c0(X) multiplier Cauchy, then supj ‖Tj‖ <∞.

Proof. Let tj → 0 and ‖xj‖ ≤ 1. Then {tjxj} ∈ c0(X) so
∑∞

j=1 tjTjxj is

Cauchy and tjTjxj → 0. Hence, {Tjxj} is bounded. Pick xj ∈ X such
that ‖xj‖ = 1 and ‖Tjxj‖+ 1 > ‖Tj‖. Then {‖Tj‖} is bounded. �

Theorem 1.3. The following are equivalent: (1) S : M∞(
∑
Tj) → Y

is continuous , (2)
∑
Tj is c0(X) multiplier Cauchy, (3)

G = {
n∑
j=1

Tjxj : n ∈ N, ‖xj‖ ≤ 1}

is bounded, (4) S |c00(X)→ Y is continuous, (5) S : M∞w (
∑
Tj) → Y is

continuous.
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Proof. (1)⇒(2): Let x = {xj} ∈ c0(X). If j ∈ N and z ∈ X, ej ⊗ z
will denote the sequence with z in the jth coordinate and 0 in the other

coordinates. Set xk =
∑k

j=1 e
j ⊗ xj so xk ∈ M∞(

∑
Tj) and xk → x in

‖·‖∞. Since S : M∞(
∑
Tj) → Y is continuous, {Sxk} = {

∑k
j=1 Tjx

k
j }

is Cauchy so the series
∑

j Tjxj is Cauchy.

(2)⇒(3): If the conclusion fails, there exist tk → 0 and
∑nk

j=1 Tjx
k
j =

yk ∈ G and tkyk 9 0. Hence, there exists δ > 0 such that

(#) for every k there exists mk > k with ‖tmk
ymk
‖ > δ.

For k = 1 (#) implies ‖tm1ym1‖ =
∥∥∥tm1

∑m1
j=1 Tjx

m1
j

∥∥∥ > δ. By Lemma

2 there exists l1 > m1 such that l ≥ l1 implies |tl|
∑m1

j=1 ‖Tj‖ < δ/2. For

k = l1 condition (#) implies there exists m2 > l1 such that∥∥∥∥∥∥tm2

m2∑
j=1

Tjx
m2
j

∥∥∥∥∥∥ > δ

[this is a slight abuse of the notation in (#) but it avoids multiple sub-
scripts]. Note∥∥∥∥∥∥tl

k∑
j=1

Tjxj

∥∥∥∥∥∥ ≤ |tl|
k∑
j=1

‖Tj‖ ≤ |tl|
m1∑
j=1

‖Tj‖ < δ/2

for any k ≤ m1, ‖xj‖ ≤ 1, l ≥ l1 so m2 > m1 and, in particular,∥∥∥∥∥∥tm2

m1∑
j=1

Tjx
m1
j

∥∥∥∥∥∥ < δ/2.

Set I2 = [m1+1,m2]. Then∥∥∥∥∥∥tm2

∑
j∈I2

Tjx
m2
j

∥∥∥∥∥∥ ≥
∥∥∥∥∥∥tm2

m2∑
j=1

Tjx
m2
j

∥∥∥∥∥∥−
∥∥∥∥∥∥tm2

m1∑
j=1

Tjx
m2
j

∥∥∥∥∥∥ > δ− δ/2 = δ/2.

Continuing this construction produces an increasing sequence {mk} and
an increasing sequence of intervals {Ik} such that

(∗)

∥∥∥∥∥∥tmk

∑
j∈Ik

Tjx
mk
j

∥∥∥∥∥∥ > δ/2.

Define x = {xj} ∈ c0(X) by x =
∑∞

k=1 tmk
χIkx

mk [coordinate sum].
Then (*) implies

∑∞
j=1 Tjxj fails the Cauchy criterion so

∑
Tj is not

c0(X) multiplier Cauchy giving the desired contradiction.
(3)⇒(4): This follows immediately from (3).
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(4)⇒(5): By (4) there exits M > 0 such that
∥∥∥∑n

j=1 Tjxj

∥∥∥ ≤ M for

n ∈ N, ‖xj‖ ≤ 1. Then∥∥∥∥∥∥S(
n∑
j=1

ej ⊗ xj)

∥∥∥∥∥∥ =

∥∥∥∥∥∥
n∑
j=1

Tjxj

∥∥∥∥∥∥ ≤M
when n ∈ N, ‖xj‖ ≤ 1. Thus, if y′ ∈ Y ′, then∣∣∣∣∣∣y′(

n∑
j=1

Tjxj)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∑
j=1

y′(Tjxj)

∣∣∣∣∣∣ ≤M ∥∥y′∥∥
for n ∈ N, ‖xj‖ ≤ 1. Let x ∈M∞w (

∑
Tj) with ‖x‖∞ ≤ 1. If y′ ∈ Y ′ and

if
∑∞

j=1 Tjxj denotes the weak sum of the series,∣∣∣∣∣∣y′(
∞∑
j=1

Tjxj)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∞∑
j=1

y′(Tjxj)

∣∣∣∣∣∣ =

∣∣∣∣∣∣limn
n∑
j=1

y′(Tjxj)

∣∣∣∣∣∣ ≤M ∥∥y′∥∥ .
Hence, S is continuous.

Clearly (5) implies (1). �

See [AP1] for the analogue of these equivalences in the scalar case.
The equivalence of (1) and (2) is the analogue of Proposition 2.1 of [AP2]
(8.22 of [Sw2]); the other equivalences should be compared with those
in 3.8 of [Sw2].

Completeness
We address the completeness of M∞(

∑
Tj).

Theorem 1.4. If M∞(
∑
Tj) or M∞w (

∑
Tj)is complete, then

∑
Tj is

c0(X) multiplier convergent.

Proof. Let x = {xj} ∈ c0(X). Consider the case of M∞(
∑
Tj) first.

Then xk =
∑k

j=1 e
j ⊗ xj ∈ M∞(

∑
Tj) and xk → x in ‖·‖∞ so x ∈

M∞(
∑
Tj) and

∑
Tj is c0(X) multiplier convergent.

Next consider the case of M∞w (
∑
Tj). Then by the argument above

x ∈M∞w (
∑
Tj) so

∑∞
j=1 Tjxj is weakly convergent. Since c0(X) is mono-

tone and
∑∞

j=1 Tjxj is weakly convergent for every x ∈ c0(X) this means

the series
∑∞

j=1 Tjxj is weakly subseries convergent and, therefore, norm

subseries convergent by the Orlicz-Pettis Theorem ([Sw2]4.11). Hence,∑
Tj is c0(X) multiplier convergent.
We next address the converse of this result. �

Theorem 1.5. If
∑
Tj is c0(X) multiplier convergent and X,Y are

complete, then M∞(
∑
Tj) is complete.
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Proof. Suppose {xk} is Cauchy in M∞(
∑
Tj). There exists x ∈ l∞(X)

such that xk → x in ‖·‖∞ [X is complete so l∞(X) is complete]. The-

orem 2 implies there exists M > 0 such that
∥∥∥∑n

j=1 Tjxj

∥∥∥ ≤M for n ∈
N, ‖xj‖ ≤ 1. Let ε > 0. Fix n such that ‖xn − x‖ < ε. Since

∑∞
j=1 Tjx

n
j

converges, there exists N such that q > p ≥ N implies
∥∥∥∑q

j=p Tjx
n
j

∥∥∥ <
ε. For each j ,

∥∥∥xnj − xj∥∥∥ /ε ≤ 1 so
∥∥∥∑q

j=p Tj(x
n
j − xj)/ε

∥∥∥ ≤ 2M or∥∥∥∑q
j=p Tj(x

n
j − xj)

∥∥∥ ≤ 2Mε for q > p ≥ N . Hence, if q > p ≥ N ,∥∥∥∥∥∥
q∑
j=p

Tjxj

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥

q∑
j=p

Tjx
n
j

∥∥∥∥∥∥+ 2Mε ≤ ε+ 2Mε.

Thus, the series
∑∞

j=1 Tjxj satisfies the Cauchy criterion and is conver-
gent since Y is complete.

A similar result holds for M∞w (
∑
Tj).

Theorem 1.6. If
∑
Tj is c0(X) multiplier convergent and X,Y are

complete, then M∞w (
∑
Tj) is complete.

�

Proof. Suppose {xk} ⊂ M∞w (
∑
Tj) is Cauchy and let x ∈ l∞ be such

that xk → x in ‖·‖∞ [X is complete so l∞(X) is complete]. Theorem

3 implies there exists M > 0 such that
∥∥∥∑n

j=1 Tjxj

∥∥∥ ≤ M for n ∈
N, ‖xj‖ ≤ 1. Let ε > 0. There exists n such that

∥∥xk − x∥∥∞ < ε/3M
for k ≥ n. Then

(∗)

∥∥∥∥∥∥
m∑
j=1

Tj(x
k
j − xj)

∥∥∥∥∥∥ ≤ ε/3
for m ∈ N, k ≥ n. Thus,

∥∥∥∑m
j=1 Tj(x

k
j − xlj)

∥∥∥ ≤ 2ε/3 for k, l ≥ n,m ∈ N.

Let zk =
∑∞

j=1 Tjx
k
j [weak sum] so we have ‖zk − zl‖ ≤ 2ε/3 for k, l ≥ n.

Since Y is complete, there exists z ∈ Y such that zk → z. We claim
that the series

∑∞
j=1 Tjxj converges weakly to z. There exists N > n

such that ‖zk − z‖ < ε/3 for k ≥ N . If y′ ∈ Y ′, ‖y′‖ ≤ 1, then from (*)∣∣∣∣∣∣y′(
m∑
j=1

Tj(x
k
j − xj)

∣∣∣∣∣∣ ≤ ε



Operator Valued Series and Vector Valued Multiplier Spaces 283

for m ∈ N, k ≥ n. Fix N . There exists N1 such that∣∣∣∣∣∣y′(
m∑
j=1

Tj(x
N
j )− zN )

∣∣∣∣∣∣ < ε/3

for m ≥ N1. Hence, if m ≥ N1,∣∣∣∣∣∣y′(
m∑
j=1

Tj(xj)− z)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣y′(

m∑
j=1

Tj(xj − xNj )

∣∣∣∣∣∣+‖zk − z‖+
∣∣∣∣∣∣y′(

m∑
j=1

Tj(x
N
j )− zN )

∣∣∣∣∣∣ < ε.

This establishes the claim.
Theorems 4 and 5 give analogues of Theorems 2.1 and 3.2 of [PBA]

(see also 8.20 and 8.24 of [Sw2]).

Theorem 1.7. If Y is not complete, there exists a c0(X) multiplier
Cauchy, absolutely convergent series

∑
Tj such that M∞(

∑
Tj) (M∞w (

∑
Tj))

is not complete.

�

Proof. Since Y is not complete, there exists a series
∑
yj in Y such that∑∞

j=1 yj doesn’t converge but
∑∞

j=1 j ‖yj‖ < ∞. Let x0 ∈ X, ‖x0‖ = 1.

Pick x′0 ∈ X ′ such that x′0(x0) = ‖x0‖ = 1. Define Tj ∈ L(X,Y ) by
Tjx = x′0(x)jyj . Note that ‖Tj‖ = j ‖yj‖ so the series

∑
Tj is absolutely

convergent. We claim
∑
Tj is c0(X) multiplier Cauchy. For this let

x = {xj} ∈ c0(X). Then for q > p,∥∥∥∥∥∥
q∑
j=p

Tjxj

∥∥∥∥∥∥ ≤
q∑
j=p

‖Tj‖ ‖xj‖ ≤ max
p≤j≤q

‖xj‖
∞∑
j=1

j ‖yj‖ → 0

as p→∞ establishing the claim. Now x = {x0/j} ∈ c0(X) and

∞∑
j=1

Tjxj =

∞∑
j=1

1

j
x′0(x0)jyj =

∞∑
j=1

yj

doesn’t converge so {x0/j} /∈ M∞(
∑
Tj). But,

∑n
j=1 e

j ⊗ x0/j ∈
M∞(

∑
Tj) and

∑n
j=1 e

j ⊗ x0/j → {x0/j} in ‖·‖∞ so M∞(
∑
Tj) is

not complete.
For the case of M∞w (

∑
Tj) the series

∑
yj above is also not weakly

convergent since the partial sums are ‖·‖ Cauchy and the norm and weak
topologies are linked ([Wi]6.1.6,6.1.11, [Sw2]A.4) so the proof above also
works in this case.

From Theorems 4,5 and 6, we have the analogue of Theorems 2.2 and
3.4 of [PBA]; see also 8.21 of [Sw2].
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Corollary 1.8. Suppose X is complete. Then Y is complete iff for every
c0(X) multiplier Cauchy series

∑
Tj the space M∞(

∑
Tj) (M∞w (

∑
Tj))

is complete.

�

Recall that Y is complete iff L(X,Y ) is complete so the corollary
could be restated in these terms ([Sw1]5.8,8.1.18).

Compactness
We next consider compactness for the summing operator. The scalar

case was addressed in [Sw3].

Proposition 1.9. If S : M∞(
∑
Tj) → Y is compact (precompact,

weakly compact), then each Tj is compact (precompact, weakly compact).

Proof. Fix j. Then {ej ⊗ x : ‖x‖ ≤ 1} ⊂ M∞(
∑
Tj) ⊂ l∞(X) is

bounded so {S(ej ⊗ x) : ‖x‖ ≤ 1} = {Tjx : ‖x‖ ≤ 1} is relatively
compact (precompact, relatively weakly compact).

Thus, if we want to consider compactness (precompactness, weak com-
pactness) for the summing operator, we must consider the appropriate
space of operators. The space of precompact (compact, weakly compact)
operators will be denoted by PC(X,Y ) (K(X,Y ),W (X,Y )).

Theorem 1.10. Let Tj ∈ PC(X,Y ). If
∑
Tj is l∞(X) multiplier con-

vergent, then S : M∞(
∑
Tj) = l∞(X)→ Y is precompact.

�

Proof. Let ε > 0. The series
∑∞

j=1 Tjxj are uniformly convergent for

‖xj‖ ≤ 1 ([Sw2] 11.11) so there exists N such that

(∗)

∥∥∥∥∥∥
∞∑
j=n

Tjxj

∥∥∥∥∥∥ < ε for n ≥ N and ‖xj‖ ≤ 1.

Define Sn : M∞(
∑
Tj) = l∞(X)→ Y by Sn({xj}) =

∑n
j=1 Tjxj . Then

each Sn is precompact since each Tj is precompact. By (*) ‖Sn − S‖ → 0
so S is precompact ([Sw1] 28.2]). �

Theorem 1.11. Let Y be complete and Tj ∈ K(X,Y ) [W (X,Y )]. If∑
Tj is l∞(X) multiplier convergent, then S : M∞(

∑
Tj) = l∞(X)→ Y

is compact [weakly compact].

Proof. Using the notation in the proof above, the operators Sn are
compact [weakly compact] and converge to S in norm so S is com-
pact {weakly compact} by [DS]VI.5.5, [Ta],7.1, [Sw1],28.3 {[DS]VI.4.4,
[Sw1]29.3}. �

We consider the converse.
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Proposition 1.12. If S : M∞(
∑
Tj)→ Y is compact (weakly compact),

then
F = {

∑
j∈σ

Tjxj : σfinite, ‖xj‖ ≤ 1}

is relatively compact (relatively weakly compact).

Proof. The set E = {
∑

j∈σ e
j ⊗ xj : σ finite, ‖xj‖ ≤ 1} ⊂M∞(

∑
Tj) is

bounded and SE = F .

Theorem 1.13. If S : M∞(
∑
Tj) → Y is compact (weakly compact),

then the series
∑
Tj is l∞(X) multiplier convergent.

�

Proof. If x ∈ l∞(X), the relative compactness of the set F in Proposition
12 implies that the series

∑∞
j=1 Tjxj is subseries convergent in the norm

topology of Y ([Sw2] 2.48]). This proves the first statement when S
is compact. If S is weakly compact, the relative weak compactness
of the set F in Proposition 12 implies the series

∑∞
j=1 Tjxj is subseries

convergent in the weak topology of Y ([Sw2] 2.48]). But then the Orlicz-
Pettis Theorem gives that the series is subseries convergent in the norm
topology.

The conclusion in the theorem above implies that the series
∑∞

j=1 Tjxj
actually converge uniformly for ‖xj‖ ≤ 1 ([Sw2]11.11).

Continuity and bounded multiplier series �

Consider the duality between l∞(X) and l1(X ′): if x = {xj} ∈ l∞(X)
and y = {yj} ∈ l1(X ′), then 〈y, x〉 =

∑∞
j=1 〈yj , xj〉 defines a duality

between l∞(X) and l1(X ′). Then also M∞(
∑
Tj) ⊂ l∞(X) and l1(X ′)

(M∞w (
∑
Tj) and l1(X ′)) similarly form a dual pair.

If E,F are a pair of vector spaces in duality, we denote the weak
topology on E from F by σ(E,F ). We consider sequential continuity
with respect to σ(M∞(

∑
Tj), l

1(X ′)) and σ(M∞w (
∑
Tj), l

1(X ′)). Note
that for this we must consider the Tj to be completely continuous opera-
tors [recall a linear operator is completely continuous if it carries weakly
convergent sequences to norm convergent sequences].

Proposition 1.14. If the summing operator S : M∞(
∑
Tj) → Y is

sequentially

σ(M∞(
∑

Tj), l
1(X ′))− ‖·‖

continuous, then each Tk is completely continuous. A similar statement
holds for M∞w (

∑
Tj).

Proof. Fix k. Let xj → 0 in σ(X,X ′). We claim

σ(M∞(
∑

Tj), l
1(X ′))− lim

j
ek ⊗ xj = 0.



286 Charles Swartz

Let y = {yj} ∈ l1(X ′). Then
〈
y, ek ⊗ xj

〉
= 〈yk, xj〉 → 0 as j → ∞

justifying the claim. Then limj

∥∥S(ek ⊗ xj)
∥∥ = limj ‖Tkxj‖ = 0. The

same proof works for M∞w (
∑
Tj).

Theorem 1.15. If S : M∞(
∑
Tj)→ Y is sequentially σ(M∞(

∑
Tj), l

1(X ′))−
‖·‖ continuous, then

∑
Tj is l∞(X) multiplier Cauchy [so if Y is com-

plete, then
∑
Tj is l∞(X) multiplier convergent and l∞(X) = M∞(

∑
Tj)].

A similar statement holds for M∞w (
∑
Tj).

�

Proof. Let x = {xj} ∈ l∞(X) and set xk = χ{1,...,k}x so xk ∈M∞(
∑
Tj).

We claim {xk} is σ(M∞(
∑
Tj), l

1(X ′)) Cauchy. Let y = {yj} ∈ l1(X ′).
Then

〈
y, xk

〉
=
∑k

j=1 〈yj , xj〉 →
∑∞

j=1 〈yj , xj〉 justifying the claim. The

continuity of S implies {Sxk} = {
∑k

j=1 Tjxj} is norm Cauchy so
∑
Tj

is l∞(X) multiplier Cauchy. The same proof works for M∞w (
∑
Tj).

We next consider the converse of this theorem.

Lemma 1.16. If B ⊂ l∞(X) is σ(l∞(X), l1(X ′)) bounded, then B is
‖·‖∞ bounded.

�

Proof. Let t = {tj} ∈ l1 and x′ ∈ X ′. Then tx′ ∈ l1(X ′) so

sup{
∣∣〈tx′, x〉∣∣ : x ∈ B} = sup{

∣∣∣∣∣∣
∞∑
j=1

tj
〈
x′, xj

〉∣∣∣∣∣∣ : x ∈ B} <∞.

Since t ∈ l1 is arbitrary, {{〈x′, xj〉} : x ∈ B} ⊂ l∞ is ‖·‖∞ bounded.
Therefore, sup{|〈x′, xj〉| : x ∈ B, j ∈ N} <∞ so by the Uniform Bound-
edness Principle, sup{‖xj‖ : x ∈ B, j ∈ N} < ∞ or sup{‖x‖∞ : x ∈
B} <∞. �

Lemma 1.17. If σ(l∞(X), l1(X ′)) − limxj = 0, then for every l ,

σ(X,X ′)− limj x
j
l = 0.

Proof. Let x′ ∈ X ′. Then el⊗x′ ∈ l1(X ′) so
〈
el ⊗ x′, xj

〉
=
〈
x′, xjl

〉
→ 0

as j →∞.

Theorem 1.18. Suppose each Tj is completely continuous and
∑
Tj is

l∞(X) multiplier convergent. Then S : M∞w (
∑
Tj) → Y is sequentially

σ(M∞w (
∑
Tj), l

1(X ′))− ‖·‖ continuous.

�

Proof. Let ε > 0 and xj → 0 in σ(M∞w (
∑
Tj), l

1(X ′)). By Lemma 16,
supj

∥∥xj∥∥∞ <∞ and for convenience assume
∥∥xj∥∥∞ ≤ 1 for all j. The
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series
∑∞

j=1 Tjxj converge uniformly for ‖xj‖ ≤ 1 ([Sw2]11.11]) so there

exists N such that
∥∥∥∑∞j=N Tjxj∥∥∥ < ε for ‖xj‖ ≤ 1. By Lemma 17 and

the complete continuity of each Tl, limj

∥∥∥Tlxjl ∥∥∥ = 0. Therefore, there

exists J such that
∥∥∥∑N−1

l=1 Tlx
j
l

∥∥∥ < ε for j ≥ J . Hence, if j ≥ J , then

∥∥Sxj∥∥ =

∥∥∥∥∥
∞∑
l=1

Tlx
j
l

∥∥∥∥∥ ≤
∥∥∥∥∥
N−1∑
l=1

Tlx
j
l

∥∥∥∥∥+

∥∥∥∥∥
∞∑
l=N

Tlx
j
l

∥∥∥∥∥ < 2ε.

Remark 1.19. Note that since l1(X ′) ⊂ l∞(X)′, the σ(M∞w (
∑
Tj), l

1(X ′))−
‖·‖ sequential continuity of the summing operator S implies that S is
completely continuous.

�

Absolutely summing operators:
We make a few remarks concerning absolutely convergent series and

absolutely summing operators. We only have necessary conditions for
the summing operator to be absolutely summing.

Theorem 1.20. If S : M∞w (
∑
Tj) → Y is absolutely summing, then

each Tk is absolutely summing and π(Tk) ≤ 2π(S), where π(S) is the
absolutely summing norm of S ([DJT]).

Proof. For any {x1, ..., xm} ⊂M∞w (
∑
Tj),

m∑
j=1

∥∥Sxj∥∥ ≤ 2π(S) sup{

∥∥∥∥∥∥
∑
j∈σ

xj

∥∥∥∥∥∥
∞

: σ ⊂ {1, ...,m}}

(see Theorem 15 of [Sw3] for this characterization of absolutely summing
operators). Fix k. Let {x1, ..., xm} ⊂ X. Then∑m

j=1

∥∥S(ek ⊗ xj)
∥∥ =

∑m
j=1 ‖Tkxj‖ ≤ 2π(S) sup{

∥∥∥∑j∈σ e
k ⊗ xj

∥∥∥
∞

: σ ⊂ {1, ...,m}}

= 2π(S) sup{
∥∥∥∑j∈σ xj

∥∥∥ : σ ⊂ {1, ...,m}}

so Tk is absolutely summing and π(Tk) ≤ 2π(S).

Theorem 1.21. If S : M∞w (
∑
Tj) → Y is absolutely summing and if

x ∈ l∞(X), then
∑∞

j=1 ‖Tjxj‖ ≤ 2π(S) ‖x‖∞.

�

Proof. For every m ,∑m
j=1

∥∥S(ej ⊗ xj)
∥∥ =

∑m
j=1 ‖Tjxj‖ ≤ 2π(S) sup{

∥∥∥∑j∈σ e
j ⊗ xj

∥∥∥
∞

: σ ⊂ {1, ...,m}}
= 2π(S) sup{‖xj‖ : 1 ≤ j ≤ m} ≤ 2π(S) ‖x‖∞

and the result follows.
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Corollary 1.22. If S : M∞w (
∑
Tj) → Y is absolutely summing, then∑∞

j=1 ‖Tj‖ <∞ ,i.e.,
∑
Tj is absolutely convergent.

�

Proof. For each j, pick xj ∈ X, ‖xj‖ ≤ 1, such that ‖Tjxj‖ ≥ ‖Tj‖−1/2j .
Theorem 21 gives the result. �

In [Sw3] it was shown in the scalar case that the summing operator S
is absolutely summing iff the series

∑
xj is absolutely convergent. Ob-

viously, the main problem here is to give conditions which characterize
when the summing operator S : M∞w (

∑
Tj) → Y is absolutely sum-

ming. Corollary 22 gives necessary conditions but sufficient conditions
are missing.
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