Caspian Journal of Mathematical Sciences (CJMS) University of Mazandaran, Iran http://cjms.journals.umz.ac.ir ISSN: 1735-0611

CJMS. **3**(1)(2014), 141-151

Sufficient Conditions for Density in Extended Lipschitz Algebras

Davood Alimohammadi ¹ and Sirous Moradi ² ¹ Department of Mathematics, Faculty of Science, Arak University, Arak, 38156-8-8349, Iran

² Department of Mathematics, Faculty of Science, Arak University, Arak, 38156-8-8349, Iran

ABSTRACT. Let (X, d) be a compact metric space and let K be a nonempty compact subset of X. Let $\alpha \in (0, 1]$ and let $\operatorname{Lip}(X, K, d^{\alpha})$ denote the Banach algebra of all continuous complex-valued functions f on X for which $p_{\alpha,K}(f) = \sup\{\frac{|f(x)-f(y)|}{d^{\alpha}(x,y)} : x, y \in K, x \neq y\} < \infty$ when equipped the algebra norm $||f||_{\operatorname{Lip}(X,K,d^{\alpha})} = ||f||_X + p_{\alpha,K}(f)$, where $||f||_X = \sup\{|f(x)| : x \in X\}$. We denote by $\operatorname{lip}(X, K, d^{\alpha})$ the closed subalgebra of $\operatorname{Lip}(X, K, d^{\alpha})$ consisting of all $f \in \operatorname{Lip}(X, K, d^{\alpha})$ for which $\frac{|f(x)-f(y)|}{d^{\alpha}(x,y)} \to 0$ as $d(x, y) \to 0$ with $x, y \in K$. In this paper we obtain a sufficient condition for density of a linear subspace or a subalgebra of $\operatorname{Lip}(X, K, d^{\alpha})$ in $(\operatorname{Lip}(X, K, d^{\alpha}), || \cdot ||_{\operatorname{Lip}(X, K, d^{\alpha})})$ (lip (X, K, d^{α}) in (lip $(X, K, d^{\alpha}), || \cdot ||_{\operatorname{Lip}(X, K, d^{\alpha})})$), respectively). In particular, we show that the Lipschitz algebra $\operatorname{Lip}(X, d)$ and the little Lipschitz algebra $\operatorname{lip}(X, d^{\alpha})$ are dense in (lip $(X, K, d^{\alpha}), || \cdot ||_{\operatorname{Lip}(X, K, d^{\alpha})})$ for $\alpha \in (0, 1]$.

Keywords: Banach function algebra, Dense subspace, Extended Lipschitz algebra, Separation property.

2010 Mathematics subject classification: 46J10, 46J15.

¹ Corresponding author: d-alimohammadi@araku.ac.ir
 Received: 12 November 2013
 Revised: 15 January 2014
 Accepted: 20 January 2014

1. INTRODUCTION AND PRILIMINARIES

Let Ω be a locally compact Hausdorff space. The algebra of all continuous (bounded continuous) complex-valued functions on Ω is denoted by $C(\Omega)$ ($C^b(\Omega)$). It is known that $C^b(\Omega)$ under the uniform norm on Ω , that is,

$$||h||_{\Omega} = \sup\{|h(w)| : w \in \Omega\} \ (h \in C^{b}(\Omega)).$$

is a commutative unital Banach algebra. The set of all f in $C(\Omega)$ which vanish at infinity, is denoted by $C_0(\Omega)$, which is a closed subalgebra of $(C^b(\Omega), \|\cdot\|_{\Omega})$. Clearly, $C_0(\Omega) = C^b(\Omega) = C(\Omega)$, whenever Ω is compact.

Let X be a compact Hausdorff space. A Banach function algebra on X is a subalgebra B of C(X) such that contains the constant function 1 on X, separates the points of X and it is a unital Banach algebra with an algebra norm $|| \cdot ||$.

Let X be a compact Hausdorff space and let K be a nonempty compact subset of X. We denote by CZ(X, K) the set of all $f \in C(X)$ for which $f|_K = 0$. Then CZ(X, K) is a closed subalgebra of $(C(X), \|\cdot\|_X)$. It is known [6, Theorem 3.2] that, there exists an isometrical isomorphism from $(CZ(X, K), \|\cdot\|_X)$ onto $(C_0(X \setminus K), \|\cdot\|_{X \setminus K})$.

Let (X, d) be a metric space. For $x \in X$ and r > 0, we denote

$$S_{(X,d)}(x,r) = \{ y \in X : d(y,x) = r \},\$$

$$B_{(X,d)}(x,r) = \{ y \in X : d(y,x) < r \},\$$

$$B_{(X,d)}[x,r] = \{ y \in X : d(y,x) \le r \}.$$

Let $\alpha \in (0,1]$. Then the map $d^{\alpha} : X \times X \to \mathbb{R}$ defined by $d^{\alpha}(x,y) = (d(x,y))^{\alpha}$ is a metric on X. Moreover, for each $x \in X$ and every $\epsilon > 0$ we have

$$B_{(X,d^{\alpha})}(x,\epsilon^{\alpha}) \subseteq B_{(X,d)}(x,\epsilon),$$

$$B_{(X,d)}(x,\epsilon^{\frac{1}{\alpha}}) \subseteq B_{(X,d^{\alpha})}(x,\epsilon).$$

Therefore, the induced topology by d^{α} on X coincides to the induced topology by d on X.

Let (X, d) be a metric space and K be a nonempty subset of X. Let $\alpha \in (0, 1]$ and let f be a complex-valued function on X. We define

$$p_{\alpha,K}(f) = \sup\{\frac{|f(x) - f(y)|}{d^{\alpha}(x,y)} : x, y \in K, x \neq y\}.$$

Let (X, d) be a compact metric space and let $\alpha \in (0, 1]$. The complex algebra of all complex-valued functions f on X for which $p_{\alpha,X}(f) < \infty$, is called the Lipschitz algebra of order α on (X, d) and denoted by Lip (X, d^{α}) . We write Lip(X, d) instead of Lip (X, d^{1}) . Clearly

$$\operatorname{Lip}(X, d) \subseteq \operatorname{Lip}(X, d^{\alpha}) \subseteq C(X),$$

 $1 \in \operatorname{Lip}(X, d)$ and $\operatorname{Lip}(X, d)$ separates the point of X. The d^{α} -Lipschitz norm $\|\cdot\|_{\operatorname{Lip}(X, d^{\alpha})}$ on $\operatorname{Lip}(X, d^{\alpha})$ is defined by

$$|f||_{\text{Lip}(X,d^{\alpha})} = ||f||_X + p_{\alpha,X}(f) \quad (f \in \text{Lip}(X,d^{\alpha})).$$

Then $(\operatorname{Lip}(X, d^{\alpha}), || \cdot ||_{\operatorname{Lip}(X, d^{\alpha})})$ is a Banach function algebra on (X, d). Moreover, $\operatorname{Lip}(X, d)$ is dense in $(C(X), || \cdot ||_X)$ by Stone-Weierstrass theorem. The complex algebra of all complex-valued functions f on X for which

$$rac{|f(x)-f(y)|}{d^lpha(x,y)}
ightarrow 0 \ as \ d(x,y)
ightarrow 0,$$

is called the little Lipschitz algebra of order α on (X, d) and denoted by $\operatorname{lip}(X, d^{\alpha})$. We write $\operatorname{lip}(X, d)$ instead of $\operatorname{lip}(X, d^1)$. The complex algebra $\operatorname{lip}(X, d^{\alpha})$ is a closed subalgebra of $\operatorname{Lip}(X, d^{\alpha})$ and contains 1. Moreover, $\operatorname{Lip}(X, d^{\beta})$ is a subalgebra of $\operatorname{lip}(X, d^{\alpha})$ whenever $0 < \alpha < \beta \leq 1$. Thus $(\operatorname{lip}(X, d^{\alpha}), || \cdot ||_{\operatorname{Lip}(X, d^{\alpha})})$ is a Banach function algebra on (X, d) whenever $\alpha \in (0, 1)$. The Lipschitz algebras $\operatorname{Lip}(X, d^{\alpha})$ and the little Lipschitz algebras $\operatorname{lip}(X, d^{\alpha})$ were first studied by Sherbert in [8] and [9].

We define

$$\operatorname{Lip}_{\mathbb{R}}(X, d^{\alpha}) = \{ f \in \operatorname{Lip}(X, d^{\alpha}) : f \text{ is real} - valued \}, \\ \operatorname{lip}_{\mathbb{R}}(X, d^{\alpha}) = \{ f \in \operatorname{lip}(X, d^{\alpha}) : f \text{ is real} - valued \}.$$

Then $\operatorname{Lip}_{\mathbb{R}}(X, d^{\alpha})$ ($\operatorname{lip}_{\mathbb{R}}(X, d^{\alpha})$, respectively) is a unital real closed subalgebra of $\operatorname{Lip}(X, d^{\alpha})$ ($\operatorname{lip}(X, d^{\alpha})$, respectively). Moreover,

$$\operatorname{Lip}_{\mathbb{R}}(X, d^{\beta}) \subseteq \operatorname{lip}_{\mathbb{R}}(X, d^{\alpha}) \subseteq \operatorname{Lip}_{\mathbb{R}}(X, d^{\alpha})$$

whenever $0 < \alpha < \beta \leq 1$.

In 1968, Hedberg obtained a Stone-Weierstrass theorem type in real little Lipschitz algebras $\lim_{\mathbb{R}} (X, d^{\alpha})$ for $\alpha \in (0, 1)$ [4, Theorem 1] that can be modified in complex little Lipschitz algebras $\lim(X, d^{\alpha})$ as the following.

Theorem 1.1. Let (X, d) be a compact metric space and let $\alpha \in (0, 1)$. Let A be a self-adjoint subalgebra of $\operatorname{lip}(X, d^{\alpha})$ which separates the points of X and contains the constant functions on X. Then A is dense in $(\operatorname{lip}(X, d^{\alpha}), \|\cdot\|_{\operatorname{Lip}(X, d^{\alpha})})$ if for every $a \in X$, there are positive numbers M_a and δ_a such that for each δ with $0 < \delta < \delta_a$, there is a function f in A that satisfies f(a) = 1, f(x) = 0 for all $x \in S_{(X,d)}(a, \delta)$, and

$$\sup\{\frac{|f(y)-f(z)|}{d^{\alpha}(y,z)}: y, z \in B_{(X,d)}[a,\delta], y \neq z\} < \frac{M_a}{\delta^{\alpha}}$$

In 1987, Bade, Curtis and Dales [3] obtained a sufficient condition for density of a linear subspace P of $\operatorname{lip}(X, d^{\alpha})$ in $(\operatorname{lip}(X, d^{\alpha}), \|\cdot\|_{\operatorname{Lip}(X, d^{\alpha})})$, applying the measure theory and duality, and showed that $\operatorname{Lip}(X, d)$ is dense in $(\operatorname{lip}(X, d^{\alpha}), \|\cdot\|_{\operatorname{Lip}(X, d^{\alpha})})$ as the following.

Theorem 1.2 (see [3, Theorem 3.6]). Let (X, d) be a compact metric space and let $\alpha \in (0, 1)$. Let P be a linear subspace of $\lim(X, d^{\alpha})$. Suppose that there is a positive number C such that for each finite subset E of X and each $f \in \lim(X, d^{\alpha})$, there exists a function g in P with $g|_E = f|_E$ and with $||g||_{\operatorname{Lip}(X, d^{\alpha})} \leq C ||f||_{\operatorname{Lip}(X, d^{\alpha})}$. Then P is dense in $(\lim(X, d^{\alpha}), ||\cdot||_{\operatorname{Lip}(X, d^{\alpha})})$.

Theorem 1.3 (see [3, Corollary 3.7]). Let (X, d) be a compact metric space and $\alpha \in (0, 1)$. Then $\operatorname{Lip}(X, d)$ is dense in $(\operatorname{lip}(X, d^{\alpha}), \| \cdot \|_{\operatorname{Lip}(X, d^{\alpha})})$.

Definition 1.4. Let (X, d) be a compact metric space and $\alpha \in (0, 1]$. Let A be a subalgebra of $\operatorname{Lip}(X, d^{\alpha})$. It is said that A has the *separation* property with respect to X if there exists a constant a > 1 such that for every $x, y \in X$, there is a function f in A that satisfies $p_{(\alpha,X)}(f) \leq a$ and $|f(x) - f(y)| = d^{\alpha}(x, y)$.

In 1996, Weaver [10] obtained a sufficient condition for density of a subalgebra A of $\lim(X, d)$ in $(\lim(X, d), \|\cdot\|_{\operatorname{Lip}(X, d)})$ as the following.

Theorem 1.5 (see [10, Theorem 1.4]). Let (X, d) be a compact metric space. Suppose that A is a subalgebra of lip(X, d) which contains the constant function 1 on X. If A has the separation property with respect to X, then A is dense in the little Lipschitz algebra $(lip(X, d), \|\cdot\|_{Lip(X, d)})$.

Let (X, d) be a compact metric space, K be a nonempty compact subset of X and $\alpha \in (0, 1]$. We denote by $\operatorname{Lip}(X, K, d^{\alpha})$ (lip (X, K, d^{α}) , respectively) the set of all $f \in C(X)$ for which $f|_K \in \operatorname{Lip}(K, d^{\alpha})$ ($f|_K \in \operatorname{lip}(K, d^{\alpha})$, respectively). Then $\operatorname{Lip}(X, K, d^{\alpha})$ (lip (X, K, d^{α}) , respectively) is a complex subalgebra of C(X) and lip (X, K, d^{α}) is a subset of $\operatorname{Lip}(X, K, d^{\alpha})$. The algebra $\operatorname{Lip}(X, K, d^{\alpha})$ (lip (X, K, d^{α}) , respectively) is called the extended Lipschitz (little Lipschitz, respectively) algebra of order α on (X, d) with respect to K. Clearly, $\operatorname{Lip}(X, d)$ is a subalgebra of $\operatorname{Lip}(X, K, d^{\alpha})$. Therefore, $\operatorname{Lip}(X, K, d^{\alpha})$ contains the constant function 1 on X and separates the points of X. It is easy to see that $\operatorname{Lip}(X, K, d^{\alpha})$ is a unital Banach algebra under the norm

 $||f||_{\operatorname{Lip}(X,K,d^{\alpha})} = ||f||_X + p_{\alpha,K}(f) \quad (f \in \operatorname{Lip}(X,K,d^{\alpha})),$

and $\operatorname{lip}(X, K, d^{\alpha})$ is a closed unital subalgebra of $(\operatorname{Lip}(X, K, d^{\alpha}), || \cdot ||_{\operatorname{Lip}(X, K, d^{\alpha})})$. Therefore, $(\operatorname{Lip}(X, K, d^{\alpha}), || \cdot ||_{\operatorname{Lip}(X, K, d^{\alpha})})$ is a Banach function algebra on (X, d). Clearly, $\operatorname{Lip}(X, K, d^{\beta})$ is a subalgebra of $\operatorname{lip}(X, K, d^{\alpha})$ whenever $0 < \alpha < \beta \leq 1$. Therefore, $(\operatorname{lip}(X, K, d^{\alpha}), || \cdot ||_{\operatorname{Lip}(X, K, d^{\alpha})})$ is a Banach function algebra on (X, d) whenever $\alpha \in (0, 1)$. We write $\operatorname{Lip}(X, K, d^1)$ (lip (X, K, d^1) , respectively). Note that $\operatorname{Lip}(X, K, d^{\alpha}) = \operatorname{Lip}(X, d^{\alpha})$

and $\operatorname{lip}(X, K, d^{\alpha}) = \operatorname{lip}(X, d^{\alpha})$, if $X \setminus K$ is finite. Also $\operatorname{Lip}(X, K, d^{\alpha}) = C(X)$ for $\alpha \in (0, 1]$ and $\operatorname{lip}(X, K, d^{\alpha}) = C(X)$ for $\alpha \in (0, 1)$, if K is finite. The extended Lipschitz algebras $\operatorname{Lip}(X, K, d^{\alpha})$ and the extended little Lipschitz algebras $\operatorname{lip}(X, K, d^{\alpha})$ were first introduced in [5].

Some properties of unital homomorphisms between extended Lipschitz algebras studied in [2].

In Section 2, we obtain sufficient conditions for density of linear subspaces and subalgebras of lip (X, K, d^{α}) (Lip (X, K, d^{α}) , respectively) in (lip (X, K, d^{α}) , $\|\cdot\|_{\text{Lip}(X, K, d^{\alpha})}$) (Lip (X, K, d^{α}) , $\|\cdot\|_{\text{Lip}(X, K, d^{\alpha})}$), respectively), and generalize mentioned theorems in Section 1.

2. The Density in Extended Lipschitz Algebras

Throughout this section we assume that (X, d) is a compact metric space and K is an infinite compact subset of X.

Theorem 2.1. Suppose that $\alpha \in (0, 1]$, and $B = \text{Lip}(X, K, d^{\alpha})$ or $B = \text{lip}(X, K, d^{\alpha})$. Let P be a linear subspace of B. Then P is dense in $(B, || \cdot ||_{\text{Lip}(X, K, d^{\alpha})})$, if P satisfies the following conditions:

- (i) CZ(X, K) is a subset of the closure of P in $(B, \|\cdot\|_{Lip(X, K, d^{\alpha})})$,
- (ii) $P|_K$ is dense in $(B|_K, ||\cdot||_{\operatorname{Lip}(K,d^{\alpha})})$, where $S|_K = \{f|_K : f \in S\}$ for a subset S of B.

Proof. By Tietze's extension theorem [7, Theorem 20.4], we have $B|_K = \text{Lip}(K, d^{\alpha})$ whenever $B = \text{Lip}(X, K, d^{\alpha})$ and $B|_K = \text{lip}(K, d^{\alpha})$ whenever $B = \text{lip}(X, K, d^{\alpha})$. Let $f \in B$ and let $\epsilon > 0$ be given. Then $f|_K \in B|_K$ and the density of $P|_K$ in $(B|_K, || \cdot ||_{\text{Lip}(K, d^{\alpha})})$ implies that there exists a function g in $P|_K$ such that

$$||g - f|_K||_{\operatorname{Lip}(K,d^{\alpha})} < \frac{\epsilon}{2}.$$
(2.1)

Let $h = -f|_K + g$. Then $h \in B|_K$. By Tietze's extension theorem, there exists $H \in C(X)$ such that $H|_K = h$ and $||H||_X = ||h||_K$. Therefore, $H \in B$ and

$$||H||_{\text{Lip}(X,K,d^{\alpha})} = ||h||_{\text{Lip}(K,d^{\alpha})}.$$
(2.2)

Since $g \in P|_K$, there exists a function G in P such that $G|_K = g$. Let $\varphi = f - G + H$. Then $\varphi \in B$ and $\varphi|_K = f|_K - g + h = 0$. So $\varphi \in CZ(X, K)$. Hence, φ belongs to the closure of P in $(B, \|\cdot\|_{\operatorname{Lip}(X,K,d^{\alpha})})$, by (i). Therefore, $\varphi+G$ belongs to the closure of P in $(B, \|\cdot\|_{\operatorname{Lip}(X,K,d^{\alpha})})$ and so f + H belongs to the closure of P in $(B, \|\cdot\|_{\operatorname{Lip}(X,K,d^{\alpha})})$. This implies that there exists $\psi \in P$ such that

$$||f + H - \psi||_{\operatorname{Lip}(X,K,d^{\alpha})} < \frac{\epsilon}{2}.$$
(2.3)

By (2.1), (2.2) and (2.3), we have

$$\begin{aligned} ||\psi - f||_{\operatorname{Lip}(X,K,d^{\alpha})} &\leq ||\psi - (f + H)||_{\operatorname{Lip}(X,K,d^{\alpha})} + ||H||_{\operatorname{Lip}(X,K,d^{\alpha})} \\ &< \frac{\epsilon}{2} + ||h||_{\operatorname{Lip}(K,d^{\alpha})} \\ &= \frac{\epsilon}{2} + ||g - f|_{K}||_{\operatorname{Lip}(K,d^{\alpha})} \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} \\ &= \epsilon. \end{aligned}$$

Thus, the proof is complete.

We now give an extension of Theorem 1.2 applying Theorem 2.1 as the following.

Theorem 2.2. Let $\alpha \in (0,1)$ and let P be a linear subspace of lip (X, K, d^{α}) . Then P is dense in $(\text{lip}(X, K, d^{\alpha}), || \cdot ||_{\text{Lip}(X, K, d^{\alpha})})$, if A satisfies the following conditions:

- (i) CZ(X,K) is a subset of \overline{P} , the closure of P in $(lip(X,K,d^{\alpha}), || \cdot ||_{Lip(X,K,d^{\alpha})})$,
- (ii) there is a positive number C such that for each finite subset E of K and each $f \in lip(X, K, d^{\alpha})$, there exists a function g in P with $g|_E = f|_E$ and with $||g||_{Lip(X,K,d^{\alpha})} \leq C||f||_{Lip(X,K,d^{\alpha})}$.

Proof. Clearly, $P|_K$ is a linear subspace of $\lim(K, d^{\alpha})$. Suppose that E is a finite subset of K and $f \in \lim(K, d^{\alpha})$. By Tietze's extension theorem, there exists a function F in C(X) with $F|_K = f$ and with $||F||_X = ||f||_K$. Then $F \in \lim(X, K, d^{\alpha})$ and

$$||F||_{\operatorname{Lip}(X,K,d^{\alpha})} = ||f||_{\operatorname{Lip}(K,d^{\alpha})}.$$
 (2.4)

Therefore, there exists a function G in P with $G|_E = F|_E$ and with

$$||G||_{\text{Lip}(X,K,d^{\alpha})} \le C ||F||_{\text{Lip}(X,K,d^{\alpha})}.$$
(2.5)

Let $g = G|_K$. Then $g \in P|_K$ and applying (2.4) and (2.5), we have

$$|g||_{\operatorname{Lip}(K,d^{\alpha})} \leq ||G||_{\operatorname{Lip}(X,K,d^{\alpha})}$$

$$\leq C||F||_{\operatorname{Lip}(X,K,d^{\alpha})}$$

$$= C||f||_{\operatorname{Lip}(K,d^{\alpha})}.$$

Hence, $P|_K$ is dense in $(\operatorname{lip}(K, d^{\alpha}), || \cdot ||_{\operatorname{Lip}(K, d^{\alpha})})$ by Theorem 1.2. Therefore, P is dense in $(\operatorname{lip}(X, K, d^{\alpha}), || \cdot ||_{\operatorname{Lip}(X, K, d^{\alpha})})$ by Theorem 2.1. \Box

Note that, we have proved Theorem 2.2 in [1] using the measure theory and duality.

As another applications of Theorem 2.1, we will show that $\operatorname{Lip}(X, d)$ is dense in $(\operatorname{Lip}(X, K, d), || \cdot ||_{\operatorname{Lip}(X, K, d)})$ and $(\operatorname{lip}(X, K, d^{\alpha}), || \cdot ||_{\operatorname{Lip}(X, K, d^{\alpha})})$ for $\alpha \in (0, 1)$. To prove these facts, we first show that CZ(X, K) is a subset of the closure $\operatorname{Lip}(X, d)$ in $(\operatorname{Lip}(X, K, d^{\alpha}), || \cdot ||_{\operatorname{Lip}(X, K, d^{\alpha})})$ for $\alpha \in (0, 1]$. To prove this result, we need the following lemma which is a modification of Sherbert's extension theorem [9, Proposition 1.4].

Lemma 2.3. Let Y be a nonempty compact subset of X and let $f \in \text{Lip}(Y,d)$. Then there exists a function $F \in \text{Lip}(X,d)$ with $F|_Y = f$ such that $||F||_X \leq 2||f||_Y$ and $p_{\alpha,X}(F) \leq 2p_{\alpha,Y}(f)$.

Theorem 2.4. Let $\alpha \in (0,1]$. Then CZ(X,K) is a subset of the closure $\operatorname{Lip}(X,d)$ in $(\operatorname{Lip}(X,K,d^{\alpha}), || \cdot ||_{\operatorname{Lip}(X,K,d^{\alpha})})$.

Proof. Let $0 \neq f \in CZ(X, K)$ and let $\epsilon > 0$ be sufficiently small. Set

$$U = \{x \in X : |f(x)| < \frac{\epsilon}{9}\},\$$
$$V = \{x \in X : |f(x)| < \frac{\epsilon}{8}\}.$$

Then U and V are open sets in X and $K \subseteq U \subseteq \overline{U} \subseteq V \neq X$, where \overline{U} is the closure of U in the metric space (X, d). Since $f \in C(X)$ and $\operatorname{Lip}(X, d)$ is dense in $(C(X), \|\cdot\|_X)$, there exists a function $g \in \operatorname{Lip}(X, d)$ such that

$$\|g-f\|_X < \frac{\epsilon}{8}.$$

By Urysohn's lemma, there exists a function $h \in C(X)$ such that $0 \le h(x) \le 1$ for all $x \in X$, h(x) = 0 for all $x \in \overline{U}$ and h(x) = 1 for all $x \in X \setminus V$. Clearly, we have

$$p_{\alpha,K}(gh - f) = 0.$$

Let $Y = \overline{U} \cup (X \setminus V)$. Then Y is a nonempty compact subset of X and $\|h\|_Y = 1$. Let $\delta = \inf\{d(x, y) : x \in \overline{U}, y \in X \setminus V\}$. Then $\delta > 0$. It is easy to see that $p_{1,Y}(h) \leq \frac{1}{\delta}$. So $h|_Y \in \operatorname{Lip}(Y, d)$. By Lemma 2.3, there exists a function $H \in \operatorname{Lip}(X, d)$ with $H|_Y = h|_Y$ such that

$$\|H\|_X \le 2\|h\|_Y$$

Therefore, $gH \in \operatorname{Lip}(X, d)$ and we have

$$\begin{split} \|gH - f\|_{\operatorname{Lip}(X,K,d^{\alpha})} &= \|gH - f\|_{X} + p_{\alpha,K}(gH - f) \\ &= \|gH - f\|_{X} + p_{\alpha,K}(gh - f) \\ &= \|gH - f\|_{X} \\ &\leq \|gH - f\|_{X\setminus V} + \|gH - f\|_{\overline{V\setminus U}} + \|gH - f\|_{\overline{U}} \\ &= \|gH - f\|_{X\setminus V} + \|gH - f\|_{\overline{V\setminus U}} + \|f\|_{\overline{U}} \\ &\leq \|g - f\|_{X} + \|gH\|_{\overline{V\setminus U}} + \|f\|_{\overline{V\setminus U}} + \|f\|_{\overline{U}} \\ &\leq \|g - f\|_{X} + \|g\|_{\overline{V\setminus U}} \|H\|_{\overline{V\setminus U}} + \|f\|_{\overline{V\setminus U}} + \|f\|_{\overline{U}} \\ &\leq \frac{\epsilon}{8} + \|g\|_{\overline{V\setminus U}} \|H\|_{X} + \frac{\epsilon}{8} + \frac{\epsilon}{8} \\ &\leq \frac{3\epsilon}{8} + 2\|g\|_{\overline{V\setminus U}} \|h|_{Y}\|_{Y} \\ &= \frac{3\epsilon}{8} + 2\|g\|_{\overline{V\setminus U}} \\ &\leq \frac{3\epsilon}{8} + 2(\|g - f\|_{\overline{V\setminus U}} + \|f\|_{\overline{V\setminus U}}) \\ &\leq \frac{3\epsilon}{8} + 2(\|g - f\|_{X} + \|f\|_{\overline{V}}) \\ &\leq \frac{3\epsilon}{8} + 2(\|g - f\|_{X} + \|f\|_{\overline{V}}) \\ &\leq \frac{3\epsilon}{8} + 2(\frac{\epsilon}{8} + \frac{\epsilon}{8}) \\ &< \epsilon. \end{split}$$

Hence $f \in \overline{\text{Lip}(X,d)}$, the closure of Lip(X,d) in $(\text{Lip}(X,K,d^{\alpha}), || \cdot ||_{\text{Lip}(X,K,d^{\alpha})})$. Thus, the proof is complete.

Theorem 2.5. The Lipschitz algebra $\operatorname{Lip}(X, d)$ is dense in the extended Lipschitz algebra $(\operatorname{Lip}(X, K, d), || \cdot ||_{\operatorname{Lip}(X, K, d)}).$

Proof. Let P = Lip(X, d) and B = Lip(X, K, d). Then P is a linear subspace of B. By Theorem 2.4, CZ(X, K) is a subset of the closure P in $(B, ||\cdot||_{\text{Lip}(X,K,d)})$. On the other hand, $P|_K = \text{Lip}(K, d)$ by Lemma 2.3 and $B|_K = \text{Lip}(K, d)$ using the Tietze's extension theorem. Thus, $P|_K$ is dense in $(B|_K, ||\cdot||_{\text{Lip}(X,d)})$. Therefore, P is dense in $(B, ||\cdot||_{\text{Lip}(X,K,d)})$ by Theorem 2.1. Thus, the proof is complete.

Corollary 2.6. Let $\alpha \in (0,1]$. Then the Lipschitz algebra $\operatorname{Lip}(X, d^{\alpha})$ is dense in the extended Lipschitz algebra $(\operatorname{Lip}(X, K, d^{\alpha}), || \cdot ||_{\operatorname{Lip}(X, K, d^{\alpha})})$.

Proof. Since the induced topology by the metric d^{α} on X coincides to the induced topology by metric d on X, we conclude that K is a compact subset of X in the metric space (X, d^{α}) . Thus, the result holds by Theorem 2.5.

Since $||f||_{\text{Lip}(X,K,d^{\alpha})} \leq ||f||_{\text{Lip}(X,d^{\alpha})}$ for all $f \in \text{Lip}(X,K,d^{\alpha})$, we obtain the following result as a consequence of Corollary 2.6.

Corollary 2.7. Let $\alpha \in (0,1]$ and let P be a subset of $\text{Lip}(X, d^{\alpha})$ such that P is dense in $(\text{Lip}(X, d^{\alpha}), || \cdot ||_{\text{Lip}(X, d^{\alpha})})$. Then P is dense in $(\text{Lip}(X, K, d^{\alpha}), || \cdot ||_{\text{Lip}(X, K, d^{\alpha})})$.

Theorem 2.8. Let $\alpha \in (0,1)$. Then the Lipschitz algebra $\operatorname{Lip}(X,d)$ is dense in the extended little Lipschitz algebra $(\operatorname{lip}(X,K,d^{\alpha}), ||\cdot||_{\operatorname{Lip}(X,K,d^{\alpha})})$.

Proof. Let P = Lip(X, d) and $B = \text{lip}(X, K, d^{\alpha})$. Then P is a linear subspace of B. By Theorem 2.4, CZ(X, K) is a subset of the closure of P in $(\text{Lip}(X, K, d^{\alpha}), || \cdot ||_{\text{Lip}(X, K, d^{\alpha})})$. Since B is a closed set in $(\text{Lip}(X, K, d^{\alpha}), || \cdot ||_{\text{Lip}(X, K, d^{\alpha})})$, we deduce that CZ(X, K) is a subset of the closure P in $(B, || \cdot ||_{\text{Lip}(X, K, d^{\alpha})})$.

On the other hand, $P|_K = \text{Lip}(K, d)$ by Lemma 2.3 and $B|_K = \text{lip}(K, d^{\alpha})$ using the Tietze's extension theorem. Thus, $P|_K$ is dense in $(B|_K, || \cdot ||_{\text{Lip}(K, d^{\alpha})})$. Therefore, P is dense in $(B, || \cdot ||_{\text{Lip}(X, K, d^{\alpha})})$ by Theorem 2.1. Thus, the proof is complete.

Corollary 2.9. Let $\alpha \in (0,1)$. Then $\lim(X, d^{\alpha})$ is dense in $(\lim(X, K, d^{\alpha}), \|\cdot\|_{\operatorname{Lip}(X, K, d^{\alpha})})$.

Proof. Since Lip(X, d) is a subset of $\text{lip}(X, d^{\alpha})$, the result holds by Theorem 2.8.

Corollary 2.10. Let $\alpha \in (0, 1)$. If P is a subset of $\lim(X, d^{\alpha})$ such that P is dense in $(\lim(X, d^{\alpha}), || \cdot ||_{\operatorname{Lip}(X, d^{\alpha})})$, then P is dense in $(\lim(X, K, d^{\alpha}), || \cdot ||_{\operatorname{Lip}(X, K, d^{\alpha})})$.

Corollary 2.11. Let $\alpha \in (0,1)$ and P be a linear subspace of $\operatorname{lip}(X, d^{\alpha})$. Suppose that there is a positive number C such that for each finite subset E of X and for each $f \in \operatorname{lip}(X, d^{\alpha})$, there exists a function $g \in P$ with $g|_E = f|_E$ and $||g||_{\operatorname{Lip}(X, d^{\alpha})} \leq C||f||_{\operatorname{Lip}(X, d^{\alpha})}$. Then P is dense in $(\operatorname{lip}(X, K, d^{\alpha}), ||\cdot||_{\operatorname{Lip}(X, K, d^{\alpha})})$.

Proof. By Theorem 1.2, P is dense in $(\lim(X, d^{\alpha}), || \cdot ||_{\operatorname{Lip}(X, d^{\alpha})})$. Thus, the proof holds by Corollary 2.10.

Applying Theorem 2.1, we give an extension of Theorem 1.1 as the following.

Theorem 2.12. Suppose that $\alpha \in (0, 1)$ and A is a self-adjoint subalgebra of $\lim(X, K, d^{\alpha})$ which separates the points of X and contains the constant functions on X. Then A is dense in $(\lim(X, K, d^{\alpha}), || \cdot ||_{\operatorname{Lip}(X, K, d^{\alpha})})$, if A satisfies the following conditions:

(i) CZ(X, K) is a subset of the closure of A in $(lip(X, K, d^{\alpha}), \| \cdot \|_{Lip(X, K, d^{\alpha})})$,

(ii) for every $a \in K$, there are positive numbers M_a and δ_a such that for each δ with $0 < \delta < \delta_a$, there is a function f in A that satisfies f(a) = 1, f(x) = 0 for all $x \in S_{(K,d)}(a, \delta)$, and

$$\sup\{\frac{|f(y) - f(z)|}{d^{\alpha}(y, z)} : y, z \in B_{(K,d)}[a, \delta], y \neq z\} < \frac{M_a}{\delta^{\alpha}}$$

Proof. Clearly, $A|_K$ is a self-adjoint subalgebra of $\lim(K, d^{\alpha})$ which separates the points of K and contains the constant functions on K. From the condition (ii) and applying Theorem 1.1, we conclude that $A|_K$ is dense in $(\lim(K, d^{\alpha}), ||\cdot||_{\operatorname{Lip}(K, d^{\alpha})})$. Therefore, A is dense in $(\lim(X, K, d^{\alpha}), ||\cdot||_{\operatorname{Lip}(X, K, d^{\alpha})})$ by Theorem 2.1.

Definition 2.13. Let $\alpha \in (0, 1]$ and let A be a subalgebra of $\operatorname{Lip}(X, K, d^{\alpha})$. We say that A has *separation property* with respect to K if there exists a constant a > 1 such that for every $x, y \in K$, there is a function f in A that satisfies $p_{(\alpha,K)}(f) \leq a$ and $|f(x) - f(y)| = d^{\alpha}(x, y)$.

We now give an extension of Theorem 1.5, applying Theorem 2.1 as the following.

Theorem 2.14. Suppose that A is a subalgebra of lip(X, K, d) which contains the constant functions 1 on X. Then A is dense in $(lip(X, K, d), || \cdot ||_{Lip(X,K,d)})$, if A satisfies the following conditions:

- (i) CZ(X,K) is a subset of \overline{A} , the closure of A in $(lip(X,K,d), \|\cdot\|_{lip(X,K,d)})$,
- (ii) A has the separation property with respect to K.

Proof. Clearly, $A|_K$ is subalgebra of $\operatorname{lip}(K, d)$ which contains the constant function 1 on K. The condition (ii) implies that there exists a constant a > 1 such that for every $x, y \in K$ there is a function f in A that satisfies $p_{1,K}(f) \leq a$ and |f(x) - f(y)| = d(x, y). Let $x, y \in K$. Choose $f \in A$ such that $p_{1,K}(f) \leq a$ and |f(x) - f(y)| = d(x, y). If $g = f|_K$, then $g \in A|_K$, $p_{1,K}(g) = p_{1,K}(f) \leq a$ and |g(x) - g(y)| = |f(x) - f(y)| = d(x, y). Hence, $A|_K$ has the separation property with respect to K. Hence, $A|_K$ is dense in $(\operatorname{lip}(K, d), || \cdot ||_{\operatorname{Lip}(K, d)})$ by Theorem 1.5. Therefore, A is dense in $(\operatorname{lip}(X, K, d), || \cdot ||_{\operatorname{Lip}(X, K, d)})$ by Theorem 2.1.

Acknowledgment. This research was in part supported by a grant from Arak University (no. 91/8944). The authors would like to thank this support.

References

 D. Alimohammadi and S. Moradi, Some dence linear subspaces of extended little Lipschitz algebras, ISRN Mathematical Analysis, Article ID 187952, 2012, 10 pages.

150

- [2] D. Alimohammadi, S. Moradi and E. Analoei, Unital compact homomorphisms between extended Lipschitz algebras, Adv. Appl. Math. Sci. 10 (3) (2011), 307-330.
- [3] W. G. Bade, P. G. Curtis and H. G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras, *Proc. London Math. Soc.* (3)35(1987), 359-377.
- [4] L. I. Hedberg, The Stone-Weierestrass theorem in Lipschitz algebras, Ark. Math. 8(1969), 63-72.
- [5] T. G. Honary and S. Moradi, On the maximal ideal space of extended analytic Lipschitz algebras, *Quaestiones Mathematicae* 30(3)(2007), 349-353.
- [6] S. Moradi, T. G. Honary and D. Alimohammadi, On the maximal ideal space of extended polynomial and rational uniform algebras, *International Journal* of nonlinear analysis and applications 1(2012), 1-12.
- [7] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, Third Edition, 1987.
- [8] D. R. Sherbert, Banach algebras of Lipschitz functions, Pacific J. Math. 13(1963), 1387-1399.
- [9] D. R. Sherbert, The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc. 111 (1964), 240-272.
- [10] N. Weaver, Subalgebras of little Lipschitz algebras, Pacific J. Math. 173(1996), 283-293.