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Abstract. Let (X, d) be a compact metric space and let K be a
nonempty compact subset of X. Let α ∈ (0, 1] and let Lip(X, K, dα)
denote the Banach algebra of all continuous complex-valued func-

tions f on X for which pα,K(f) = sup{ |f(x)−f(y)|
dα(x,y)

: x, y ∈ K, x 6=
y} < ∞ when equipped the algebra norm ||f ||Lip(X,K,dα) = ||f ||X +
pα,K(f), where ||f ||X = sup{|f(x)| : x ∈ X}. We denote by
lip(X, K, dα) the closed subalgebra of Lip(X, K, dα) consisting of

all f ∈ Lip(X, K, dα) for which |f(x)−f(y)|
dα(x,y)

→ 0 as d(x, y) → 0

with x, y ∈ K. In this paper we obtain a sufficient condition for
density of a linear subspace or a subalgebra of Lip(X, K, dα) in
(Lip(X, K, dα), || · ||Lip(X,K,dα)) (lip(X, K, dα) in (lip(X, K, dα), || ·
||Lip(X,K,dα)), respectively). In particular, we show that the Lips-
chitz algebra Lip(X, dα) is dense in (Lip(X, K, dα), ‖ · ‖Lip(X,K,dα))
for α ∈ (0, 1] and Lip(X, d) and the little Lipschitz algebra lip(X, dα)
are dense in (lip(X, K, dα), ‖ · ‖Lip(X,K,dα)) for α ∈ (0, 1).
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1. Introduction and priliminaries

Let Ω be a locally compact Hausdorff space. The algebra of all continu-
ous (bounded continuous) complex-valued functions on Ω is denoted by
C(Ω) (Cb(Ω)). It is known that Cb(Ω) under the uniform norm on Ω,
that is,

‖h‖Ω = sup{|h(w)| : w ∈ Ω} (h ∈ Cb(Ω)),
is a commutative unital Banach algebra. The set of all f in C(Ω) which
vanish at infinity, is denoted by C0(Ω), which is a closed subalgebra of
(Cb(Ω), ‖·‖Ω). Clearly, C0(Ω) = Cb(Ω) = C(Ω), whenever Ω is compact.

Let X be a compact Hausdorff space. A Banach function algebra on
X is a subalgebra B of C(X) such that contains the constant function 1
on X, separates the points of X and it is a unital Banach algebra with
an algebra norm || · ||.

Let X be a compact Hausdorff space and let K be a nonempty com-
pact subset of X. We denote by CZ(X,K) the set of all f ∈ C(X) for
which f |K = 0. Then CZ(X,K) is a closed subalgebra of (C(X), ‖·‖X).
It is known [6, Theorem 3.2] that, there exists an isometrical isomor-
phism from (CZ(X,K), ‖ · ‖X) onto (C0(X\K), ‖ · ‖X\K).

Let (X, d) be a metric space. For x ∈ X and r > 0, we denote

S(X,d)(x, r) = {y ∈ X : d(y, x) = r},
B(X,d)(x, r) = {y ∈ X : d(y, x) < r},
B(X,d)[x, r] = {y ∈ X : d(y, x) ≤ r}.

Let α ∈ (0, 1]. Then the map dα : X × X → R defined by dα(x, y) =
(d(x, y))α is a metric on X. Moreover, for each x ∈ X and every ε > 0
we have

B(X,dα)(x, ε
α) ⊆ B(X,d)(x, ε),

B(X,d)(x, ε
1
α ) ⊆ B(X,dα)(x, ε).

Therefore, the induced topology by dα on X coincides to the induced
topology by d on X.

Let (X, d) be a metric space and K be a nonempty subset of X. Let
α ∈ (0, 1] and let f be a complex-valued function on X. We define

pα,K(f) = sup{|f(x)− f(y)|
dα(x, y)

: x, y ∈ K,x 6= y}.

Let (X, d) be a compact metric space and let α ∈ (0, 1]. The complex
algebra of all complex-valued functions f on X for which pα,X(f) <
∞, is called the Lipschitz algebra of order α on (X, d) and denoted by
Lip(X, dα). We write Lip(X, d) instead of Lip(X, d1). Clearly

Lip(X, d) ⊆ Lip(X, dα) ⊆ C(X),
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1 ∈ Lip(X, d) and Lip(X, d) separates the point of X. The dα-Lipschitz
norm ‖ · ‖Lip(X,dα) on Lip(X, dα) is defined by

||f ||Lip(X,dα) = ||f ||X + pα,X(f) (f ∈ Lip(X, dα)).

Then (Lip(X, dα), || · ||Lip(X,dα)) is a Banach function algebra on (X, d).
Moreover, Lip(X, d) is dense in (C(X), ‖ · ‖X) by Stone-Weierstrass the-
orem. The complex algebra of all complex-valued functions f on X for
which

|f(x)− f(y)|
dα(x, y)

→ 0 as d(x, y) → 0,

is called the little Lipschitz algebra of order α on (X, d) and denoted by
lip(X, dα). We write lip(X, d) instead of lip(X, d1). The complex algebra
lip(X, dα) is a closed subalgebra of Lip(X, dα) and contains 1. Moreover,
Lip(X, dβ) is a subalgebra of lip(X, dα) whenever 0 < α < β ≤ 1. Thus
(lip(X, dα), ||·||Lip(X,dα)) is a Banach function algebra on (X, d) whenever
α ∈ (0, 1). The Lipschitz algebras Lip(X, dα) and the little Lipschitz
algebras lip(X, dα) were first studied by Sherbert in [8] and [9].

We define

LipR(X, dα) = {f ∈ Lip(X, dα) : f is real − valued},
lipR(X, dα) = {f ∈ lip(X, dα) : f is real − valued}.

Then LipR(X, dα) (lipR(X, dα), respectively) is a unital real closed sub-
algebra of Lip(X, dα) (lip(X, dα), respectively). Moreover,

LipR(X, dβ) ⊆ lipR(X, dα) ⊆ LipR(X, dα)

whenever 0 < α < β ≤ 1.
In 1968, Hedberg obtained a Stone-Weierstrass theorem type in real

little Lipschitz algebras lipR(X, dα) for α ∈ (0, 1) [4, Theorem 1] that
can be modified in complex little Lipschitz algebras lip(X, dα) as the
following.

Theorem 1.1. Let (X, d) be a compact metric space and let α ∈ (0, 1).
Let A be a self-adjoint subalgebra of lip(X, dα) which separates the points
of X and contains the constant functions on X. Then A is dense in
(lip(X, dα), ‖ · ‖Lip(X,dα)) if for every a ∈ X, there are positive numbers
Ma and δa such that for each δ with 0 < δ < δa, there is a function f in
A that satisfies f(a) = 1, f(x) = 0 for all x ∈ S(X,d)(a, δ), and

sup{|f(y)− f(z)|
dα(y, z)

: y, z ∈ B(X,d)[a, δ], y 6= z} < Ma

δα
.

In 1987, Bade, Curtis and Dales [3] obtained a sufficient condition for
density of a linear subspace P of lip(X, dα) in (lip(X, dα), ‖ · ‖Lip(X,dα)),
applying the measure theory and duality, and showed that Lip(X, d) is
dense in (lip(X, dα), ‖ · ‖Lip(X,dα)) as the following.



144 D. Alimohammadi , S. Moradi

Theorem 1.2 (see [3, Theorem 3.6]). Let (X, d) be a compact metric
space and let α ∈ (0, 1). Let P be a linear subspace of lip(X, dα). Suppose
that there is a positive number C such that for each finite subset E of X
and each f ∈ lip(X, dα), there exists a function g in P with g|E = f |E
and with ‖g‖Lip(X,dα) ≤ C‖f‖Lip(X,dα). Then P is dense in (lip(X, dα), ‖·
‖Lip(X,dα)).

Theorem 1.3 (see [3, Corollary 3.7]). Let (X, d) be a compact met-
ric space and α ∈ (0, 1). Then Lip(X, d) is dense in (lip(X, dα), ‖ ·
‖Lip(X,dα)).

Definition 1.4. Let (X, d) be a compact metric space and α ∈ (0, 1].
Let A be a subalgebra of Lip(X, dα). It is said that A has the separation
property with respect to X if there exists a constant a > 1 such that for
every x, y ∈ X, there is a function f in A that satisfies p(α,X)(f) ≤ a
and |f(x)− f(y)| = dα(x, y).

In 1996, Weaver [10] obtained a sufficient condition for density of a
subalgebra A of lip(X, d) in (lip(X, d), ‖ · ‖Lip(X,d)) as the following.

Theorem 1.5 (see [10, Theorem 1.4]). Let (X, d) be a compact metric
space. Suppose that A is a subalgebra of lip(X, d) which contains the con-
stant function 1 on X. If A has the separation property with respect to
X, then A is dense in the little Lipschitz algebra (lip(X, d), ‖ · ‖Lip(X,d)).

Let (X, d) be a compact metric space, K be a nonempty compact
subset of X and α ∈ (0, 1]. We denote by Lip(X,K, dα) (lip(X,K, dα),
respectively) the set of all f ∈ C(X) for which f |K ∈ Lip(K, dα)
(f |K ∈ lip(K, dα), respectively). Then Lip(X,K, dα) (lip(X,K, dα), re-
spectively) is a complex subalgebra of C(X) and lip(X,K, dα) is a subset
of Lip(X,K, dα). The algebra Lip(X,K, dα) (lip(X,K, dα), respectively)
is called the extended Lipschitz (little Lipschitz, respectively) algebra of
order α on (X, d) with respect to K . Clearly, Lip(X, d) is a subal-
gebra of Lip(X,K, dα). Therefore, Lip(X,K, dα) contains the constant
function 1 on X and separates the points of X. It is easy to see that
Lip(X,K, dα) is a unital Banach algebra under the norm

||f ||Lip(X,K,dα) = ||f ||X + pα,K(f) (f ∈ Lip(X,K, dα)),

and lip(X,K, dα) is a closed unital subalgebra of (Lip(X,K, dα), || ·
||Lip(X,K,dα)). Therefore, (Lip(X,K, dα), || · ||Lip(X,K,dα)) is a Banach
function algebra on (X, d). Clearly, Lip(X,K, dβ) is a subalgebra of
lip(X,K, dα) whenever 0 < α < β ≤ 1. Therefore, (lip(X,K, dα), || ·
||Lip(X,K,dα)) is a Banach function algebra on (X, d) whenever α ∈ (0, 1).
We write Lip(X,K, d) (lip(X,K, d), respectively) instead of Lip(X,K,
d1) (lip(X,K, d1), respectively). Note that Lip(X,K, dα) = Lip(X, dα)
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and lip(X,K, dα) = lip(X, dα), if X\K is finite. Also Lip(X,K, dα) =
C(X) for α ∈ (0, 1] and lip(X,K, dα) = C(X) for α ∈ (0, 1), if K is
finite. The extended Lipschitz algebras Lip(X,K, dα) and the extended
little Lipschitz algebras lip(X,K, dα) were first introduced in [5].

Some properties of unital homomorphisms between extended Lips-
chitz algebras studied in [2].

In Section 2, we obtain sufficient conditions for density of linear
subspaces and subalgebras of lip(X,K, dα) (Lip(X,K, dα), respectively)
in (lip(X,K, dα), ‖ · ‖Lip(X,K,dα)) (Lip(X,K, dα), ‖ · ‖Lip(X,K,dα)), respec-
tively), and generalize mentioned theorems in Section 1.

2. The Density in Extended Lipschitz Algebras

Throughout this section we assume that (X, d) is a compact metric
space and K is an infinite compact subset of X.

Theorem 2.1. Suppose that α ∈ (0, 1], and B = Lip(X,K, dα) or B =
lip(X,K, dα). Let P be a linear subspace of B. Then P is dense in
(B, || · ||Lip(X,K,dα)), if P satisfies the following conditions:

(i) CZ(X,K) is a subset of the closure of P in (B, ‖ · ‖Lip(X,K,dα)),
(ii) P |K is dense in (B|K , || · ||Lip(K,dα)), where S|K = {f |K : f ∈ S}

for a subset S of B.

Proof. By Tietze’s extension theorem [7, Theorem 20.4], we have B|K =
Lip(K, dα) whenever B = Lip(X,K, dα) and B|K = lip(K, dα) whenever
B = lip(X,K, dα). Let f ∈ B and let ε > 0 be given. Then f |K ∈ B|K
and the density of P |K in (B|K , || · ||Lip(K,dα)) implies that there exists
a function g in P |K such that

||g − f |K ||Lip(K,dα) <
ε

2
. (2.1)

Let h = −f |K +g. Then h ∈ B|K . By Tietze’s extension theorem, there
exists H ∈ C(X) such that H|K = h and ‖H‖X = ‖h‖K . Therefore,
H ∈ B and

||H||Lip(X,K,dα) = ||h||Lip(K,dα). (2.2)

Since g ∈ P |K , there exists a function G in P such that G|K = g. Let
ϕ = f − G + H. Then ϕ ∈ B and ϕ|K = f |K − g + h = 0. So ϕ ∈
CZ(X,K). Hence, ϕ belongs to the closure of P in (B, ‖ · ‖Lip(X,K,dα)),
by (i). Therefore, ϕ+G belongs to the closure of P in (B, ‖·‖Lip(X,K,dα))
and so f + H belongs to the closure of P in (B, ‖ · ‖Lip(X,K,dα)). This
implies that there exists ψ ∈ P such that

||f +H − ψ||Lip(X,K,dα) <
ε

2
. (2.3)
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By (2.1), (2.2) and (2.3), we have

||ψ − f ||Lip(X,K,dα) ≤ ||ψ − (f +H)||Lip(X,K,dα) + ||H||Lip(X,K,dα)

<
ε

2
+ ||h||Lip(K,dα)

=
ε

2
+ ||g − f |K ||Lip(K,dα)

<
ε

2
+
ε

2
= ε.

Thus, the proof is complete. �

We now give an extension of Theorem 1.2 applying Theorem 2.1 as
the following.

Theorem 2.2. Let α ∈ (0, 1) and let P be a linear subspace of lip(X,K,
dα). Then P is dense in (lip(X,K, dα), || · ||Lip(X,K,dα)), if A satisfies the
following conditions:

(i) CZ(X,K) is a subset of P̄ , the closure of P in (lip(X,K, dα), || ·
||Lip(X,K,dα)),

(ii) there is a positive number C such that for each finite subset E
of K and each f ∈ lip(X,K, dα), there exists a function g in P
with g|E = f |E and with ‖g‖Lip(X,K,dα) ≤ C‖f‖Lip(X,K,dα).

Proof. Clearly, P |K is a linear subspace of lip(K, dα). Suppose that E is
a finite subset of K and f ∈ lip(K, dα). By Tietze’s extension theorem,
there exists a function F in C(X) with F |K = f and with ‖F‖X = ‖f‖K .
Then F ∈ lip(X,K, dα) and

||F ||Lip(X,K,dα) = ||f ||Lip(K,dα). (2.4)

Therefore, there exists a function G in P with G|E = F |E and with

||G||Lip(X,K,dα) ≤ C‖F‖Lip(X,K,dα). (2.5)

Let g = G|K . Then g ∈ P |K and applying (2.4) and (2.5), we have

||g||Lip(K,dα) ≤ ||G||Lip(X,K,dα)

≤ C||F ||Lip(X,K,dα)

= C||f ||Lip(K,dα).

Hence, P |K is dense in (lip(K, dα), || · ||Lip(K,dα)) by Theorem 1.2. There-
fore, P is dense in (lip(X,K, dα), || · ||Lip(X,K,dα)) by Theorem 2.1. �

Note that, we have proved Theorem 2.2 in [1] using the measure theory
and duality.

As another applications of Theorem 2.1, we will show that Lip(X, d) is
dense in (Lip(X,K, d), || · ||Lip(X,K,d)) and (lip(X,K, dα), || · ||Lip(X,K,dα))
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for α ∈ (0, 1). To prove these facts, we first show that CZ(X,K) is
a subset of the closure Lip(X, d) in (Lip(X,K, dα), || · ||Lip(X,K,dα)) for
α ∈ (0, 1]. To prove this result, we need the following lemma which is a
modification of Sherbert’s extension theorem [9, Proposition 1.4].

Lemma 2.3. Let Y be a nonempty compact subset of X and let f ∈
Lip(Y, d). Then there exists a function F ∈ Lip(X, d) with F |Y = f
such that ‖F‖X ≤ 2‖f‖Y and pα,X(F ) ≤ 2pα,Y (f).

Theorem 2.4. Let α ∈ (0, 1]. Then CZ(X,K) is a subset of the closure
Lip(X, d) in (Lip(X,K, dα), || · ||Lip(X,K,dα)).

Proof. Let 0 6= f ∈ CZ(X,K) and let ε > 0 be sufficiently small. Set

U = {x ∈ X : |f(x)| < ε

9
},

V = {x ∈ X : |f(x)| < ε

8
}.

Then U and V are open sets in X and K ⊆ U ⊆ U ⊆ V 6= X, where
U is the closure of U in the metric space (X, d). Since f ∈ C(X) and
Lip(X, d) is dense in (C(X), ‖·‖X), there exists a function g ∈ Lip(X, d)
such that

‖g − f‖X <
ε

8
.

By Urysohn’s lemma, there exists a function h ∈ C(X) such that 0 ≤
h(x) ≤ 1 for all x ∈ X, h(x) = 0 for all x ∈ U and h(x) = 1 for all
x ∈ X\V . Clearly, we have

pα,K(gh− f) = 0.

Let Y = U ∪ (X\V ). Then Y is a nonempty compact subset of X and
‖h‖Y = 1. Let δ = inf{d(x, y) : x ∈ U, y ∈ X\V }. Then δ > 0. It is
easy to see that p1,Y (h) ≤ 1

δ . So h|Y ∈ Lip(Y, d). By Lemma 2.3, there
exists a function H ∈ Lip(X, d) with H|Y = h|Y such that

‖H‖X ≤ 2‖h‖Y .



148 D. Alimohammadi , S. Moradi

Therefore, gH ∈ Lip(X, d) and we have

‖gH − f‖Lip(X,K,dα) = ‖gH − f‖X + pα,K(gH − f)

= ‖gH − f‖X + pα,K(gh− f)
= ‖gH − f‖X

≤ ‖gH − f‖X\V + ‖gH − f‖V \U + ‖gH − f‖U

= ‖gH − f‖X\V + ‖gH − f‖V \U + ‖f‖U

≤ ‖g − f‖X + ‖gH‖V \U + ‖f‖V \U + ‖f‖U

≤ ‖g − f‖X + ‖g‖V \U‖H‖V \U + ‖f‖V \U + ‖f‖U

<
ε

8
+ ‖g‖V \U ‖H‖X +

ε

8
+
ε

8

≤ 3ε
8

+ 2‖g‖V \U ‖h|Y ‖Y

=
3ε
8

+ 2‖g‖V \U

≤ 3ε
8

+ 2(‖g − f‖V \U + ‖f‖V \U )

≤ 3ε
8

+ 2(‖g − f‖X + ‖f‖V )

<
3ε
8

+ 2(
ε

8
+
ε

8
)

< ε.

Hence f ∈ Lip(X, d), the closure of Lip(X, d) in (Lip(X,K, dα), || ·
||Lip(X,K,dα)). Thus, the proof is complete. �

Theorem 2.5. The Lipschitz algebra Lip(X, d) is dense in the extended
Lipschitz algebra (Lip(X,K, d), || · ||Lip(X,K,d)).

Proof. Let P = Lip(X, d) and B = Lip(X,K, d). Then P is a linear
subspace of B. By Theorem 2.4, CZ(X,K) is a subset of the closure P
in (B, ||·||Lip(X,K,d)). On the other hand, P |K = Lip(K, d) by Lemma 2.3
and B|K = Lip(K, d) using the Tietze’s extension theorem. Thus, P |K
is dense in (B|K , || · ||Lip(X,d)). Therefore, P is dense in (B, || · ||Lip(X,K,d))
by Theorem 2.1. Thus, the proof is complete. �

Corollary 2.6. Let α ∈ (0, 1]. Then the Lipcshitz algebra Lip(X, dα) is
dense in the extended Lipschitz algebra (Lip(X,K, dα), || · ||Lip(X,K,dα)).

Proof. Since the induced topology by the metric dα onX coincides to the
induced topology by metric d on X, we conclude that K is a compact
subset of X in the metric space (X, dα). Thus, the result holds by
Theorem 2.5. �
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Since ‖f‖Lip(X,K,dα) ≤ ‖f‖Lip(X,dα) for all f ∈ Lip(X,K, dα), we ob-
tain the following result as a consequence of Corollary 2.6.

Corollary 2.7. Let α ∈ (0, 1] and let P be a subset of Lip(X, dα)
such that P is dense in (Lip(X, dα), || · ||Lip(X,dα)). Then P is dense
in (Lip(X,K, dα), || · ||Lip(X,K,dα)).

Theorem 2.8. Let α ∈ (0, 1). Then the Lipschitz algebra Lip(X, d) is
dense in the extended little Lipschitz algebra (lip(X,K, dα), ||·||Lip(X,K,dα)).

Proof. Let P = Lip(X, d) and B = lip(X,K, dα). Then P is a lin-
ear subspace of B. By Theorem 2.4, CZ(X,K) is a subset of the clo-
sure of P in (Lip(X,K, dα), || · ||Lip(X,K,dα)). Since B is a closed set in
(Lip(X,K, dα), || · ||Lip(X,K,dα), we deduce that CZ(X,K) is a subset of
the closure P in (B, || · ||Lip(X,K,dα)).

On the other hand, P |K = Lip(K, d) by Lemma 2.3 and B|K =
lip(K, dα) using the Tietze’s extension theorem. Thus, P |K is dense in
(B|K , || · ||Lip(K,dα)). Therefore, P is dense in (B, || · ||Lip(X,K,dα)) by
Theorem 2.1. Thus, the proof is complete. �

Corollary 2.9. Let α ∈ (0, 1). Then lip(X, dα) is dense in (lip(X,K, dα),
|| · ||Lip(X,K,dα)).

Proof. Since Lip(X, d) is a subset of lip(X, dα), the result holds by The-
orem 2.8. �

Corollary 2.10. Let α ∈ (0, 1). If P is a subset of lip(X, dα) such that
P is dense in (lip(X, dα), ||·||Lip(X,dα)), then P is dense in (lip(X,K, dα),
|| · ||Lip(X,K,dα)).

Corollary 2.11. Let α ∈ (0, 1) and P be a linear subspace of lip(X, dα).
Suppose that there is a positive number C such that for each finite subset
E of X and for each f ∈ lip(X, dα), there exists a function g ∈ P
with g|E = f |E and ‖g‖Lip(X,dα) ≤ C‖f‖Lip(X,dα). Then P is dense in
(lip(X,K, dα), || · ||Lip(X,K,dα)).

Proof. By Theorem 1.2, P is dense in (lip(X, dα), || · ||Lip(X,dα)). Thus,
the proof holds by Corollary 2.10. �

Applying Theorem 2.1, we give an extension of Theorem 1.1 as the
following.

Theorem 2.12. Suppose that α ∈ (0, 1) and A is a self-adjoint subalge-
bra of lip(X,K, dα) which separates the points of X and contains the con-
stant functions on X. Then A is dense in (lip(X,K, dα), ||·||Lip(X,K,dα)),
if A satisfies the following conditions:

(i) CZ(X,K) is a subset of the closure of A in (lip(X,K, dα), ‖ ·
‖Lip(X,K,dα)),
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(ii) for every a ∈ K, there are positive numbers Ma and δa such
that for each δ with 0 < δ < δa, there is a function f in A that
satisfies f(a) = 1, f(x) = 0 for all x ∈ S(K,d)(a, δ), and

sup{|f(y)− f(z)|
dα(y, z)

: y, z ∈ B(K,d)[a, δ], y 6= z} < Ma

δα
.

Proof. Clearly, A|K is a self-adjoint subalgebra of lip(K, dα) which sep-
arates the points of K and contains the constant functions on K. From
the condition (ii) and applying Theorem 1.1, we conclude that A|K is
dense in (lip(K, dα), ||·||Lip(K,dα)). Therefore, A is dense in (lip(X,K, dα),
|| · ||Lip(X,K,dα)) by Theorem 2.1. �

Definition 2.13. Let α ∈ (0, 1] and letA be a subalgebra of Lip(X,K, dα).
We say that A has separation property with respect to K if there exists
a constant a > 1 such that for every x, y ∈ K, there is a function f in
A that satisfies p(α,K)(f) ≤ a and |f(x)− f(y)| = dα(x, y).

We now give an extension of Theorem 1.5, applying Theorem 2.1 as
the following.

Theorem 2.14. Suppose that A is a subalgebra of lip(X,K, d) which
contains the constant functions 1 on X. Then A is dense in (lip(X,K, d),
|| · ||Lip(X,K,d)), if A satisfies the following conditions:

(i) CZ(X,K) is a subset of Ā, the closure of A in (lip(X,K, d), ‖ ·
‖Lip(X,K,d)),

(ii) A has the separation property with respect to K.

Proof. Clearly, A|K is subalgebra of lip(K, d) which contains the con-
stant function 1 on K. The condition (ii) implies that there exists a
constant a > 1 such that for every x, y ∈ K there is a function f in A
that satisfies p1,K(f) ≤ a and |f(x) − f(y)| = d(x, y). Let x, y ∈ K.
Choose f ∈ A such that p1,K(f) ≤ a and |f(x) − f(y)| = d(x, y). If
g = f |K , then g ∈ A|K , p1,K(g) = p1,K(f) ≤ a and |g(x) − g(y)| =
|f(x) − f(y)| = d(x, y). Hence, A|K has the separation property with
respect to K. Hence, A|K is dense in (lip(K, d), || · ||Lip(K,d)) by Theorem
1.5. Therefore, A is dense in (lip(X,K, d), || · ||Lip(X,K,d)) by Theorem
2.1. �
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