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Abstract. In this paper, we use modified Laplace decomposition
method for solving initial value problems (IVP) of the second or-
der ordinary differential equations. The proposed method can be
applied to linear and non - linear problems.
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1. INTRODUCTION

In recent years, studies of initial value problems in the second order or-
dinary differential equations (ODEs) have been attracted the attention
of many mathematicians and physicists. A large amount of literatures
developed concerning Adomian decomposition method [1-4] and the re-
lated modification [5-6] to investigate various scientific models. This
paper present a Laplace transform numerical scheme, based on the de-
composition method, for solving linear and non - linear differential equa-
tions. The technique is described and illustrated with some numerical
examples.
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The aim of this paper is to introduce a new reliable modification of
Laplace decomposition method (MLDM) [17-21] . For convenience, we
consider the general form of the second order non homogeneous ordinary
differential equations with initial conditions is given below:

y′′ +
2n

x
y′ +

n(n−1)

x2
y + f (x, y) = g (x) n = 1, 2 (1.1)

y (0) = A , y′ (0) = B,

Where f(x, y) is a real function, g(x) is given function, A and B are
constants.

2. The Method
The technique consists first of applying Laplace transformation denoted
throughout this paper by L to both sides of (1.1), hence when n= 1, we
obtain

y
′′

+
2

x
y′ + f (x, y) = g(x) (1.2)

Applying the Laplace transform denoted by L we have

L(xy
′′

+ 2y′ + xf (x, y)− xg (x) ) = 0

Using the properties of Laplace transform, we obtain

− L(y
′′
)′ + 2L

(
y′
)

+ L (xf (x, y)− xg (x)) = 0 (1.3)

−(s2F (s)−sf (0)−f ′ (0))′+2 (sF (s)− f (0))+L (xf (x, y)− xg (x)) = 0

−(s2F (s)− sA−B)′ + 2 (sF (s)−A) + L(xf (x, y)− xg (x)) = 0

Using the initial conditions, we have

−s2F ′ (s)−y (0)+L (xf (x, y)− xg (x)) = 0 (1.4)

We decompose F (x, y) in to two parts:

F (x, y) = R(y (x) +N(y (x)) (1.5)

where R(y(x)) and N(y(x)) denote the liner term and the nonlinear term
respectively.
The Adomian decomposition method (ADM) polynomials can be used
to handle Eq. (1.4) and to address the nonlinear term N(y(x)) MLDM
defines a solution y(x ) and the nonlinear function F (x, y) by infinity
series

y (x) =
8∑

n=0

yn (x)

(1.6)

F (x, y) =

8∑
n=0

An

(1.7)
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Where An are the Adomian polynomials and it can be calculated by
formula give below.

An= 1
n!

[
dn

dλn N
(∑8

n=0 λ
nun

)
)λ=0

]
n=0, 1,2,... (1.8)

Therefore Adomian’s polynomials are given by:

A0= N[u0],

A1 = u1N
′ [u0] , (1.9)

A2 = u2N
′ [u0] +

1

2!
u2

1N′′ [u0] ,

A3=u3N
′
[u0] +u1u2N

′′
[u0] +

1

3!
u3

1N′′′ [u0] ,

...
After substituting (1.6) and (1.7) into (1.4), we have

−s2L
′

{
8∑

n=0

yn (x)

}
−y (0)−L {xg(x)}

+L

{
xR

[
8∑

n=0

yn(x)

]
+x

8∑
n=0

An(x)

}
= 0 (1.10)

Using the linearity of Laplace transform, it follows that

−s2
8∑

n=0

L
′ {yn (x)}−y (0)−L {xg(x)} (1.11)

+
8∑

n=0

L {xR [yn(x)] +xAn(x)} = 0

In general, the recursive relation is given by:

L′ {y0(x)}= −s−2y (0)−s−2L {xg(x)} , (1.12)

L′ {yn+1(x)}=s−2L {xR [yn (x)] +xAn(x)} ,
By integrating both sides of Eq. (1.12), we have

L {y0(x)}=

∫ [
−s−2y(0)−s−2L {xg(x)}

]
ds , (1.13)

L {yn+1(x)}=

∫
s−2L {xR [yn(x)] +xAn(x)} ds

Taking the inverse Laplace transform to Eq. (1.13) one obtains

y0 (x) = L−1

{∫ [
−s−2y (0)−s−2L {xg(x)}

]
ds

}
= H (x) . (1.14)
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yn+1 (x) =L−1

{∫
s−2L {xR [yn(x)] +xAn(x)} ds

}
,

where H(x) represents the term arising from source equation and pre-
scribed initial condition. The initial solution is important, and the choice
of Eq. (1.14) as the initial solution always leads to noise oscillation dur-
ing the iteration procedure.

3. Modified Laplace decomposition method
In order to overcome the shortcoming, we assume That H (x) can be
divided into the sum of two parts namely H0(x) and H1(x), therefore we
get

H(x) = H0(x) + H1(x). (1.15)

Instead of the iteration procedure expresed at eq 14 we suggest the
following modification

y0(x) = H0(x), (1.16)

y1 (x) = H1 (x) + L−1
{∫

s−2L {xR [yn(x)] +xAn(x)
}

ds}
yn+1(x)= L−1

{∫
s−2L {xR [yn(x)] +xAn(x)

}
ds},

The solution through the modified Laplace decomposition method highly
depends upon the choice of H0(x) and H1(x).

4. Numerical Examples

Example 1. Consider the nonlinear singular IVP

y
′′

+
2

t
y′ + y −

(
t2 + 6

)
= 0, y (0) = y′ (0) = 0. (1.17)

According to the MLDM and initial conditions we have

−s2L′ (y) + L (ty)− L
(
6t+ t3

)
= 0

The recursive relation is obtained as

L′ (y0) = −s−2L(6t)

y0(t) = L−1(
∫
−s−2L (6t) ds)

y0 (t) = L−1

(∫ ∫
(−s−2(

6

s2
(−s−2(

6

s2

)
ds = L−1

(∫
−6

s4

)
ds = L−1(

−6s−3

−3
)

L−1(2s−3) = L−1(
2

s3
) = t2 y0(t) = t2

L
′
(y1) = s−2L ((ty0)− L(t3))

y1 (t) = L−1

(∫
s−2(L (ty0)− L

(
t3
)
)

)
ds y1(t) = 0
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...
L′ (yn) = s−2L (tyn−1)

yn (t) = L−1(s−2L (tyn−1) ds yn (t) = 0, n > 1

The solution series in general gives

y(t) = y0 (t) +y1 (t) +y2 (t) +. . .

The exact solution is y(t) = t2

Example2.consider the linear singular IVP

y′′ +
2

t
y′ − 10y = 12− 10t4 , y(0) = y′(0) = 0 (1.18)

According to the MLDM and initial conditions we have

−s2L′ (y) + L (−10yt) + L(−12t+ 10t5) = 0

The recursive relation is obtained as

y0 (t) = L−1

(∫
−s−2L

(
12t− 10t5

))
ds

y0(t)=L−1
(

4
s3
− 1200

7s7

)
y0 (t) = 2t2 − 5

21 t
6

y1 (t) = L−1(

∫
s−2L(−10y0t)) = L−1(s−2L(−20t3 +

50

21
t7))

y1(t)=t4 − 25
756 t

8

y2 (t) = L−1

(∫
s−2L(−10y1t)

)
ds

y2 (t) =
5

21
t6 − 25

8316
t10

...
The solution series in general gives

y(t) = y0 (t) +y1 (t) +y2 (t) +. . .

So the exact solution is obtained as

y (t) = 2t2 + t4

When n = 2 in Eq.(1.1),we obtain

y′′ +
4

x
y
′
+

2

x2
y + f (x, y) = g (x) (1.19)

y (0) = A, y′ (0) = B

By applying x2 to both sides of (1.19) we have

x2y′′+4x y′+2 y + x2f (x, y) = x2g(x)
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Applying the Laplace transform (denoted by L) we have

L
(
x2y

′′
)

+ 4L
(
xy

′
)

+ 2L (y) + L
(
x2f (x, y)− x2g (x)

)
= 0

L(s2F (S)−sf (0)−f ′ (0))
′′−4L(sF (s)−f (0))′+2F (s)+L

(
x2f (x, y)− x2g (x)

)
= 0

Using the initial conditions, we have

s2f
′′

(s) + L
(
x2f (x, y)− x2g (x)

)
= 0

Taking the inverse Laplace transform to Eq. (1.13) we obtains

y0 (x) = L−1

{∫ ∫ [
s−2L

{
x2g(x)

}]
ds ds

}
= H (x) .

yn+1 (x) =L−1

{∫ ∫
s−2−(L

{
x2R [yn (x)] +x2An (x)

}
)ds ds

}
Example3. Consider the linear singular IVP

y
′′

+
4

t
y
′
+

2

t2
y = 12 , y (0) =y

′
(0) = 0 (1.20)

According to the MLDM , we have

s2L
′′

(y) +L
(
t2 12

)
= 0

y0 (t) = L−1

(∫ ∫
s−2L(12t2)

)
ds ds)

y0 (t) = L−1(
∫ ∫

s−2(24
s3

) ds) y0 (t) = t2

The exact solution is y(t) = t2.
Example 4. consider the nonlinear singular IVP

y′′ +
4

t
y
′
+

2

t2
y+y2=t4+12, (1.21)

y(0) = y′(0) = 0.

According to the MLDM, we have

s2L
′′

(y) + L(t2y2)− L(t6 + 12t2) = 0

The recursive relation is obtained as

y0 (t) =L−1

(∫ ∫
s−2L(12t2)

)
dsds y0(t) =t2

y1 (t) =L−1(

∫ ∫
s−2(−(L(t2y2

0)) + L(t6))ds ds

y1 (t) = 0

yn (t) = L−1

(∫ ∫
s−2(−L(t2y2

n−1)

)
dsds

yn (t) = 0 , ∀n > 1
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The solution series in general gives

y(t) = y0 (t) +y1 (t) +y2 (t) +. . .

The exact solution is y (t) = t2

Example 5. Consider the singular IVP

y
′′
+

4

t
y′+

2

t2
y+ty = 20t+t4 , y (o) = y′(0) = 0 (1.22)

According to the MLDM, we have

s2L
′′

(y)− L
(
20t3 + t6

)
+ L

(
t3y
)

= 0.

The recursive relation is obtained as

y0 (t) =L−1

(∫ ∫
s−2L(20t3+t6)

)
dsds

y0 (t) =t3+
t6

56

y1 (t) =L−1(

∫ ∫
s−2(−(L(t3y0))ds ds)

y1 (t) =− t6

56
− t9

6160

y2 (t) =L−1(

∫ ∫
s−2(−(L(t3y1))ds ds)

y2 (t) =
t9

6160
+

t12

1121120
...
The solution series in general gives

y(t) = y0 (t) +y1 (t) +y2 (t) +. . .

The exact solution is y(t)=t3

5. Discussion and Conclusion
In the paper, modified Laplace decomposition method (MLDM) is ap-
plied to linear and nonlinear differential equation with initial conditions.
The MLDM proposed in this investigation is simple and effective for solv-
ing in the second order of IVP and can provide an accuracy approximate
solution or exact solution. Mathematica has been used for computations
in this paper.
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