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Abstract. In this paper, we present two new families of third-
order and fourth-order methods for finding multiple roots of non-
linear equations. Each of them requires one evaluation of the func-
tion and two of its first derivative per iteration. Several numerical
examples are given to illustrate the performance of the presented
methods.
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1. Introduction

Finding the root of a nonlinear equation is a common and important
problem in science and engineering. In this paper, we consider iterative
methods to find a multiple root α of multiplicity m, i.e. f (j)(α) = 0, j =

0, 1, · · · ,m− 1 and f (m)(α) 6= 0, of a nonlinear equation f(x) = 0.
The modified Newton’s method for multiple roots is quadratically con-
vergent and it is written as [20]

xn+1 = xn −m
f(xn)

f ′(xn)
(1.1)
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which requires the knowledge of the multiplicity m. Several methods in-
cluding many multiple-root-finding methods of different orders are pre-
sented. For example, see Hansen and Patrick [7], Victory and Neta [22],
Dong [6], Neta and Johnson [18], Neta [15]-[16], Chun and Neta [4], and
Werner [23], etc. All of these methods require the knowledge of the
multiplicity m.
The third-order Euler-Chebyshev method for finding multiple roots [21]
is given by

xn+1 = xn −
m(3−m)

2

f(xn)

f ′(xn)
− m2

2

f(xn)2f ′′(xn)

f ′(xn)3
(1.2)

The cubically convergent Halley’s method, which is a special case of the
Hansen and Patrick’s method [7], is written as

xn+1 = xn −
f(xn)

m+1
2m f ′(xn)− f(xn)f ′′(xn)

2f ′(xn)

(1.3)

The third-order Osada method [19] is written as

xn+1 = xn −
1

2
m(m+ 1)

f(xn)

f ′(xn)
+

1

2
(m− 1)2

f ′(xn)

f ′′(xn)
(1.4)

Dong [5] has developed two third-order methods requiring two evalua-
tions of f and one evaluation of f ′{

yn = xn −
√
mun,

xn+1 = yn −m(1− 1√
m

)1−m f(yn)
f ′(xn)

,

(1.5) yn = xn − un,

xn+1 = yn + unf(yn)

f(yn)−(1− 1
m
)m−1f(xn)

,

(1.6)

where un = f(xn)
f ′(xn)

.

In [18], Neta and Johnson have proposed a fourth-order method re-
quiring one-function and three-derivative evaluation per iteration. This
method is based on the Jarratt method [9] given by the iteration function

xn+1 = xn −
f(xn)

a1f ′(xn) + a2f ′(yn) + a3f ′(ηn)
(1.7)
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Table 1

m 2 2 3 4 5 6

a 1 4
3

3
2 2 5

2 3

b free free free 2 5
2 3

c free 1−b
3

3
5 −

b
4 0.06478279184 0.0217372041 0.0082119760

a1 −1
2

1−2b
2

25
108b−

43
72 -0.4374579865 -0.4303454005 -0.3681491853

a2 2 3(b− 1) 4− 25
72b 7.90412890309 18.8154365391 39.6876826792

a3 0 2 −125
72 -5.9128176652 -15.8940830499 -35.6993794378

where 

un = f(xn)
f ′(xn)

,

yn = xn − aun,

νn = f(xn)
f ′(yn)

,

ηn = xn − bun − cνn.

(1.8)

Neta and Johnson [18] give a table of values for the parameters a, b, c, a1, a2, a3
for several values of m. But, they do not give a closed formula for general
case. we list this parameters for m = 2, 3, 4, 5 and 6 in Table 1. Neta
[15] has developed another fourth-order method requiring one-function
and three-derivative evaluation per iteration. This method is based on
Murakami’s method [14] given by

xn+1 = xn − a1un − a2νn − a3w(xn)− ψ(xn) (1.9)

where un, yn, νn and ηn are given by (1.8) and

w(xn) =
f(xn)

f ′(ηn)
,

ψ(xn) =
f(xn)

b1f ′(xn) + b2f ′(yn)
. (1.10)

A table of values for the parameters a, b, c, a1, a2, a3, b1, b2 for several
values of m is also given by Neta [15].
In [11], Li et al. have proposed a fourth-order method requiring one-
function and two-derivative evaluation per iteration. This method is
based on the Jarratt method [1] given by the iteration function

yn = xn − 2m
m+2

f(xn)
f ′(xn)

,

xn+1 = xn −
1
2
m(m−2)( m

m+2
)−mf ′(yn)−m2

2
f ′(xn)

f ′(xn)−( m
m+2

)−mf ′(yn)
f(xn)
f ′(xn)

.
(1.11)
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In [12], a fourth-order method is proposed, yn = xn − rac2mm+ 2 f(xn)
f ′(xn)

,

xn+1 = xn − a3 f(xn)f ′(yn)
− f(xn)

b1f ′(xn)+b2f ′(yn)

(1.12)

where

a3 = −1

2

( m
m+2)mm(m4 + 4m3 − 16m− 16)

m3 − 4m+ 8
,

b1 = − (m3 − 4m+ 8)2

m(m4 + 4m3 − 4m2 − 16m+ 16)(m2 + 2m− 4)
,

b2 =
m2(m3 − 4m+ 8)

( m
m+2)m(m4 + 4m3 − 4m2 − 16m+ 16)(m2 + 2m− 4)

.

This method require one-function and two-derivative evaluation per it-
eration.
Heydari et al. [13] have developed two fourth-order methods requiring
two-function and two-derivative evaluation per iteration. This method
is based on Chun fourth-order method (for simple roots) [3] given by the
iteration function yn = xn − θi f(xn)f ′(xn)

,

xn+1 = xn + βi
f(xn)
f ′(xn)

+ λi
f(yn)
f ′(xn)

+ δi
f(yn)f ′(yn)
f ′(xn)2

, i = 1, 2,
(1.13)

where 

θ1 = 1,

β1 = −m3 + 3m2 − 3m,

λ1 = −2m (m− 1)
(
m−1
m

)−m
,

δ1 = m (m− 1)2
(
m−1
m

)−2m
,

(1.14)

and 

θ2 = 2m
m+1 ,

β2 = 1
4 m

2 −m− 1
4 .

λ2 = −1
4 (m− 1) (m+ 1)2

(
m−1
m+1

)−m
,

δ2 = 1
4m (m− 1)2

(
m−1
m+1

)−2m
.

(1.15)

The above-mentioned methods have been proven to be competitive to
Newton’s method in their performance and efficiency. There are, how-
ever, not yet many methods known in the literature that can handle the
case of multiple roots, see [17]. Motivated and inspired by the recent
activities in this direction, in this paper we present two new families of
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third-order and fourth-order methods for finding multiple roots of non-
linear equations. Each of them requires one evaluation of the function
and two of its first derivative per iteration.

2. Development of methods and convergence analysis

Now, we consider the following iteration scheme:{
yn = φi(xn, θ),

xn+1 = xn −H(ξn) f(xn)f ′(xn)
, i = 1, 2

(2.1)

where ξn = f ′(yn)
f ′(xn)

, H(t) represents a real-valued function and φi(xn, θ), i =

1, 2 are the second-order iteration functions known in the literature(for
θ = 1), which are given as follows.

φ1(x, θ) = x− θ f(x)f ′(x)

f2(x) + f ′2(x)
(2.2)

φ2(x, θ) = x− θ f(x)

f ′(x)
(2.3)

(2.3) is Newton’s iteration function and (2.2) the iteration function de-
rived in [8].

2.1. New third-order schemes free of second derivatives. For
simplicity, we define

Aj =
f (m+j)(α)

f (m)(α)
, j = 1, 2, · · · , µ =

m− θ
m

(2.4)

we consider the following iteration functions{
yn = φ1(xn, θ),

xn+1 = xn −H(ξn) f(xn)f ′(xn)
,

(2.5)
We can state the following convergence theorems for the two-step method
defined by (2.5).

Theorem 2.1. Let α ∈ I be a multiple root of multiplicity m of suf-
ficiently differentiable function f : I −→ R for an open interval I and
H1(t) be a real-valued function as follows

H1(t) = a1 + b1t (2.6)
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If x0 is sufficiently close to α, then the method defined by (2.5) has
third-order convergence, when

a1 = −
m
(
−θ2 (m+ 1) + θm+m2

)
θ (θ (m+ 1)− 2m)

, (2.7)

b1 =
(m− θ)2m

(
m−θ
m

)−m
θ (θ (m+ 1)− 2m)

, (2.8)

and satisfy the error equation

en+1 = [χ1(m, θ)A
2
1 + ψ1(m, θ)A2]e

3
n +O(e4n), (2.9)

where en = xn − α and A1, A2 are defined in (2.4) and

χ1(m, θ) =
1

2

−2m3 − 6m2 +
(
m3 + 9m2 + 6m

)
θ

(−2m+ θ(m+ 1)) (m+ 1)2 (m− θ)m2

+
1

2

(
−2m2 − 4m− 2

)
θ2

(−2m+ θ(m+ 1)) (m+ 1)2 (m− θ)m2
(2.10)

ψ1(m, θ) =
2m2 +

(
−m2 − 4m

)
θ + (m+ 2) θ2

(−2m+ θ(m+ 1)) (m+ 1)m2 (m+ 2)
(2.11)

for any θ ∈ R and θ 6= m, 2m
m+1 .

Proof. Let α ∈ R be a multiple root of multiplicity m of a sufficiently
smooth function f(x), en = xn−α and ên = yn−α, where yn is defined
in (2.5). Using the Taylor expansion of f(xn), f ′(xn) and f ′(yn) about
α, we have

f(xn) =
f (m)(α)

m!
emn [1 + C1en + C2e

2
n + C3e

3
n + C4e

4
n +O(e5n)], (2.12)

f ′(xn) =
f (m)(α)

(m− 1)!
em−1n [1 +D1en +D2e

2
n +D3e

3
n +D4e

4
n +O(e5n)], (2.13)

f ′(yn) =
f (m)(α)

(m− 1)!
êm−1n [1 +D1ên +D2ê

2
n +D3ê

3
n +D4ê

4
n +O(ê5n)], (2.14)

where Cj = m!
(m+j)!Aj and Dj = (m−1)!

(m+j−1)!Aj . From (2.12) and (2.13), we
can get

f(xn)

f ′(xn)
=
en
m

[1 + (C1 −D1)en + (C2 −D2 +D2
1 − C1D1)e

2
n

+(C3 −D3 + (D1 − C1)D2 + (D2 − C2 + C1D1 −D2
1)D1)e

3
n +O(e4n)]. (2.15)
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f(xn)f ′(xn)

f2(xn) + f ′2(xn)
=

1

m
en +

(
D1 + C1

m
− 2

D1

m

)
e2n

+

(
D2 + C1D1 + C2

m
− D1

2 + 2D2 +m−2

m

− 2
(−D1 + C1)D1

m
)en

3 +O
(
e4n
)

(2.16)

So, from (2.16) we have

ên = en − θ
f(xn)f ′(xn)

f2(xn) + f ′2(xn)
= d0en + d1e

2
n + d2e

3
n + d3e

4
n +O(e5n) (2.17)

where

d0 = µ

d1 =
θ (D1 − C1)

m

d2 =
θ
(
D2m

2 +m2C1D1 −m2C2 −D1
2m2 + 1

)
m3

d3 = −
θ
(
−D3m

2 +m2C3 −m2C1D2 −m2C2D1

)
m3

−
θ
(
2D1D2m

2 − 3C1 −D1
3m2 + 3D1 + C1D1

2m2
)

m3

By substituting (2.17) into (2.14) , we can get

f ′(yn) =
f (m)(α)

(m− 1)!
em−1n Λ[1 +D1ên +D2ê

2
n +D3ê

3
n +D4ê

4
n +O(ê5n)], (2.18)

where

Λ = (d0 + d1e
1
n + d2e

2
n + d3e

3
n +O(e4n))m−1

= dm−10 + (m− 1)dm−20 d1en + {
(
m− 1

2

)
d21d

m−3
0 + (m− 1)d2d

m−2
0 }e2n

+ {2
(
m− 1

2

)
d1d2d

m−3
0 + (m− 1)d3d

m−2
0

+

(
m− 1

3

)
d31d

m−4
0 }e3n +O(e4n). (2.19)

Dividing (2.14) by (2.13), we have

ξn =
f ′(yn)

f ′(xn)

= µm−1 −
θ
(
µm−2D1 (µ−m+ 1) + µm−2C1 (m− 1)

)
en

m
+O

(
e2n
)
.

(2.20)
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Now from (2.5), (2.6), (2.15) and (2.20) we have

en+1 = en −H1(ξn)
f(xn)

f ′(xn)
= K1en +K2e

2
n +K3e

3
n +O(e4n), (2.21)

where

K1 = −−m+ a1 + b1µ
m−1

m
, (2.22)

K2 = −
(
b1µ

m−2 (θm− θ − µm− µ θ − µmθ)− a1m
)
A1

m3 (m+ 1)
(2.23)

Before we list K3, we choose a1 and b1 to annihilate the coefficients K1

and K2, so we have

a1 = −
m
(
−θ2 (m+ 1) + θm+m2

)
θ (θ (m+ 1)− 2m)

, (2.24)

b1 =
(m− θ)2m

(
m−θ
m

)−m
θ (θ (m+ 1)− 2m)

, (2.25)

By substituting (2.24) and (2.25) into K3, we get

K3 = χ1(m, θ)A
2
1 + ψ1(m, θ)A2, (2.26)

where

χ1(m, θ) =
1

2

−2m3 − 6m2 +
(
m3 + 9m2 + 6m

)
θ

(−2m+ θ(m+ 1)) (m+ 1)2 (m− θ)m2

+
1

2

(
−2m2 − 4m− 2

)
θ2

(−2m+ θ(m+ 1)) (m+ 1)2 (m− θ)m2
(2.27)

ψ1(m, θ) =
2m2 +

(
−m2 − 4m

)
θ + (m+ 2) θ2

(−2m+ θ(m+ 1)) (m+ 1)m2 (m+ 2)
(2.28)

and θ 6= m, 2m
m+1 . Therefore, we have

en+1 = [χ1(m, θ)A
2
1 + ψ1(m, θ)A2]e

3
n +O(e4n), (2.29)

which indicates that the order of convergence of the methods defined by
(2.5) is at least three. This completes the proof.

Theorem 2.2. Let α ∈ I be a multiple root of multiplicity m of suf-
ficiently differentiable function f : I −→ R for an open interval I and
H2(t) be a real-valued function as follows

H2(t) =
1

a2 + b2t
. (2.30)
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If x0 is sufficiently close to α, then the method defined by (2.5) has
third-order convergence, when

a2 =
m2 − 3 θm+ (m+ 1) θ2

mθ (θ (m+ 1)− 2m)
, (2.31)

b2 = −
(m− θ)2

(
m−θ
m

)−m
mθ (θ (m+ 1)− 2m)

, (2.32)

and satisfy the error equation

en+1 = [χ2(m, θ)A
2
1 + ψ2(m, θ)A2]e

3
n +O(e4n), (2.33)

where en = xn − α and A1, A2 are defined in (2.4) and

χ2(m, θ) =
1

2

−2m2 − 2m+
(
m2 + 7m

)
θ + (−2m− 2) θ2

m (θm− 2m+ θ) (m+ 1)2 (m− θ)
, (2.34)

ψ2(m, θ) =
2m2 +

(
−m2 − 4m

)
θ + (m+ 2) θ2

(−2m+ θ(m+ 1)) (m+ 1)m2 (m+ 2)
(2.35)

for any θ ∈ R and θ 6= m, 2m
m+1 .

Proof. The proof method is similar to the Theorem 2.1’s, it’s easy
so omit.

Theorem 2.3. Let α ∈ I be a multiple root of multiplicity m of suf-
ficiently differentiable function f : I −→ R for an open interval I and
H3(t) be a real-valued function as follows

H3(t) = 1 +
a3t

1 + b3t
. (2.36)

If x0 is sufficiently close to α, then the method defined by (2.5) has
third-order convergence, when

a3 =
θ (m− 1)

(
m−θ
m

)−m (
m2θ − 2m2 + 2m− θ

)
m3

, (2.37)

b3 = −
(
m−θ
m

)−m (
m3 +m2θ − θ2m2 − 2 θm+ θ2

)
m3

(2.38)

and satisfy the error equation

en+1 = [χ3(m, θ)A
2
1 + ψ3(m, θ)A2]e

3
n +O(e4n), (2.39)

where en = xn − α and A1, A2 are defined in (2.4) and

χ3(m, θ) =
1

2

η(m, θ)

(m+ 1)2 (m− θ)m3 (θm2 − 2m2 + 2m− θ)
, (2.40)

ψ3(m, θ) =
2m2 +

(
−m2 − 4m

)
θ + (m+ 2) θ2

(−2m+ θ(m+ 1)) (m+ 1)m2 (m+ 2)
(2.41)
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η(m, θ) = −2m5 + 6m3 +
(
m5 −m3 − 14m2 + 6m4

)
θ

+
(
−8m3 − 2m4 + 4m2 + 10m

)
θ2 +

(
2m3 + 2m2 − 2m− 2

)
θ3

(2.42)

for any θ ∈ R and θ 6= m, 2m
m+1 .

Proof. The proof is similar to that of Theorem 2.1’s, so it’s omitted.

2.2. New fourth-order schemes free of second derivatives. Now
we consider the following iteration functions{

yn = φ2(xn, θ),

xn+1 = xn −H(ξn) f(xn)f ′(xn)
,

(2.43)

We can state the following convergence theorems for the two-step method
defined by (2.43).

Theorem 2.4. Let α ∈ I be a multiple root of multiplicity m of suf-
ficiently differentiable function f : I −→ R for an open interval I and
H4(t) be a real-valued function as follows

H4(t) = a4 + b4t+ c4
t2

2
. (2.44)

If x0 is sufficiently close to α, then the method defined by (2.43) has
fourth-order convergence, when

θ =
2m

m+ 2
(2.45)

a4 =
1

8
m
(
m3 + 6m2 + 8m+ 8

)
, (2.46)

b4 = −1

4
m3 (m+ 3)

(
m

m+ 2

)−m
, (2.47)

c4 =
1

4
m4

(
m

m+ 2

)−2m
(2.48)

and satisfy the error equation

en+1 = K4e
4
n +O(e5n), (2.49)

where en = xn − α and the error constant K4 is given by

K4 =
1

3

m4 + 2m3 + 2m2 − 2m+ 12

(m+ 1)3m5
A3

1 −
A1A2

m (m+ 2) (m+ 1)2

+
mA3

(m+ 3) (m+ 2)3 (m+ 1)
. (2.50)
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Proof. From (2.15) and (2.43) we have

ẽn = en − θ
f(xn)

f ′(xn)
= p0en + p1e

2
n + p2e

3
n + p3e

4
n +O(e5n), (2.51)

where

p0 = µ, (2.52)

p1 = −θ(C1 −D1)

m
, (2.53)

p2 = −θ(C2 −D2 +D2
1 − C1D1)

m
, (2.54)

p3 = −θ(C3 −D3 + (D1 − C1)D2

m

− θ(D2 − C2 + C1D1 −D2
1)D1)

m
. (2.55)

and

f ′(yn) =
f (m)(α)

(m− 1)!
ẽm−1n [1 +D1ẽn +D2ẽ

2
n +D3ẽ

3
n +D4ẽ

4
n +O(ẽ5n)], (2.56)

By substituting (2.51) into (2.56) , we can get

f ′(yn) =
f (m)(α)

(m− 1)!
em−1n ∆[1 +D1ẽn +D2ẽ

2
n +D3ẽ

3
n +D4ẽ

4
n +O(ẽ5n)], (2.57)

where

∆ = (p0 + p1e
1
n + p2e

2
n + p3e

3
n +O(e4n))m−1

= pm−10 + (m− 1)pm−20 p1en + {
(
m− 1

2

)
p21p

m−3
0

+ (m− 1)p2p
m−2
0 }e2n + {2

(
m− 1

2

)
p1p2p

m−3
0 + (m− 1)p3p

m−2
0

+

(
m− 1

3

)
p31p

m−4
0 }e3n +O(e4n). (2.58)

Now from (2.15), (2.20), (2.43) and (2.44) we have

en+1 = en −H4(ξn)
f(xn)

f ′(xn)
= K1en +K2e

2
n +K3e

3
n +K4e

4
n +O(e5n), (2.59)

where

K1 = − 1

2m

(
2a4 + 2b4µ

m−1 + c4µ
2m−2 − 2m

)
, (2.60)
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K2 = { 1

(m+ 1)m2
a4 +

µm−1θm+ µm−1θ − µm−2θm+ µm−2θ + µm−1m

(m+ 1)m3
b4

+
1

2

2µ2m−2θm+ 2µ2m−2θ − 2µ2m−3θm+ 2µ2m−3θ + µ2m−2m

(m+ 1)m3
c4}A1

(2.61)

Before we list K3, we choose a4 and b4 to annihilate the coefficients K1

and K2, so we have

a4 = − 1

2 (µ−m+mµ+ 1) θ
{θ
(
(m− 1)µ2m−2 − (m+ 1)µ2m−1

)
c4

+ (−2µm2 +
(
2m2 − 2µm2 − 2m− 2mµ

)
θ} (2.62)

b4 = − 1

(µ−m+mµ+ 1) θ
{m2µ2−m + (θ((m+ 1)µm + (1−m)µm−1)c4}. (2.63)

By substituting (2.62) and (2.63) into K3, we get

K3 =
ϕ1(θ,m, c4)

2 (m+ 1)2m5µ (−m+ µ+mµ+ 1)
A2

1

+
ϕ2(θ,m)

m2 (m+ 1) (m+ 2) (−m+ µ+mµ+ 1)
A2, (2.64)

ϕ1(θ,m, c4) = −θ
2 (µm)2 (µ+ 1 +mµ−m)3

µ3
c4

+m2
(
2µ θ − 2µm2θ + 2mµ− 2µm2 + 4µ2m2

+ 4µ2m+m2θ − 3mθ + 2 θ (2.65)

ϕ2(θ,m) = µ (−2m+ θm+ 2 θ) . (2.66)

Now we choose θ and c4 to annihilate the coefficients ϕ1(θ,m, c4) and
ϕ2(θ,m) in K3, so we can get

θ =
2m

m+ 2
(2.67)

and

c4 =
1

4
m4

(
m

m+ 2

)−2m
(2.68)

By substituting (2.67) and (2.68) into (??) and (2.63), we get

a4 =
1

8
m
(
m3 + 6m2 + 8m+ 8

)
(2.69)

b4 = −1

4
m3 (3 +m)

(
m

m+ 2

)−m
(2.70)
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Substituting (2.67)-(2.70) into (2.59), we can get the error equation

en+1 = K4e
4
n +O(e5n), (2.71)

where

K4 =
1

3

m4 + 2m3 + 2m2 − 2m+ 12

(m+ 1)3m5
A3

1 −
A1A2

m (m+ 2) (m+ 1)2

+
mA3

(m+ 3) (m+ 2)3 (m+ 1)
. (2.72)

which indicates that the order of convergence of the methods defined by
(2.43) is at least four. This completes the proof.

Theorem 2.5. Let α ∈ I be a multiple root of multiplicity m of suf-
ficiently differentiable function f : I −→ R for an open interval I and
H5(t) be a real-valued function as follows

H5(t) =
1

a5 + b5t+ c5t2
. (2.73)

If x0 is sufficiently close to α, then the method defined by (2.43) has
fourth-order convergence, when

θ =
2m

m+ 2
(2.74)

a5 =
1

16

m4 + 2m3 − 8m2 − 16m+ 16

m
, (2.75)

b5 = −1

8

(
m

m+ 2

)−m
m
(
m2 − 6

)
, (2.76)

c5 =
1

16
m2 (m− 2)

(
m

m+ 2

)−2m
(2.77)

and satisfy the error equation

en+1 = K4e
4
n +O(e5n), (2.78)

where en = xn − α and the error constant K4 is given by

K4 =
1

3

m4 + 2m3 + 5m2 − 14m+ 12

(m+ 1)3m5
A3

1 −
A1A2

m (m+ 2) (m+ 1)2

+
mA3

(m+ 3) (m+ 2)3 (m+ 1)
. (2.79)

Proof. The proof is similar to that of Theorem 2.4’s, so it’s omitted.

Theorem 2.6. Let α ∈ I be a multiple root of multiplicity m of suf-
ficiently differentiable function f : I −→ R for an open interval I and
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H6(t) be a real-valued function as follows

H6(t) =
a6 + b6t

1 + c6t
. (2.80)

If x0 is sufficiently close to α, then the method defined by (2.43) has
fourth-order convergence, when

θ =
2m

m+ 2
(2.81)

a6 = −1

2
m2, (2.82)

b6 =
1

2
m

(
m

m+ 2

)−m
(m− 2) , (2.83)

c6 = −
(

m

m+ 2

)−m
(2.84)

and satisfy the error equation

en+1 = K4e
4
n +O(e5n), (2.85)

where en = xn − α and the error constant K4 is given by

K4 =
1

3

m3 + 2m2 + 2m− 2

(m+ 1)3m4
A3

1 −
A1A2

m (m+ 2) (m+ 1)2

+
mA3

(m+ 3) (m+ 2)3 (m+ 1)
. (2.86)

Proof. The proof is similar to that of Theorem 2.4’s, so it’s omitted.

Theorem 2.7. Let α ∈ I be a multiple root of multiplicity m of suf-
ficiently differentiable function f : I −→ R for an open interval I and
H7(t) be a real-valued function as follows

H7(t) =
a7 + t+ b7t

2

c7 + t
. (2.87)
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If x0 is sufficiently close to α, then the method defined by (2.43) has
fourth-order convergence, when

θ =
2m

m+ 2
(2.88)

a7 =
1

4

(
m5 + 2m4 + 2m3 − 4m2 − 16

) (
m
m+2

)m
m2 (m+ 3)

, (2.89)

b7 = − 1

4

(
m
m+2

)−m
m
(
m2 − 2m+ 2

)
m+ 3

(2.90)

c7 = −

(
m
m+2

)m (
m4 + 3m3 + 2m2 − 4m+ 4

)
m3 (m+ 3)

(2.91)

and satisfy the error equation

en+1 = K4e
4
n +O(e5n), (2.92)

where en = xn − α and the error constant K4 is given by

K4 =
1

3

m7 + 4m6 + 8m5 + 4m4 − 4m3 − 20m2 + 28m− 24

(m+ 1)3m5 (2m+m3 + 2m2 − 2)
A3

1

− A1A2

m (m+ 2) (m+ 1)2
+

mA3

(m+ 3) (m+ 2)3 (m+ 1)
.

(2.93)

Proof. The proof is similar to that of Theorem 2.4’s, so it’s omitted.

Remark 2.8. From Theorem (2.6) we can see the method defined by
(2.43) with H6(t) is the equivalent to the method (1.11).

Remark 2.9. Any method of the family (2.43) uses three evaluations per
iteration, and has fourth-order convergence with conditions of Theorem
2.4-2.7, which accord with the conjecture of Kung-Traub that a multi-
point iteration without memory based on n evaluations achieves optimal
convergence order 2n−1 for n = 3.

Remark 2.10. Per iteration the presented method requires one evaluation
of the function, two of its first derivative. We consider the definition of

efficiency index [24] as p
1
w , where p is the order of the method and

w is the number of function evaluations per iteration required by the
method. If we assume that all the evaluations have the same cost as
function one, we have that the presented method has the efficiency index
I = 3

√
4 ' 1.587, which is better than I = 2

√
2 ' 1.414 of Newtons

method, I = 3
√

3 ' 1.442 of third-order methods (1.2), (1.3), (1.4), (1.5)
and (1.6) and I = 4

√
4 ' 1.414 of the fourth-order methods proposed in

[9, 13, 18].
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3. Numerical Examples

In this section, some numerical test of some various multiple-root-
finding methods as well as our new methods and Newton’s method are
presented. All computations were done using the MAPLE 13 with 128
digit floating point arithmetics(Digits: = 128).We use the following func-
tions, which have also been considered in [2, 4, 17].

f1(x) = (x3+4x2−10)3, m = 3, x∗ = 1.3652300134140968457608068290,

f2(x) = (sin2 x−x2+1)2, m = 2, x∗ = 1.4044916482153412260350868178,

f3(x) = (x2−ex−3x+2)5, m = 5, x∗ = 0.25753028543986076045536730494,

f4(x) = (cosx−x)3, m = 3, x∗ = 0.73908513321516064165531208767,

f5(x) = (xex
2−sin2 x+3 cosx+5)4, m = 4,

x∗ = −1.2076478271309189270094167584,

f6(x) = (sinx−x
2

)2, m = 2, x∗ = 1.8954942670339809471440357381,

We present some numerical test results for various cubically conver-
gent iterative schemes in Table 1. Compared were the Newton method
(1.1)(NM), the method of Halley-like method (1.3) (HM),Osada’s method
(1.4) (OM), Euler-Chebyshev method (1.2) (ECM), Dong’s method (1.6)
(DM) and the methods (2.5) with H1(t) and θ = −1 (PM1), (2.5) with
H2(t) and θ = −1 (PM2) and (2.5) with H2(t) and θ = −1 (PM3),
respectively, introduced in the present contribution.
Table 1 shows the number of iterations (IT) required such that |f(xn)| <

10−32, the number of function evaluations(NFE) and the values of |f(xn)|.
The test results in Table 1 show that for most of the functions we tested,
the methods introduced in the present presentation have at least equal
performance compared to the other third-order methods, and can also
compete with Newtons method.
We also present some numerical test results for various quartically con-
vergent iterative schemes in Table 2. Compared were Newton’s method
(1.1)(NM), Neta method (1.7) (NEM)(with b = 0), Li et al’s method
(1.12)(LM), Heydari et al’s method (1.13) and (1.14) (HEM1), Heydari
et al’s method (1.13) and (1.15) (HEM2) and the methods (2.43) with
H4(t) (PM4), (2.43) with H5(t) (PM5), (2.43) with H6(t) (PM6) and
(2.43) with H7(t) (PM7), respectively, introduced in the present contri-
bution. We used the same test functions as in the test for the above
cubically convergent methods.
Table 2 shows the number of iterations required such that |f(xn)| <
10−64 and the number of function evaluations (NFEs) after required it-
erations in parentheses.
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Table 1. Comparison of various third-order convergent
iterative methods and Newton’s method (’div’ means di-
vergent)

IT NFE |f(xn)| IT NFE |f(xn)|
f1(x), x0 = −0.4 f1(x), x0 = 3.0

NM 167 334 6.86e-63 6 12 6.11e-56
HM 92 276 5.87e-92 4 12 1.08e-81
OM 11 33 2.43e-38 4 12 1.30e-46
ECM 7 21 5.81e-97 4 12 1.79e-57
DM 28 84 1.40e-98 4 12 1.28e-84
PM1 4 12 1.36e-46 4 12 3.43e-48
PM2 24 72 6.21e-46 4 12 4.86e-61
PM3 10 30 1.68e-52 4 12 1.37e-55

f2(x), x0 = 1.2 f2(x), x0 = 2.0

NM 5 10 6.61e-47 6 12 5.12e-64
HM 3 9 1.49e-42 4 12 7.43e-77
OM 4 12 5.78e-46 4 12 3.54e-51
ECM 4 12 4.55e-92 4 12 1.53e-63
DM 3 9 1.08e-45 4 12 5.54e-85
PM1 3 9 1.21e-33 4 12 1.13e-58
PM2 3 9 3.36e-50 4 12 4.33e-69
PM3 3 9 1.38e-45 4 12 9.94e-67

f3(x), x0 = −1.0 f3(x), x0 = 2.5

NM 4 8 1.19e-59 5 10 1.12e-71
HM 2 6 5.24e-35 3 9 3.44e-50
OM 3 9 2.18e-85 4 12 5.59e-101
ECM 3 9 4.89e-89 3 9 9.27e-35
DM 2 6 2.32e-35 3 9 1.33e-59
PM1 3 9 5.28e-88 3 9 8.77e-41
PM2 3 9 2.81e-86 3 9 1.18e-62
PM3 3 9 2.99e-90 3 9 7.41e-81

f4(x), x0 = 0.2 f4(x), x0 = 2.5

NM 5 10 1.59e-76 5 10 2.79e-51
HM 3 9 1.85e-54 4 12 3.17e-71
OM 4 12 9.41e-97 div
ECM 3 9 7.67e-42 4 12 2.25e-48
DM 3 9 1.41e-59 4 12 6.86e-90
PM1 3 9 1.93e-39 4 12 1.90e-40
PM2 3 9 4.01e-51 4 12 4.37e-62
PM3 3 9 1.02e-46 4 12 6.05e-55

f5(x), x0 = −2.0 f5(x), x0 = −0.5

NM 7 14 5.61e-37 9 18 4.62e-53
HM 4 12 1.61e-61 3 9 3.50e-46
OM 5 15 5.10e-45 div
ECM 5 15 3.21e-64 div
DM 4 12 2.45e-52 3 9 1.50e-40
PM1 5 15 1.99e-84 div
PM2 4 12 1.58e-86 3 9 1.95e-36
PM3 4 12 2.45e-74 3 9 1.81e-61

f6(x), x0 = 1.6 f6(x), x0 = 2.5

NM 5 10 1.26e-43 5 10 1.70e-40
HM 3 9 1.12e-35 4 12 4.51e-88
OM 7 21 6.41e-84 4 12 4.41e-66
ECM 4 12 3.18e-72 4 12 1.61e-77
DM 3 9 6.79e-41 3 9 2.46e-33
PM1 4 12 3.42e-76 4 12 8.66e-68
PM2 3 9 6.56e-38 4 12 4.17e-74
PM3 3 9 2.92e-35 4 12 8.04e-73
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Table 2. The number of iterations and NFEs.

f(x) x0 NM NEM HEM1 HEM2 LM PM4 PM5 PM6 PM7

f1 x0 = 1.0 6(12) 4(16) 3(12) 3(12) 3(9) 3(9) 3(9) 3(9) 3(9)
x0 = 3.0 7(14) 4(16) 4(16) 4(16) 4(12) 4(12) 4(12) 4(12) 4(12)

f2 x0 = 1.2 6(12) 4(16) 3(12) 3(12) 3(9) 3(9) 3(9) 3(9) 3(9)
x0 = 3.5 7(14) 4(16) 4(16) 4(16) 4(12) 4(12) 4(12) 4(12) 4(12)

f3 x0 = −1.0 5(10) 3(12) 3(12) 2(8) 2(6) 2(6) 3(9) 2(6) 2(6)
x0 = 4.5 7(14) 4(16) 4(16) 4(16) 4(12) 4(12) 4(12) 4(12) 4(12)

f4 x0 = 1.7 5(10) 3(12) 3(12) 3(12) 3(9) 3(9) 3(9) 3(9) 3(9)
x0 = 2.5 6(12) 23(92) 4(16) 3(12) 4(12) 4(12) 4(12) 4(12) 4(12)

f5 x0 = −3.5 17(34) 10(40) 10(40) 9(36) 9(27) 9(27) 10(30) 9(27) 9(27)
x0 = −2.5 11(22) 6(24) 6(24) 6(24) 6(18) 6(18) 6(18) 6(18) 6(18)

f6 x0 = 1.7 6(12) 3(12) 3(12) 3(12) 3(9) 3(9) 3(9) 3(9) 3(9)
x0 = 2.0 5(10) 3(12) 3(12) 3(12) 3(9) 3(9) 3(9) 3(9) 3(9)

The results presented in Table 2 show that for the considered test func-
tions and considered initial guesses the proposed fourth-order methods
converge more rapidly than Newton’s method and require the less num-
ber of function evaluations, so that they can compete with Newton’s
method. Furthermore, for most of the functions we tested, the new
methods have at least equal performance when compared to the other
well-known classical methods of the same order.

4. Conclusion

In this work, we have suggested two new family of third-order and
fourth-order methods for finding multiple roots of nonlinear equations.
The presented methods are compared in their performance with var-
ious cubically and quartically convergent iteration methods, and it is
observed that they have at least equal performance. The result pre-
sented in this work can be continuously applied to developing the other
cubically and quartically convergent iterative schemes.
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