Caspian Journal of Mathematical Sciences (CJMS) University of Mazandaran, Iran http://cjms.journals.umz.ac.ir ISSN: 2676-7260

CJMS. **12**(2)(2023), 287-302

(RESEARCH PAPER)

Weak solvability via Lagrange multipliers for Frictional antiplane contact problems of p(x)-Kirchhoff type

Eugenio Cabanillas Lapa¹ ¹ Instituto de Investigación, Facultad de Ciencias Matemáticas-UNMSM,Lima-Perú cleugenio@yahoo.com

ABSTRACT. This paper is concerned with the existence and uniqueness of solutions for a class of frictional antiplane contact problems of p(x)-Kirchhoff type on a bounded domain $\Omega \subseteq \mathbb{R}^2$. Using an abstract Lagrange multiplier technique and the Schauder fixed point theorem we establish the existence of weak solutions. Imposing some suitable monotonicity conditions on the datum f_1 the uniqueness of the solution is obtained.

Keywords: frictional antiplane contact problems; p(x)-Kirchhoff equation; Schauder fixed point theorem; uniqueness

2000 Mathematics subject classification: 35J20, 35J60

¹Corresponding author: cleugenio@yahoo.com Received: 30 October 2022 Revised: 30 October 2022 Accepted: 07 January 2023

1. INTRODUCTION

In this work, we are concerned with the following Kirchhoff type problem

$$-M(L(u))\operatorname{div}(a(|\nabla u|^{p(x)})|\nabla u|^{p(x)}\nabla u) = f_1(x,u) \quad \text{in} \quad \Omega$$

$$u = 0 \quad \text{on} \ \Gamma_1$$

$$M(L(u))a(|\nabla u|^{p(x)})|\nabla u|^{p(x)}\nabla u.\nu = f_2(x) \quad \text{on} \ \ \Gamma_2$$

$$|M(L(u))a(|\nabla u|^{p(x)})|\nabla u|^{p(x)}\nabla u.\nu| \le g(x),$$

$$M(L(u))a(|\nabla u|^{p(x)})|\nabla u|^{p(x)}\nabla u.\nu = -g\frac{u}{|u|}, \quad \text{if} \ \ u \ne 0 \quad \text{on} \ \ \Gamma_3$$

$$(1.1)$$

where $\Omega \subseteq \mathbb{R}^2$ is a bounded domain with smooth enough boundary Γ , partitioned in three parts $\Gamma_1, \Gamma_2, \Gamma_3$ such that meas $(\Gamma_i) > 0$, (i = 1, 2, 3); $f_1 : \Omega \times \mathbb{R} \to \mathbb{R}$, $f_2 : \Gamma_2 \to \mathbb{R}$, $g : \Gamma_3 \to \mathbb{R}$, $M : [0, +\infty[\to [m_0, +\infty[\text{ and } a : \mathbb{R}^+_0 \to \mathbb{R}^+_0 \text{ are given functions, } p \in C(\overline{\Omega}) \text{ and } L(u) = \int_{\Omega} \frac{1}{p(x)} |\nabla u|^{p(x)} dx$, with $A(t) = \int_0^t a(\tau) d\tau$.

The study of the p(x)-Kirchhoff type equations with nonlinear boundary conditions of different class have been a very interesting topic in the recent years. Let us just quote[1, 8, 16, 24] and references therein. One reason of such interest is due to their frequent appearance in applications such as the modeling of electrorheological fluids [20], image restoration [9], elastic mechanics [25] and continuum mechanics [3]. The other reason is that the nonlocal problems with variable exponent, in addition to their contributions to the modelization of many physical and biological phenomena, are very interesting from a purely mathematical point of view as well; we refer the reader to [2, 18, 22]. Cojocaru-Matei [6] studied the unique solvability of problem (1.1) in the case $M(s) = 1 = a(s), f_1(x, u) \equiv f_1(x), p = \text{constant} \geq 2$, which models the antiplane shear deformation of a nonlinearly elastic cylindrical body in frictional contact on Γ_3 with a rigid foundation; see, e.g. [21]. They used a technique involving dual Lagrange multipliers, which allows to write efficient algorithms to approximate the weak solutions; see [17]. For this situation, the behavior of the material is described by the Hencky-type constitutive law:

$$\boldsymbol{\sigma}(\boldsymbol{x}) = ktr \boldsymbol{\varepsilon}(\boldsymbol{u}(\boldsymbol{x})) \boldsymbol{I}_{3} + \boldsymbol{\mu}(\boldsymbol{x}) \| \boldsymbol{\varepsilon}^{\boldsymbol{D}}(\boldsymbol{u}(\boldsymbol{x})) \|^{\frac{p(\boldsymbol{x})-2}{2}} \boldsymbol{\varepsilon}^{\boldsymbol{D}}(\boldsymbol{u}(\boldsymbol{x}))$$

where σ is the Cauchy stress tensor, tr is the trace of a Cartesian tensor of second order, $\sigma(x) \in$ is the infinitesimal strain tensor, u is the

displacement vector, I_3 is the identity tensor, k, μ are material parameters, p is a given function; ε^{D} is the *desviator* of the tensor ε defined by $\varepsilon^{D} = \varepsilon - \frac{1}{3}(tr\varepsilon)I_3$ where $tr\varepsilon = \sum_{i=1}^{3} \varepsilon_{ii}$; see for instance [15].

Inspired by the above works, we study the existence of weak solutions for problem (1.1), under appropriate assumptions on M and f_1 , via Lagrange multipliers and the Schauder fixed point theorem. In this sense, we extend and generalize the result the main result in [6]. Also, we state a simple uniqueness result under suitable monotonicity condition on f_1 .

The paper is designed as follows. In Section 2, we introduce the mathematical preliminaries and give several important properties of p(x)-Laplacian-like operator. We deliver a weak variational formulation with Lagrange multipliers in a dual space. Section 3, is devoted to the proofs of main results.

2. Preliminaries

For the reader's convenience, we point out some basic results on the theory of Lebesgue-Sobolev spaces with variable exponent. In this context we refer the reader to [11, 20] for details. Firstly we state some basic properties of spaces $W^{1,p(x)}(\Omega)$ which will be used later. Denote by $\mathbf{S}(\Omega)$ the set of all measurable real functions defined on Ω . Two functions in $\mathbf{S}(\Omega)$ are considered as the same element of $\mathbf{S}(\Omega)$ when they are equal almost everywhere. Write

$$C_{+}(\overline{\Omega}) = \{h : h \in C(\overline{\Omega}), h(x) > 1 \text{ for any } x \in \overline{\Omega}\},\$$
$$h^{-} := \min_{\overline{\Omega}} h(x), \quad h^{+} := \max_{\overline{\Omega}} h(x) \text{ for every } h \in C_{+}(\overline{\Omega}).$$

Define

$$L^{p(x)}(\Omega) = \{ u \in \mathbf{S}(\Omega) : \int_{\Omega} |u(x)|^{p(x)} \, dx < +\infty \text{ for } p \in C_{+}(\overline{\Omega}) \}$$

with the norm

$$|u|_{L^{p(x)}(\Omega)} = |u|_{p(x)} = \inf\{\lambda > 0 : \int_{\Omega} |\frac{u(x)}{\lambda}|^{p(x)} \, dx \le 1\},$$

and

$$W^{1,p(x)}(\Omega) = \{ u \in L^{p(x)}(\Omega) : |\nabla u| \in L^{p(x)}(\Omega) \}$$

with the norm

$$||u||_{1,p(x)} = |u|_{L^{p(x)}(\Omega)} + |\nabla u|_{L^{p(x)}(\Omega)}.$$

Proposition 2.1 ([14]). The spaces $L^{p(x)}(\Omega)$ and $W^{1,p(x)}(\Omega)$ are separable reflexive Banach spaces.

E. Cabanillas L.

Proposition 2.2 ([14]). Set $\rho(u) = \int_{\Omega} |u(x)|^{p(x)} dx$. For any $u \in L^{p(x)}(\Omega)$, then

- (1) for $u \neq 0$, $|u|_{p(x)} = \lambda$ if and only if $\rho(\frac{u}{\lambda}) = 1$;
- (2) $|u|_{p(x)} < 1 \ (=1; > 1)$ if and only if $\rho(u) < 1 \ (=1; > 1)$;
- (3) if $|u|_{p(x)} > 1$, then $|u|_{p(x)}^{p^-} \le \rho(u) \le |u|_{p(x)}^{p^+}$;
- (4) if $|u|_{p(x)} < 1$, then $|u|_{p(x)}^{p^+} \le \rho(u) \le |u|_{p(x)}^{p^-}$;
- (5) $\lim_{k \to +\infty} |u_k|_{p(x)} = 0$ if and only if $\lim_{k \to +\infty} \rho(u_k) = 0$;
- (6) $\lim_{k \to +\infty} |u_k|_{p(x)} = +\infty$ if and only if $\lim_{k \to +\infty} \rho(u_k) = +\infty$.

Proposition 2.3 ([12, 14]). If $q \in C_+(\overline{\Omega})$ and $q(x) \leq p^*(x)$ ($q(x) < p^*(x)$) for $x \in \overline{\Omega}$, then there is a continuous (compact) embedding $W^{1,p(x)}(\Omega) \hookrightarrow L^{q(x)}(\Omega)$, where

$$p^*(x) = \begin{cases} \frac{Np(x)}{N-p(x)} & \text{if } p(x) < N, \\ +\infty & \text{if } p(x) \ge N. \end{cases}$$

Proposition 2.4 ([14]). The conjugate space of $L^{p(x)}(\Omega)$ is $L^{q(x)}(\Omega)$, where $\frac{1}{q(x)} + \frac{1}{p(x)} = 1$ holds a.e. in Ω . For any $u \in L^{p(x)}(\Omega)$ and $v \in L^{q(x)}(\Omega)$, we have the following Hölder-type inequality

$$\left|\int_{\Omega} uv \, dx\right| \le \left(\frac{1}{p^{-}} + \frac{1}{q^{-}}\right) |u|_{p(x)} |v|_{q(x)}.$$

We introduce the following closed space of $W^{1,p(x)}(\Omega)$

$$X = \{ v \in W^{1,p(x)}(\Omega) : \gamma u = 0 \text{ a. e. on } \Gamma_1 \}$$
 (2.1)

where γ denotes the Sobolev trace operator and $\Gamma_1 \subseteq \Gamma$, meas $(\Gamma_1) > 0$, therefore X is a separable reflexive Banach space. Now, we denote

$$||u||_X = |\nabla u|_{p(x)}, \quad u \in X.$$

This functional represents a norm on X.

Proposition 2.5 ([4]). There exists c > 0 such that

$$||u||_{1,p(x)} \le C ||u||_X \quad for \ all \ u \in X.$$

Then, the norms $\|.\|_X$ and $\|.\|_{1,p(x)}$ are equivalent on X.

We assume that $a(x,\xi): \overline{\Omega} \times \mathbb{R}^n \to \mathbb{R}^n$ is the continuous derivative with respect to ξ of the continuous mapping $\Phi: \overline{\Omega} \times \mathbb{R}^n \to \mathbb{R}, \Phi = \Phi(x,\xi)$, i.e. $a(x,\xi) = \nabla_{\xi} \Phi(x,\xi)$. The mappings a and Φ verify the following assumptions:

- $(\Phi_1) \ \Phi(x,0) = 0$ for a.e. $x \in \Omega$.
- (Φ_2) There exists c > 0 such that the function a satisfies the growth condition $|a(x,\xi)| \leq c(1+|\xi|^{p(x)-1})$ for a.e. $x \in \overline{\Omega}$ and all $\xi \in \mathbb{R}^N$, where |.| denotes the Euclidean norm.

 (Φ_3) The monotonicity condition

$$C_3|\xi-\varsigma|^{p(x)} \le (a(x,\xi)-a(x,\varsigma)).(\xi-\varsigma)$$

holds for a.e. $x \in \overline{\Omega}$ and $\forall \xi, \varsigma \in \mathbb{R}^N$. With equality if and only if $\xi = \varsigma$

- (Φ_4) The inequalities $|\xi|^{p(x)} \leq a(x,\xi).\xi \leq p(x)A(x,\xi)$ hold for a.e. $x \in \overline{\Omega}$ and all $\xi \in \mathbb{R}^N$.
- (Φ_5) There exists $C_5 > 0$ such that for all $\xi, \varsigma \in \mathbb{R}^N$ and almost every $x \in \overline{\Omega}$

$$|a(x,\xi) - a(x,\varsigma)| \le C_5(1+|\xi|^{p(x)-2} + |\varsigma|^{p(x)-2})|\xi - \varsigma|$$

The operator L is well defined and of class $C^1(W^{1,p(x)}(\Omega),\mathbb{R})$. The Fréchet derivative operator of L in weak sense $L': X \to X'$ is

$$\langle L'u, v \rangle = \int_{\Omega} a(x, \nabla u) \cdot \nabla v \, dx, \ \forall u, v \in X.$$
(2.2)

Proposition 2.6. The functional $L : X \to \mathbb{R}$ is convex. The mapping $L' : X \to X'$ is a strictly monotone, bounded homeomorphism, and is of (S_+) type, namely

$$u_n \rightharpoonup u \text{ and } \limsup_{n \to +\infty} L'(u_n)(u_n - u) \le 0 \text{ implies } u_n \to u,$$

where X' is the dual space of X.

Proof. This result is obtained in a similar manner as the one given in [23], thus we omit the details. \Box

Now, we define the spaces

$$S = \left\{ u \in W^{\frac{1}{p'(x)}, p(x)}(\Gamma) : \exists v \in X \text{ such that } u = \gamma v \text{ a.e on } \Gamma \right\}$$
(2.3)

which is a real reflexive Banach space, $\frac{1}{p(x)} + \frac{1}{p'(x)} = 1$ for all $x \in \Omega$, and

$$Y = S'$$
, the dual of the space S. (2.4)

Let us introduce a bilinear form

$$b: X \times Y \longrightarrow \mathbb{R} \quad : b(v,\mu) = \langle \ \mu, \gamma v \ \rangle_{Y \times S}, \qquad (2.5)$$

a Lagrange multiplier $\lambda \in Y$,

$$\langle \lambda, z \rangle = -\int_{\Gamma_3} M(L(u)) a(x, \nabla u) . \nu z \, d\Gamma \quad , \quad \forall z \in S$$

and the set of Lagrange multipliers

$$\Lambda = \Big\{ u \in Y : \langle \mu, z \rangle \leqslant \int_{\Gamma_3} g(x) |z(x)| \quad , \quad \forall z \in S \Big\}.$$
 (2.6)

From $(1.1)_4$ we deduce that $\lambda \in \Lambda$.

Let u be a regular enough function satisfying problem (1.1). After some computations we get (by using density results)

$$M(L(u)) \int_{\Omega} a(x, \nabla u) \cdot \nabla v \, dx = \int_{\Omega} f_1(x, u) v \, dx$$
$$+ \int_{\Gamma_2} f_2(x) \gamma v \, d\Gamma + M(L(u)) \int_{\Gamma_3} a(x, \nabla u) \gamma v \, d\Gamma$$
(2.7)

for all $v \in X$, where u satisfies $(1.1)_5$ on Γ_3

Now, we write problem (2.7) as an abstract mixed variational problem (by means a Lagrange multipliers technique)

We define the following operators:

i) $A: X \to X'$, given by

$$\langle Au, v \rangle = M (L(u)) \int_{\Omega} a(x, \nabla u) \cdot \nabla v \, dx, \ u, v \in X.$$

$$ii) \ F : X \to X', \text{given by}$$

$$\langle F(u), v \rangle = \int_{\Omega} f_1(x, u) v \, dx + \int_{\Gamma_2} f_2(x) \gamma v \, dx \quad , \quad u, v \in X.$$

$$(2.8)$$

So, we are led to the following variational formulation of problem (1.1) **Problem 1.** Find $u \in X$ and $\lambda \in \Lambda$ such that

$$\langle Au, v \rangle + b(v, \lambda) = \langle F(u), v \rangle , \quad \forall v \in X$$
 (2.9)
 $b(u, \mu - \lambda) \leq 0 \quad \forall \mu \in \Lambda \subseteq Y$

To solve this problem, we will apply the Schauder fixed point theorem.

Firstly, we "freeze" the state variable u on the function F, that is we fix $w \in X$ such that $f = F(w) \in X'$.

Hence, we arrive at the following abstract mixed variational problem. **Problem 2.** Given $f \in X'$ find $u \in X$ and $\lambda \in \Lambda$ such that

$$\langle Au, v \rangle + b(v, \lambda) = \langle f, v \rangle , \quad \forall v \in X$$

 $b(u, \mu - \lambda) \leq 0 \quad \forall \mu \in \Lambda \subseteq Y.$ (2.10)

The unique solvability of Problem 2 is given under the following generalized assumptions.

Let $(X, |||_X)$ and $(Y, |||_Y)$ be two real reflexive Banach space.

- $(B_1): A: X \to X'$ is hemicontinuous;
- $\begin{array}{l} (B_2): \ \exists h: X \to \mathbb{R} \text{ such that} \\ \textbf{(a)} \ h(tw) = t^{\gamma}h(w) \text{ with } \gamma > 1 \ , \ \forall t > 0, w \in X; \\ \textbf{(b)} \ \langle \ Au Av, u v \ \rangle_{X \times X} \ge h(v u), \ \forall u, v \in X; \\ \textbf{(c)} \ \forall (x_{\nu}) \subseteq X: x_{\nu} \rightharpoonup x \ \text{in}X \Longrightarrow h(x) \le \lim_{\nu \to \infty} \sup h(x_{\nu}) \end{array}$

(B₃): A is coercive. (B₄): The form $b: X \times Y$ es bilinear, and (i) $\forall (u_{\nu}) \subseteq X: u_{\nu} \rightarrow u$ in $X \Longrightarrow b(u_{\nu}, \lambda_{\nu}) \rightarrow b(u, \lambda)$ (ii) $\forall (\lambda_{\nu}) \subseteq Y: \lambda_{\nu} \rightarrow y$ in $Y \Longrightarrow b(v_{\nu}, \lambda_{\nu}) \rightarrow b(v, \lambda)$ (iii) $\exists \hat{\alpha} > 0: \inf_{\substack{\mu \in I \\ u \neq 0}} \sup_{\substack{v \in X \\ v \neq 0}} \frac{b(v, \mu)}{|v|_X |\mu|_Y} \ge \hat{\alpha}$

(B₅): Λ is a bounded closed convex subset of Y such that $0_Y \in \Lambda$. (B₆): $\exists C_1 > 0, q > 0 : h(v) \ge C_1 ||v||_X^q$, $\forall v \in X$.

Theorem 2.7. Assume $(B_1) - (B_6)$. Then there exists a unique solution $(u, \lambda) \in X \times \Lambda$ of Problem 2.

Proof. See [6].

To solve Problem 1, we start by stating the following assumptions on M , f_1 , f_2 and g

- (A₁) $M : [0, +\infty[\rightarrow [m_0, +\infty[$ is a locally Lipschitz-continuous and nondecreasing function; $m_0 > 0$.
- (A_2) $f_1: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Caratheodory function satisfying

$$|f_1(x,t)| \le c_1 + c_2 |t|^{\alpha(x)-1} , \ \forall (x,t) \in \Omega \times \mathbb{R},$$

$$\alpha \in C_+(\overline{\Omega})$$
 with $\alpha(x) < p^*(x), \ \alpha^+ < p^-.$

(A₃) $f_2 \in L^{p'(x)}(\Gamma_2), g \in L^{p'(x)}(\Gamma_3), g(x) \ge 0$ a.e on Γ_3 .

We have the following properties about the operator A.

Proposition 2.8. If (A_1) holds, then

- (i) A is locally Lipschitz continuous.
- (ii) A is bounded, strictly monotone. Furthermore

$$\langle Au - Av, u - v \rangle \ge k_p \|u - v\|_X^p$$

where

$$\hat{p} = \begin{cases} p^- & \text{if } \|u - v\|_X > 1, \\ p^+ & \text{if } \|u - v\|_X \le 1. \end{cases}$$

So, we can take $h(v) = k_p ||v||_X^{\hat{p}}$.

(iii)
$$\frac{\langle Au, u \rangle}{\|u\|_X} \to +\infty$$
 as $\|u\|_X \to +\infty$.

Proof. (i) Assume that M is Lipschitz in $[0, R_1]$ with Lipschitz constant $L_M, R_1 > 0$. We have, for $u, v, w \in B(0, R_1)$

$$\langle Au - Av, w \rangle = [M(L(u)) - M(L(v))] \int_{\Omega} a(x, \nabla u) \cdot \nabla w \, dx$$

+ $M(L(v)) \int_{\Omega} (a(x, \nabla u) - a(x, \nabla v)) \cdot \nabla w \, dx$

Using the Lipschitz continuity of M, the Holder inequality and (Φ_5) we get

$$|\langle Au - Av, w \rangle| \le C ||u - v||_X ||w||_X,$$

which implies $||Au - Av||_{X'} \le C ||u - v||_X$.

ii) The functional $S: X \to X'$ defined by

$$\langle Su, v \rangle = \int_{\Omega} a(x, \nabla u) \cdot \nabla v \, dx \qquad \forall u, v \in X,$$
 (2.11)

is bounded (See [19]). Then

$$\langle Au, v \rangle = M(L(u)) \langle Su, v \rangle \qquad \forall u, v \in X.$$
 (2.12)

Hence, since M is continuous and L is bounded (see Proposition 2.6), A is bounded.

To obtain that A is strictly monotone, we observe that L' is strictly monotone. Hence, L is strictly convex. Moreover, since M is nondecreasing, $\hat{M}(t) = \int_0^t M(\tau) d\tau$ is convex in $[0, +\infty[$. Consequently, $\forall s, t \in]0, 1[$ with s + t = 1 one has

$$\hat{M}(L(su+tv)) < \hat{M}(sL(u)+tL(v)) \le s\hat{M}(L(u))+t\hat{M}(L(v)), \forall u, v \in X, u \ne v.$$

This shows $\Psi(u) = \hat{M}(L(u))$ is strictly convex, then $\Psi'(u) = M(L(u))L'(u)$ is strictly monotone, which means that A is strictly monotone.

To establish the inequality in ii), we apply Lemma 3 in [5] to obtain

$$\begin{split} \langle Au - Av, u - v \rangle &\geq \int_{\Omega} \left[M(L(u))a(x, \nabla u) - M(L(v))a(x, \nabla u) \right] . (\nabla v - \nabla u) \, dx \\ &\geq m_0 \int_{\Omega} \frac{1}{p(x)} (|\nabla u - \nabla u|^{p(x)}) \, dx \geq \frac{m_0}{p^+} \int_{\Omega} |\nabla u - \nabla u|^{p(x)} \, dx \\ &\geq \frac{m_0}{p^+} \|u - v\|_X^{\hat{p}}. \end{split}$$

iii)For $u \in X$ with $||u||_X > 1$ we have

$$\frac{\langle Au, u \rangle}{\|u\|_X} = \frac{M(L(u)) \int_{\Omega} \left[\left(1 + \frac{|\nabla u|^{p(x)}}{\sqrt{1 + |\nabla u|^{2p(x)}}} \right) |\nabla u|^{p(x)} \right] dx}{\|u\|}$$
$$\geq m_0 \|u\|_X^{p^- - 1} \to +\infty \text{ as } \|u\|_X \to +\infty.$$

Proposition 2.9. The form $b: X \times Y \to \mathbb{R}$ defined in (2.5) is bilinear and, it verifies i), ii) and iii) in assumption (B₄). Moreover

$$b(u,\mu) \le \int_{\Gamma_3} g(x)|u(x)| \, d\Gamma \text{ for all } \mu \in \Lambda; \tag{2.13}$$

$$b(u,\lambda) = \int_{\Gamma_3} g(x)|u(x)| \, d\Gamma \tag{2.14}$$

$$b(u, \mu - \lambda) \leq 0 \quad \text{for all } \mu \in \Lambda.$$
 (2.15)

Moreover, Λ is bounded.

Proof. The assertions i), ii), iii) and Λ bounded are word for word as [6], Theorem 3, pages 138-139.

It is obvious to check (2.13). To justify (2.14), we have to show that, a.e. $x\in \Omega$

$$-M((L(u))\left(|\nabla u|^{p(x)-2} + \frac{|\nabla u|^{2p(x)-2}}{\sqrt{1+|\nabla u|^{2p(x)}}}\right)\frac{\partial u(x)}{\partial \nu}u(x) = g(x)|u(x)|^{2p(x)}u(x) = g(x)|$$

In fact, let $x \in \Omega$. If |u(x)| = 0, then

$$-M((L(u))\left(|\nabla u|^{p(x)-2} + \frac{|\nabla u|^{2p(x)-2}}{\sqrt{1+|\nabla u|^{2p(x)}}}\right)\frac{\partial u(x)}{\partial \nu}u(x) = 0 = g(x)|u(x)| \text{ on } \Gamma_3$$

Otherwise, if $|u(x)| \neq 0$, then

$$-M((L(u))\left(|\nabla u|^{p(x)-2} + \frac{|\nabla u|^{2p(x)-2}}{\sqrt{1+|\nabla u|^{2p(x)}}}\right)\frac{\partial u(x)}{\partial \nu}u(x) = g(x)\frac{(u(x))^2}{|u(x)|} = g(x)|u(x)| \text{ on } \Gamma_3$$

Furthermore, for all $\mu \in \Lambda$:

$$b(u, \mu - \lambda) = b(u, \mu) - b(u, \lambda) = \langle \mu, \gamma u \rangle_{Y \times S} - \langle \lambda, \gamma u \rangle_{Y \times S}.$$
 (2.16)

Hence, thanks to (2.13), (2.14) and (2.16), we obtain (2.15).

3. EXISTENCE AND UNIQUENESS OF SOLUTIONS

We are ready to solve problem 1. For this, we consider the Banach spaces X and Y given in (2.1) and (2.4) respectively, and the set Λ in (2.6)

Theorem 3.1. Suppose $(B_1) - (B_6)$ hold. Then problem 1 admits a solution $(u, \lambda) \in X \times \Lambda$.

Proof. We apply the Schauder fixed point theorem.

As has been said before, we "freeze" the state variable u on the function F, that is, we fix $w \in X$ and consider the problem:

Find $u \in X$ and $\lambda \in \Lambda$ such that

(

$$Au, v \rangle + b(v, \lambda) = \langle f, v \rangle , \quad \forall v \in X$$
 (3.1)

$$b(u, \mu - \lambda) \leq 0 \quad \forall \mu \in \Lambda \subseteq Y.$$
(3.2)

with $f = F(w) \in X'$. Note that by the hypotheses on α and f_1 , given in (A_2) , we have $f_1(w) \in L^{\alpha'(x)}(\Omega) \hookrightarrow X'$.

By Theorem 2.7, problem (3.1)-(3.2) has a unique solution $(u_w, \lambda_w) \in X \times \Lambda$.

Here we drop the subscript w for simplicity. Setting v = u in (3.1) and $\mu = 0_Y$ in (3.2), using proposition 2.8 ii), we get

$$k_p \|u\|_X^p \le (2C_1 C_\alpha \|w\|_X^\sigma + 2C_2 C_\alpha |\Omega| + c_p |f_2|_{p'(x), \Gamma_2}) \|u\|_X$$
(3.3)

where

$$\sigma = \begin{cases} \alpha^{-} & \text{if } \|w\|_{X} > 1, \\ \alpha^{+} & \text{if } \|w\|_{X} \le 1, \end{cases}$$

and C_{χ} is the embedding constant of $X \hookrightarrow L^{\chi(x)}(\Omega)$.

Then

$$||u||_X \le [C(1+||w||_X)]^{\frac{1}{\hat{p}-1}}$$

Therefore, either $||u||_X \leq 1$ or

$$||u||_X \le [C(1+||w||_X)]^{\frac{1}{p^{-1}}}.$$
(3.4)

Since $p^- > \alpha^+ + 1$, we have

$$t^{p^--1} - Ct^{\sigma} - C \to +\infty$$
 as $t \to +\infty$

Hence, there is some $\bar{R}_1 > 0$ such that

$$\bar{R_1}^{p^--1} - C\bar{R_1}^{\sigma} - C \ge 0 \tag{3.5}$$

From (3.4) and (3.5) we infer that if $||w||_X \leq \overline{R_1}$ then $||u||_X \leq \overline{R_1}$. Thus there exists $R_1 = \min\{1, \overline{R_1}\}$ such that

$$||u||_X \le R_1 \quad \text{for all } u \in X. \tag{3.6}$$

For this constant, define K as

$$K = \{ v : v \in L^{\alpha(x)}(\Omega), \|v\|_X \le R_1 \}$$

which is a nonempty, closed, convex subset of $L^{\alpha(x)}(\Omega)$. We can define the operator

$$T: K \to L^{\alpha(x)}(\Omega), \qquad Tw = u_w$$

where u_w is the first component of the unique pair solution of the problem (3.1)-(3.2), $(u_w, \lambda_w) \in X \times \Lambda$

From (3.6) $||Tw||_X \leq R_1$, for every $w \in K$, so that $T(K) \subseteq K$.

Moreover, if $(u_{\nu})_{\nu\geq 1}$ $(u_{w_{\nu}} \equiv u_{\nu})$ is a bounded sequence in K, then from (3.6) is also bounded in X. Consequently, from the compact embedding $X \hookrightarrow L^{\alpha(x)}(\Omega)$, $(Tw_{\nu})_{\nu\geq 1}$ is relatively compact in $L^{\alpha(x)}(\Omega)$ and hence, in K.

To prove the continuity of T , let $(w_\nu)_{\nu\geq 1}$ be a sequence in K such that

$$w_{\nu} \to w$$
 strongly in $L^{\alpha(x)}(\Omega)$ (3.7)

and suppose $u_{\nu} = Tw_{\nu}$. The sequence $\{(u_{\nu}, \lambda_{\nu})\}_{\nu \geq 1}$ satisfies

$$\langle Au_{\nu}, v \rangle + b(v, \lambda_{\nu}) = \langle F(w_{\nu}), v \rangle , \quad \forall v \in X$$

 $b(u_{\nu}, \mu - \lambda_{\nu}) \leq 0 \quad \forall \mu \in \Lambda.$

Using (3.6)-(3.7) we can extract a subsequence (u_{ν_k}) of (u_{ν}) and a subsequence (w_{ν_k}) of (w_{ν}) such that

$$u_{\nu_k} \to u^* \text{ weakly in } X,$$

$$u_{\nu_k} \to u^* \text{ strongly in } L^{\alpha(x)}(\Omega) \text{ and a.e. in } \Omega,$$

$$w_{\nu_k} \to w \quad \text{a.e. in } \Omega,$$

$$L(u_{\nu_k}) \to t_0, \text{ for some } t_0 \ge 0,$$
(3.8)

and in view of continuity of M

$$M(L(u_{\nu_k})) \to M(t_0). \tag{3.9}$$

We shall show that $u^* = Tw$. To this end, by choosing $u_{\nu_k} - u^*$ as a test function, we have

$$\langle Au_{\nu_k}, u_{\nu_k} - u^* \rangle + b(u_{\nu_k} - u^*, \lambda_{\nu}) = \langle F(w_{\nu_k}), u_{\nu_k} - u^* \rangle$$

$$\langle Au^*, u_{\nu_k} - u^* \rangle + b(u_{\nu_k} - u^*, \lambda^*) = \langle F(w), u_{\nu_k} - u^* \rangle.$$
(3.10)

Then

$$\begin{bmatrix} M(L(u^{*}) - M(L(u_{\nu_{k}})) \int_{\Omega} \left(1 + \frac{|\nabla u^{*}|^{p(x)}}{\sqrt{1 + |\nabla u^{*}|^{2p(x)}}} \right) |\nabla u^{*}|^{p(x)-2} \nabla u^{*} . (\nabla u_{\nu_{k}} - \nabla u^{*}) \, dx + \\ M(L(u_{\nu_{k}})) \int_{\Omega} \left[\left(1 + \frac{|\nabla u^{*}|^{p(x)}}{\sqrt{1 + |\nabla u^{*}|^{2p(x)}}} \right) |\nabla u^{*}|^{p(x)-2} \nabla u^{*} - \left(1 + \frac{|\nabla u_{\nu_{k}}|^{p(x)}}{\sqrt{1 + |\nabla u_{\nu_{k}}|^{2p(x)}}} \right) \right] \\ |\nabla u_{\nu_{k}}|^{p(x)-2} \nabla u_{\nu_{k}} \left[. (\nabla u_{\nu_{k}} - \nabla u^{*}) \, dx + b(u_{\nu_{k}} - u^{*}, \lambda^{*} - \lambda_{\nu_{k}}) = \langle F(w) - F(w_{\nu_{k}}), u_{\nu_{k}} - u^{*} \rangle \right] \\ (3.11)$$

Since $b(u_{\nu_k} - u^*, \lambda^* - \lambda_{\nu_k}) \ge 0$, again by the inequality of Lemma 3 in [5], $p \ge 2$, we obtain

$$m_0 C_p \int_{\Omega} |\nabla u_{\nu_k} - \nabla u^*|^{p(x)} dx + [M(L(u^*) - M(L(u_{\nu_k}))] \int_{\Omega} \left(1 + \frac{|\nabla u^*|^{p(x)}}{\sqrt{1 + |\nabla u^*|^{2p(x)}}} \right) |\nabla u^*|^{p(x) - 2} \nabla u^* . (\nabla u_{\nu_k} - \nabla u^*) dx \le |\langle F(w_{\nu_k}) - F(w), u_{\nu_k} - u^* \rangle|$$
(3.12)

But, using (3.8) we get

$$\begin{split} &|[M(L(u^*) - M(L(u_{\nu_k}))] \int_{\Omega} \left(1 + \frac{|\nabla u^*|^{p(x)}}{\sqrt{1 + |\nabla u^*|^{2p(x)}}} \right) |\nabla u^*|^{p(x) - 2} \nabla u^* . (\nabla u_{\nu_k} - \nabla u^*) \, dx| \\ &\leq \frac{\vartheta_{\nu_k}}{p^-} |\int_{\Omega} \left(1 + \frac{|\nabla u^*|^{p(x)}}{\sqrt{1 + |\nabla u^*|^{2p(x)}}} \right) |\nabla u^*|^{p(x) - 2} \nabla u^* . (\nabla u_{\nu_k} - \nabla u^*) \, dx| \to 0 \quad \text{as } k \to \infty, \end{split}$$
(3.13)

where $\vartheta_{\nu_k} = \max\{\|u_{\nu_k}\|_X^{p^-}, \|u_{\nu_k}\|_X^{p^+}\} + \max\{\|u^*\|_X^{p^-}, \|u^*\|_X^{p^+}\}\$ is bounded. Also, by (A_2) , (3.8) and the compact embedding of $X \hookrightarrow L^{\alpha(x)}(\Omega)$

Also, by (A_2) , (3.8) and the compact embedding of $X \hookrightarrow L^{\alpha(x)}(\Omega)$ we deduce, thanks to the Krasnoselki theorem, the continuity of the Nemytskii operator

$$N_{f_1} : L^{\alpha(x)}(\Omega) \to L^{\alpha'(x)}(\Omega)$$

$$w \longmapsto N_{f_1}(w),$$
(3.14)

given by $(N_{f_1}(w))(x) = f_1(x, w(x)), \quad x \in \Omega.$ Hence

$$||f_1(w_{\nu_k}) - f_1(w)||_{\alpha'(x)} \to 0$$

It follows from the definition of F and the above convergence that

$$|\langle F(w_{\nu_k}) - F(w), u_{\nu_k} - u^* \rangle| \to 0$$
(3.15)

Thus, from (3.12)-(3.15) we conclude that

$$u_{\nu_k} \to u^*$$
 strongly in X

Since the possible limit of the sequence $(u_{\nu})_{\nu \geq 1}$ is uniquely determined, the whole sequence converges toward $u^* \in X$

Therefore, from (3.7) and the continuous embedding $X \hookrightarrow L^{\alpha(x)}(\Omega)$, we get $u^* = Tw \equiv u_w$.

On the other hand

$$\frac{b(v,\lambda)}{\|v\|_{X}} = \frac{\langle F(w),v\rangle - \langle Au,v\rangle}{\|v\|_{X}} \le \frac{\langle F(w),v\rangle}{\|v\|_{X}} + \|Au\|_{X'} \\
\le \frac{1}{\|v\|_{X}} \left[\int_{\Omega} f_{1}(x,w)v \, dx + \int_{\Gamma_{2}} f_{2}(x)\gamma v \, d\Gamma \right] + L_{A} \|u\|_{X} + \|A0\|_{X'} \\
\le C(\|f_{1}(w)\|_{\alpha'(x)} + \|f_{2}\|_{p'(x),\Gamma_{2}} + \|A0\|_{X'} + 1)$$
(3.16)

Next, using the boundedness of the operator N_{f_1} and the sequence $(u_{\nu})_{\nu\geq 1}$, and the inf-sup property of the form b, we get $\|\lambda_{\nu}\|_{Y} \leq C$. It follows that up to a subsequence

$$\lambda_{\nu} \to \lambda_0$$
 weakly in Y

for some $\lambda_0 \in Y$.

So (u^*, λ^*) and (u^*, λ_0) are solutions of problem (3.1)-(3.2). Then, by the uniqueness $\lambda_0 = \lambda^* \equiv \lambda_w$. This shows the continuity of T.

To prove that T is compact, let $(w_{\nu})_{\nu \geq 1} \subseteq K$ be bounded in $L^{\alpha(x)}(\Omega)$ and $u_{\nu} = T(w_{\nu})$. Since $(w_{\nu})_{\nu \geq 1} \subseteq K$, $||w_{\nu}||_{X} \leq C$ and then, up to a subsequence again denoted by $(w_{\nu})_{\nu \geq 1}$ we have

$$w_{\nu} \to w$$
 weakly in X

By the compact embedding X into $L^{\alpha(x)}(\Omega)$, it follows that

 $w_{\nu} \to w$ strongly in $L^{\alpha(x)}(\Omega)$.

Now, following the same arguments as in the proof of the continuity of T we obtain

$$u_{\nu} = T(w_{\nu}) \to T(w) = u$$
 strongly in X

Thus

$$T(w_{\nu}) \to T(w)$$
 strongly in $L^{\alpha(x)}(\Omega)$

Hence, we can apply the Schauder fixed point theorem to obtain that T possesses a fixed point. This gives us a solution of $(u, \lambda_0) \in X \times \Lambda$ of Problem 1, which concludes the proof. \Box

Next, we consider the uniqueness of solutions of (2.9). To this end, we also need the following hypothesis on the nonlinear term f_1 .

(A4) There exists $b_0 \ge 0$ such that

$$(f(x,t) - f(x,s))(t-s) \le b_0 |t-s|^{p(x)}$$
 a.e. $x \in \Omega, \forall t, s \in \mathbb{R}$.

Our uniqueness result reads as follows.

Theorem 3.2. Assume that (A1) - (A4) hold. If, in addition $2 \le p$ for all $x \in \overline{\Omega}$, then (2.9) has a unique weak solution provided that

$$\frac{k_p}{b_0\lambda_*^{-1}} < 1,$$

where

$$\lambda_* = \inf_{u \in X \setminus \{0\}} \frac{\int_{\Omega} |\nabla u|^{p(x)} \, dx}{\int_{\Omega} |u|^{p(x)} \, dx} > 0$$

Proof. Theorem 3.1 gives a weak solution $(u, \lambda) \in X \times \Lambda$. Let $(u_1, \lambda_1), (u_2, \lambda_2)$ be two solutions of (2.9). Considering the weak formulation of u_1 and u_2 we have

$$\langle Au_i, v \rangle + b(v, \lambda_i) = \langle F(u_i), v \rangle , \quad \forall v \in X$$
 (3.17)
 $b(u_i, \mu - \lambda_i) \leq 0 \quad \forall \mu \in \Lambda \subseteq Y \quad i = 1, 2.$

By choosing
$$v = u_1 - u_2$$
, $\mu = \lambda_2$ if $i = 1$ and $\mu = \lambda_1$ if $i = 2$, we have
 $\langle Au_1 - Au_2, u_1 - u_2 \rangle + b(u_1 - u_2, \lambda_1 - \lambda_2) = \langle F(u_1) - F(u_2), u_1 - u_2 \rangle$, $\forall v \in X$
 $b(u_1 - u_2, \lambda_2 - \lambda_1) \leq 0 \quad \forall \mu \in \Lambda \subseteq Y.$
(3.18)

It gives

$$\langle Au_1 - Au_2, u_1 - u_2 \rangle \leq \langle F(u_1) - F(u_2), u_1 - u_2 \rangle.$$

Then, from (3.18) and repeating the argument used in the proof of Proposition 2.8, ii), we get

$$\begin{aligned} k_p \int_{\Omega} |\nabla u_1 - \nabla u_2|^{p(x)} \, dx &\leq |\langle f_1(u_1) - f_1(u_2), u_1 - u_2 \rangle | \\ &\leq |\int_{\Omega} (f_1(x, u_1) - f_1(x, u_2))(u_1 - u_2) \, dx| \\ &\leq |\int_{\Omega} |u_1 - u_2|^{p(x)} \, dx \leq b_0 \lambda_*^{-1} \int_{\Omega} |\nabla u_1 - \nabla u_2|^{p(x)} \, dx \end{aligned}$$

Consequently when $\frac{k_p}{b_0\lambda_*^{-1}} < 1$, it follows that $u_1 = u_2$. This completes the proof.

Acknowledgements. This research was partially supported by the Vicerectorado de Investigación-UNMSM-Perú.

References

- [1] G.A. Afrouzi , M. Mirzapour, Eigenvalue problems for p(x)-Kirchhoff type equations, Electron. J. Differential Equations 2013 (2013) 1–10, J. Math.1 (2000), 1-11.
- [2] G.A. Afrouzi , N. T. Chung, Z. Naghizadeh, Multiple solutions for p(x)-Kirchhoff type problems with Robin boundary conditions, Electron. J. Differential Equations, Vol. 2022 (2022), No. 24, pp. 1-16.
- [3] S. Antontsev, S. Shmarev, Handbook of Differential Equations, Stationary Partial Differential Equations, vol. 3, (2006) (Chapter 1).
- [4] M. Boureanu , A. Matei , Nonlinear problems with p()-growth conditions and applications to antiplane contact models, Adv. Nonlinear Stud 14 (2014), 295–313.

- [5] E. Cabanillas L., Z. Huaringa, A nonlocal p(x)&q(x) elliptic transmission problem with dependence on the gradient Int. J. Appl. Math, **34** (1)(2021) 93-108.
- [6] M. Cojocaru , A. Matei, Well posedness for a class of frictional contact models via mixed variational formulations, Nonlinear Anal RWA,47(2019) 127-141.
- [7] S.S. Chow, Finite element error estimates for non-linear elliptic equations of monotone type, Numer. Math. 54 (1989), 373-393.
- [8] N. T. Chung, Multiple solutions for a class of p(x)-Kirchhoff type problems with Neumann boundary conditions, Adv. Pure Appl. Math., 4 (2) (2013), 165-177.
- [9] Y. Chen, S. Levine, R. Rao, Variable Exponent, Linear Growth Functionals in Image Restoration, SIAM Journal of Applied Mathematics 66 (2006), 1383–1406.
- [10] G. Dai , R. Ma , Solutions for a p(x)-Kirchhoff-type equation with Neumann boundary data, Nonlinear Anal.TMA **12** (2011), 2666-2680.
- [11] L. Diening, P. Harjulehto, P. Hasto, M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes, vol. 2017, Springer-Verlag, Berlin, 2011.
- [12] X. L. Fan, J. S. Shen, D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$, J. Math. Anal. Appl. **262** (2001), 749–760.
- [13] X. L. Fan, Q. H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problems, Nonlinear Anal. **52** (2003), 1843–1852.
- [14] X.L. Fan, D. Zhao, On the Spaces $L^{p(x)}$ and $W^{m,p(x)}$, J. Math. Anal. Appl.**263** (2001), 424–446.
- [15] W. Han, M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies in Advanced Mathematics 30, American Mathematical Society, Providence, RI-International Press, Somerville, MA, 2002.
- [16] M.K. Hamdani , N.T. Chung , D.D. Repovš , New class of sixth-order nonhomogeneous p(x)-Kirchhoff problems with sign-changing weight functions, Adv. Nonlinear Anal. **10** (2021), 1117–1131.
- [17] S. Hüeber, A. Matei, B. Wohlmuth, Efficient algorithms for problems with friction. SIAM J. Sci. Comput. 29(1), 70–92 (2007). https://doi.org/10.1137/050634141.
- [18] E. Hurtado, O. Miyagaki , R. Rodrigues , Multiplicity of solutions to class of nonlocal elliptic problems with critical exponents, 45 (7)(2022) 3949-3973.
- [19] M. Rodrigues, Multiplicity of solutions on a nonlinear eigenvalue problem for p(x)-Laplacian-like operators, Mediterr. J. Math. 9(1)(2012), 211-223
- [20] M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2002.
- [21] M. Sofonea, A. Matei, Variational inequalities with applications. A study of antiplane frictional contact problems. In: Advances in mechanics and mathematics, vol. 18. New York: Springer, 2009
- [22] N. Tsouli, M. Haddaoui M., E.M. Hssini, Multiple Solutions for a Critical p(x)-Kirchhoff Type Equations, Bol. Soc. Paran. Mat.38(4)(2020), 197-211.
- [23] A. Zerouali, B. Karim, O. Chakrone, A. Anane, Existence and multiplicity of elliptic problems with nonlinear boundary conditions and variable exponents. Bol. Soc. Parana. Mat. (3)33(2)(2015), 121–131.

E. Cabanillas L.

- [24] C. Vetro, Variable exponent p(x)-Kirchhoff type problem with convection,
- J. Math. Anal. Appl. **506** (2022) 125721.
 [25] V.V.Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., **50** (1986), 675–710.