Caspian Journal of Mathematical Sciences (CJMS)
University of Mazandaran, Iran
http://cjms.journals.umz.ac.ir
ISSN: 2676-7260

CJMS. 12(2)(2023), 287-302

Weak solvability via Lagrange multipliers for Frictional antiplane contact problems of $p(x)$-Kirchhoff type

Eugenio Cabanillas Lapa
${ }^{1}$ Instituto de Investigación, Facultad de Ciencias
Matemáticas-UNMSM,Lima-Perú
cleugenio@yahoo.com

Abstract

This paper is concerned with the existence and uniqueness of solutions for a class of frictional antiplane contact problems of $\mathrm{p}(\mathrm{x})$-Kirchhoff type on a bounded domain $\Omega \subseteq \mathbb{R}^{2}$. Using an abstract Lagrange multiplier technique and the Schauder fixed point theorem we establish the existence of weak solutions. Imposing some suitable monotonicity conditions on the datum f_{1} the uniqueness of the solution is obtained.

Keywords: frictional antiplane contact problems; p(x)-Kirchhoff equation; Schauder fixed point theorem; uniqueness

2000 Mathematics subject classification: 35J20, 35J60

[^0]
1. Introduction

In this work, we are concerned with the following Kirchhoff type problem

$$
\begin{array}{ccccc}
-M(L(u)) \operatorname{div}\left(a\left(|\nabla u|^{p(x)}\right)|\nabla u|^{p(x)} \nabla u\right)=f_{1}(x, u) & \text { in } & \Omega \\
u=0 & \text { on } \Gamma_{1} & & \\
M(L(u)) a\left(|\nabla u|^{p(x)}\right)|\nabla u|^{p(x)} \nabla u . \nu=f_{2}(x) & & \text { on } & \Gamma_{2} \\
\left.\left|M(L(u)) a\left(|\nabla u|^{p(x)}\right)\right| \nabla u\right|^{p(x)} \nabla u . \nu \mid \leq g(x), & & & \\
M(L(u)) a\left(|\nabla u|^{p(x)}\right)|\nabla u|^{p(x)} \nabla u . \nu=-g \frac{u}{|u|}, \quad \text { if } & u \neq 0 & \text { on } & \Gamma_{3} \tag{1.1}
\end{array}
$$

where $\Omega \subseteq \mathbb{R}^{2}$ is a bounded domain with smooth enough boundary Γ, partitioned in three parts $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ such that meas $\left(\Gamma_{i}\right)>0,(i=$ $1,2,3) ; f_{1}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}, f_{2}: \Gamma_{2} \rightarrow \mathbb{R}, g: \Gamma_{3} \rightarrow \mathbb{R}, M:[0,+\infty[\rightarrow$ $\left[m_{0},+\infty\left[\right.\right.$ and $a: \mathbb{R}^{+}{ }_{0} \rightarrow \mathbb{R}^{+}{ }_{0}$ are given functions, $p \in C(\bar{\Omega})$ and $L(u)=$ $\int_{\Omega} \frac{1}{p(x)}|\nabla u|^{p(x)} d x$, with $A(t)=\int_{0}^{t} a(\tau) d \tau$.

The study of the $p(x)$ - Kirchhoff type equations with nonlinear boundary conditions of different class have been a very interesting topic in the recent years. Let us just quote $[1,8,16,24]$ and references therein. One reason of such interest is due to their frequent appearance in applications such as the modeling of electrorheological fluids [20], image restoration [9], elastic mechanics [25] and continuum mechanics [3]. The other reason is that the nonlocal problems with variable exponent, in addition to their contributions to the modelization of many physical and biological phenomena, are very interesting from a purely mathematical point of view as well; we refer the reader to [2, 18, 22]. CojocaruMatei [6] studied the unique solvability of problem (1.1) in the case $M(s)=1=a(s), f_{1}(x, u) \equiv f_{1}(x), p=$ constant ≥ 2, which models the antiplane shear deformation of a nonlinearly elastic cylindrical body in frictional contact on Γ_{3} with a rigid foundation; see, e.g. [21]. They used a technique involving dual Lagrange multipliers, which allows to write efficient algorithms to approximate the weak solutions; see [17]. For this situation, the behavior of the material is described by the Hencky-type constitutive law:

$$
\sigma(x)=k \operatorname{tr} \varepsilon(u(x)) I_{3}+\mu(x)\left\|\varepsilon^{D}(u(x))\right\|^{\frac{p(x)-2}{2}} \varepsilon^{D}(u(x))
$$

where $\boldsymbol{\sigma}$ is the Cauchy stress tensor, tr is the trace of a Cartesian tensor of second order $\boldsymbol{\sigma}(\boldsymbol{x}) \varepsilon$ is the infinitesimal strain tensor, \boldsymbol{u} is the
displacement vector, $\boldsymbol{I}_{\mathbf{3}}$ is the identity tensor, k, μ are material parameters, p is a given function; $\varepsilon^{\boldsymbol{D}}$ is the desviator of the tensor ε defined by $\boldsymbol{\varepsilon}^{\boldsymbol{D}}=\boldsymbol{\varepsilon}-\frac{1}{3}(\operatorname{tr} \varepsilon) \boldsymbol{I}_{\mathbf{3}}$ where $\operatorname{tr} \boldsymbol{\varepsilon}=\sum_{i=1}^{3} \varepsilon_{i i}$; see for instance (15].

Inspired by the above works, we study the existence of weak solutions for problem (1.1), under appropriate assumptions on M and f_{1}, via Lagrange multipliers and the Schauder fixed point theorem. In this sense, we extend and generalize the result the main result in [6]. Also, we state a simple uniqueness result under suitable monotonicity condition on f_{1}.

The paper is designed as follows. In Section 2, we introduce the mathematical preliminaries and give several important properties of $p(x)$ -Laplacian-like operator. We deliver a weak variational formulation with Lagrange multipliers in a dual space. Section 3, is devoted to the proofs of main results.

2. Preliminaries

For the reader's convenience, we point out some basic results on the theory of Lebesgue-Sobolev spaces with variable exponent. In this context we refer the reader to [11, 20] for details. Firstly we state some basic properties of spaces $W^{1, p(x)}(\Omega)$ which will be used later. Denote by $\mathbf{S}(\Omega)$ the set of all measurable real functions defined on Ω. Two functions in $\mathbf{S}(\Omega)$ are considered as the same element of $\mathbf{S}(\Omega)$ when they are equal almost everywhere. Write

$$
\begin{gathered}
C_{+}(\bar{\Omega})=\{h: h \in C(\bar{\Omega}), h(x)>1 \text { for any } x \in \bar{\Omega}\}, \\
h^{-}:=\min _{\bar{\Omega}} h(x), \quad h^{+}:=\max _{\bar{\Omega}} h(x) \quad \text { for every } h \in C_{+}(\bar{\Omega}) .
\end{gathered}
$$

Define

$$
L^{p(x)}(\Omega)=\left\{u \in \mathbf{S}(\Omega): \int_{\Omega}|u(x)|^{p(x)} d x<+\infty \text { for } p \in C_{+}(\bar{\Omega})\right\}
$$

with the norm

$$
|u|_{L^{p(x)}(\Omega)}=|u|_{p(x)}=\inf \left\{\lambda>0: \int_{\Omega}\left|\frac{u(x)}{\lambda}\right|^{p(x)} d x \leq 1\right\},
$$

and

$$
W^{1, p(x)}(\Omega)=\left\{u \in L^{p(x)}(\Omega):|\nabla u| \in L^{p(x)}(\Omega)\right\}
$$

with the norm

$$
\|u\|_{1, p(x)}=|u|_{L^{p(x)}(\Omega)}+|\nabla u|_{L^{p(x)}(\Omega)} .
$$

Proposition $2.1([14])$. The spaces $L^{p(x)}(\Omega)$ and $W^{1, p(x)}(\Omega)$ are separable reflexive Banach spaces.

Proposition 2.2 (114). Set $\rho(u)=\int_{\Omega}|u(x)|^{p(x)} d x$. For any $u \in$ $L^{p(x)}(\Omega)$, then
(1) for $u \neq 0,|u|_{p(x)}=\lambda$ if and only if $\rho\left(\frac{u}{\lambda}\right)=1$;
(2) $|u|_{p(x)}<1(=1 ;>1)$ if and only if $\rho(u)<1(=1 ;>1)$;
(3) if $|u|_{p(x)}>1$, then $|u|_{p(x)}^{p^{-}} \leq \rho(u) \leq|u|_{p(x)}^{p^{+}}$;
(4) if $|u|_{p(x)}<1$, then $|u|_{p(x)}^{p^{+}} \leq \rho(u) \leq|u|_{p(x)}^{p^{-}}$;
(5) $\lim _{k \rightarrow+\infty}\left|u_{k}\right|_{p(x)}=0$ if and only if $\lim _{k \rightarrow+\infty} \rho\left(u_{k}\right)=0$;
(6) $\lim _{k \rightarrow+\infty}\left|u_{k}\right|_{p(x)}=+\infty$ if and only if $\lim _{k \rightarrow+\infty} \rho\left(u_{k}\right)=+\infty$.

Proposition 2.3 (12,14$])$. If $q \in C_{+}(\bar{\Omega})$ and $q(x) \leq p^{*}(x)(q(x)<$ $\left.p^{*}(x)\right)$ for $x \in \bar{\Omega}$, then there is a continuous (compact) embedding $W^{1, p(x)}(\Omega) \hookrightarrow L^{q(x)}(\Omega)$, where

$$
p^{*}(x)= \begin{cases}\frac{N p(x)}{N-p(x)} & \text { if } p(x)<N, \\ +\infty & \text { if } p(x) \geq N\end{cases}
$$

Proposition 2.4 (|14|). The conjugate space of $L^{p(x)}(\Omega)$ is $L^{q(x)}(\Omega)$, where $\frac{1}{q(x)}+\frac{1}{p(x)}=1$ holds a.e. in Ω. For any $u \in L^{p(x)}(\Omega)$ and $v \in L^{q(x)}(\Omega)$, we have the following Hölder-type inequality

$$
\left|\int_{\Omega} u v d x\right| \leq\left(\frac{1}{p^{-}}+\frac{1}{q^{-}}\right)|u|_{p(x)}|v|_{q(x)} .
$$

We introduce the following closed space of $W^{1, p(x)}(\Omega)$

$$
\begin{equation*}
X=\left\{v \in W^{1, p(x)}(\Omega): \gamma u=0 \quad \text { a. e. on } \quad \Gamma_{1}\right\} \tag{2.1}
\end{equation*}
$$

where γ denotes the Sobolev trace operator and $\Gamma_{1} \subseteq \Gamma$, meas $\left(\Gamma_{1}\right)>0$, therefore X is a separable reflexive Banach space. Now, we denote

$$
\|u\|_{X}=|\nabla u|_{p(x)}, \quad u \in X
$$

This functional represents a norm on X.
Proposition 2.5 ([4]). There exists $c>0$ such that

$$
\|u\|_{1, p(x)} \leq C\|u\|_{X} \quad \text { for all } u \in X
$$

Then, the norms $\|\cdot\|_{X}$ and $\|\cdot\|_{1, p(x)}$ are equivalent on X.
We assume that $a(x, \xi): \bar{\Omega} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is the continuous derivative with respect to ξ of the continuous mapping $\Phi: \bar{\Omega} \times \mathbb{R}^{n} \rightarrow \mathbb{R}, \Phi=$ $\Phi(x, \xi)$, i,e. $a(x, \xi)=\nabla_{\xi} \Phi(x, \xi)$. The mappings a and Φ verify the following assumptions:
$\left(\Phi_{1}\right) \Phi(x, 0)=0$ for a.e. $x \in \bar{\Omega}$.
$\left(\Phi_{2}\right)$ There exists $c>0$ such that the function a satisfies the growth condition $|a(x, \xi)| \leq c\left(1+|\xi|^{p(x)-1}\right)$ for a.e. $x \in \bar{\Omega}$ and all $\xi \in \mathbb{R}^{N}$, where $|$.$| denotes the Euclidean norm.$
(Φ_{3}) The monotonicity condition

$$
C_{3}|\xi-\varsigma|^{p(x)} \leq(a(x, \xi)-a(x, \varsigma)) \cdot(\xi-\varsigma)
$$

holds for a.e. $x \in \bar{\Omega}$ and $\forall \xi, \varsigma \in \mathbb{R}^{N}$. With equality if and only if $\xi=\varsigma$
(Φ_{4}) The inequalities $|\xi|^{p(x)} \leq a(x, \xi) \cdot \xi \leq p(x) A(x, \xi)$ hold for a.e. $x \in \bar{\Omega}$ and all $\xi \in \mathbb{R}^{N}$.
$\left(\Phi_{5}\right)$ There exists $C_{5}>0$ such that for all $\xi, \varsigma \in \mathbb{R}^{N}$ and almost every $x \in \bar{\Omega}$

$$
|a(x, \xi)-a(x, \varsigma)| \leq C_{5}\left(1+|\xi|^{p(x)-2}+|\varsigma|^{p(x)-2}\right)|\xi-\varsigma|
$$

The operator L is well defined and of class $C^{1}\left(W^{1, p(x)}(\Omega), \mathbb{R}\right)$. The Fréchet derivative operator of L in weak sense $L^{\prime}: X \rightarrow X^{\prime}$ is

$$
\begin{equation*}
\left\langle L^{\prime} u, v\right\rangle=\int_{\Omega} a(x, \nabla u) . \nabla v d x, \forall u, v \in X . \tag{2.2}
\end{equation*}
$$

Proposition 2.6. The functional $L: X \rightarrow \mathbb{R}$ is convex. The mapping $L^{\prime}: X \rightarrow X^{\prime}$ is a strictly monotone, bounded homeomorphism, and is of (S_{+}) type, namely

$$
u_{n} \rightharpoonup u \text { and } \limsup _{n \rightarrow+\infty} L^{\prime}\left(u_{n}\right)\left(u_{n}-u\right) \leq 0 \text { implies } u_{n} \rightarrow u,
$$

where X^{\prime} is the dual space of X.
Proof. This result is obtained in a similar manner as the one given in [23], thus we omit the details.

Now, we define the spaces

$$
\begin{equation*}
S=\left\{u \in W^{\frac{1}{p^{\prime}(x)}, p(x)}(\Gamma): \exists v \in X \quad \text { such that } \quad u=\gamma v \quad \text { a.e on } \Gamma\right\} \tag{2.3}
\end{equation*}
$$

which is a real reflexive Banach space, $\frac{1}{p(x)}+\frac{1}{p^{\prime}(x)}=1$ for all $\quad x \in \Omega$, and

$$
\begin{equation*}
Y=S^{\prime}, \text { the dual of the space } \mathrm{S} . \tag{2.4}
\end{equation*}
$$

Let us introduce a bilinear form

$$
\begin{equation*}
b: X \times Y \longrightarrow \mathbb{R} \quad: b(v, \mu)=\langle\mu, \gamma v\rangle_{Y \times S}, \tag{2.5}
\end{equation*}
$$

a Lagrange multiplier $\lambda \in Y$,

$$
\langle\lambda, z\rangle=-\int_{\Gamma_{3}} M(L(u)) a(x, \nabla u) \cdot \nu z d \Gamma \quad, \quad \forall z \in S
$$

and the set of Lagrange multipliers

$$
\begin{equation*}
\Lambda=\left\{u \in Y:\langle\mu, z\rangle \leqslant \int_{\Gamma_{3}} g(x)|z(x)| \quad, \quad \forall z \in S\right\} . \tag{2.6}
\end{equation*}
$$

From (1.1) 4 we deduce that $\lambda \in \Lambda$.
Let u be a regular enough function satisfying problem (1.1). After some computations we get (by using density results)

$$
\begin{align*}
& M(L(u)) \int_{\Omega} a(x, \nabla u) \cdot \nabla v d x=\int_{\Omega} f_{1}(x, u) v d x \\
& +\int_{\Gamma_{2}} f_{2}(x) \gamma v d \Gamma+M(L(u)) \int_{\Gamma_{3}} a(x, \nabla u) \gamma v d \Gamma \tag{2.7}
\end{align*}
$$

for all $v \in X$, where u satisfies (1.1) $)_{5}$ on Γ_{3}
Now, we write problem (2.7) as an abstract mixed variational problem (by means a Lagrange multipliers technique)

We define the following operators:
i) $A: X \rightarrow X^{\prime}$, given by

$$
\begin{equation*}
\langle A u, v\rangle=M(L(u)) \int_{\Omega} a(x, \nabla u) . \nabla v d x, u, v \in X \tag{2.8}
\end{equation*}
$$

ii) $F: X \rightarrow X^{\prime}$, given by

$$
\langle F(u), v\rangle=\int_{\Omega} f_{1}(x, u) v d x+\int_{\Gamma_{2}} f_{2}(x) \gamma v d x \quad, \quad u, v \in X
$$

So, we are led to the following variational formulation of problem (1.1)
Problem 1. Find $u \in X$ and $\lambda \in \Lambda$ such that

$$
\begin{align*}
\langle A u, v\rangle+b(v, \lambda) & =\langle F(u), v\rangle \quad, \quad \forall v \in X \tag{2.9}\\
b(u, \mu-\lambda) & \leq 0 \quad \forall \mu \in \Lambda \subseteq Y
\end{align*}
$$

To solve this problem, we will apply the Schauder fixed point theorem.
Firstly, we "freeze" the state variable u on the function F, that is we fix $w \in X$ such that $f=F(w) \in X^{\prime}$.

Hence, we arrive at the following abstract mixed variational problem.
Problem 2. Given $f \in X^{\prime}$ find $u \in X$ and $\lambda \in \Lambda$ such that

$$
\begin{align*}
\langle A u, v\rangle+b(v, \lambda) & =\langle f, v\rangle \quad, \quad \forall v \in X \\
b(u, \mu-\lambda) & \leq 0 \quad \forall \mu \in \Lambda \subseteq Y . \tag{2.10}
\end{align*}
$$

The unique solvability of Problem 2 is given under the following generalized assumptions.

Let $\left(X,\| \| \|_{X}\right)$ and $\left(Y,\| \|_{Y}\right)$ be two real reflexive Banach space.
$\left(B_{1}\right): A: X \rightarrow X^{\prime}$ is hemicontinuous;
$\left(B_{2}\right): \exists h: X \rightarrow \mathbb{R}$ such that
(a) $h(t w)=t^{\gamma} h(w)$ with $\gamma>1, \forall t>0, w \in X$;
(b) $\langle A u-A v, u-v\rangle_{X \times X} \geq h(v-u), \forall u, v \in X$;
(c) $\forall\left(x_{\nu}\right) \subseteq X: x_{\nu} \rightharpoonup x$ in $X \Longrightarrow h(x) \leq \lim _{\nu \rightarrow \infty} \sup h\left(x_{\nu}\right)$
$\left(B_{3}\right): A$ is coercive.
(B_{4}): The form $b: X \times Y$ es bilinear, and
(i) $\forall\left(u_{\nu}\right) \subseteq X: u_{\nu} \rightharpoonup u$ in $X \Longrightarrow b\left(u_{\nu}, \lambda_{\nu}\right) \rightarrow b(u, \lambda)$
(ii) $\forall\left(\lambda_{\nu}\right) \subseteq Y: \lambda_{\nu} \rightharpoonup y$ in $Y \Longrightarrow b\left(v_{\nu}, \lambda_{\nu}\right) \rightarrow b(v, \lambda)$
(iii) $\exists \widehat{\alpha}>0: \inf _{\substack{\mu \in I \\ u \neq 0}} \sup _{v \in X}^{v \neq 0} \left\lvert\, ~ \frac{b(v, \mu)}{|v|_{X}|\mu|_{Y}} \geq \widehat{\alpha}\right.$
$\left(B_{5}\right): \Lambda$ is a bounded closed convex subset of Y such that $0_{Y} \in \Lambda$. $\left(B_{6}\right): \exists C_{1}>0, q>0: h(v) \geq C_{1}\|v\|_{X}^{q} \quad, \quad \forall v \in X$.

Theorem 2.7. Assume $\left(B_{1}\right)-\left(B_{6}\right)$. Then there exists a unique solution $(u, \lambda) \in X \times \Lambda$ of Problem 2 .

Proof. See [6].
To solve Problem 1, we start by stating the following assumptions on M , f_{1}, f_{2} and g
$\left(A_{1}\right) M:\left[0,+\infty\left[\rightarrow\left[m_{0},+\infty[\right.\right.\right.$ is a locally Lipschitz-continuous and nondecreasing function; $m_{0}>0$.
$\left(A_{2}\right) f_{1}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Caratheodory function satisfying

$$
\left|f_{1}(x, t)\right| \leq c_{1}+c_{2}|t|^{\alpha(x)-1}, \quad \forall(x, t) \in \Omega \times \mathbb{R},
$$

$\alpha \in C_{+}(\bar{\Omega})$ with $\alpha(x)<p^{*}(x), \alpha^{+}<p^{-}$.
$\left(A_{3}\right) f_{2} \in L^{p^{\prime}(x)}\left(\Gamma_{2}\right), g \in L^{p^{\prime}(x)}\left(\Gamma_{3}\right), g(x) \geq 0$ a.e on Γ_{3}.
We have the following properties about the operator A.
Proposition 2.8. If (A_{1}) holds, then
(i) A is locally Lipschitz continuous.
(ii) A is bounded, strictly monotone. Furthermore

$$
\langle A u-A v, u-v\rangle \geq k_{p}\|u-v\|_{X}^{\hat{p}}
$$

where

$$
\hat{p}= \begin{cases}p^{-} & \text {if }\|u-v\|_{X}>1, \\ p^{+} & \text {if }\|u-v\|_{X} \leq 1 .\end{cases}
$$

So, we can take $h(v)=k_{p}\|v\|_{X}^{\hat{p}}$.
(iii) $\frac{\langle A u, u\rangle}{\|u\|_{X}} \rightarrow+\infty \quad$ as $\|u\|_{X} \rightarrow+\infty$.

Proof. (i) Assume that M is Lipschitz in $\left[0, R_{1}\right]$ with Lipschitz constant $L_{M}, R_{1}>0$. We have, for $u, v, w \in B\left(0, R_{1}\right)$

$$
\begin{aligned}
\langle A u-A v, w\rangle= & {[M(L(u))-M(L(v))] \int_{\Omega} a(x, \nabla u) \cdot \nabla w d x } \\
& +M(L(v)) \int_{\Omega}(a(x, \nabla u)-a(x, \nabla v)) \cdot \nabla w d x .
\end{aligned}
$$

Using the Lipschitz continuity of M, the Holder inequality and (Φ_{5}) we get

$$
|\langle A u-A v, w\rangle| \leq C\|u-v\|_{X}\|w\|_{X},
$$

which implies $\|A u-A v\|_{X^{\prime}} \leq C\|u-v\|_{X}$.
ii)The functional $S: X \rightarrow X^{\prime}$ defined by

$$
\begin{equation*}
\langle S u, v\rangle=\int_{\Omega} a(x, \nabla u) \cdot \nabla v d x \quad \forall u, v \in X, \tag{2.11}
\end{equation*}
$$

is bounded (See [19]). Then

$$
\begin{equation*}
\langle A u, v\rangle=M(L(u))\langle S u, v\rangle \quad \forall u, v \in X . \tag{2.12}
\end{equation*}
$$

Hence, since M is continuous and L is bounded (see Proposition 2.6), A is bounded.

To obtain that A is strictly monotone, we observe that L^{\prime} is strictly monotone. Hence, L is strictly convex. Moreover, since M is nondecreasing, $\hat{M}(t)=\int_{0}^{t} M(\tau) d \tau$ is convex in $[0,+\infty[$. Consequently, $\forall s, t \in$]0, $1[$ with $s+t=1$ one has
$\hat{M}(L(s u+t v))<\hat{M}(s L(u)+t L(v)) \leq s \hat{M}(L(u))+t \hat{M}(L(v)), \forall u, v \in X, u \neq v$.
This shows $\Psi(u)=\hat{M}(L(u))$ is strictly convex, then $\Psi^{\prime}(u)=M(L(u)) L^{\prime}(u)$ is strictly monotone, which means that A is strictly monotone.

To establish the inequality in ii), we apply Lemma 3 in [5] to obtain

$$
\begin{aligned}
\langle A u-A v, u-v\rangle & \geq \int_{\Omega}[M(L(u)) a(x, \nabla u)-M(L(v)) a(x, \nabla u)] \cdot(\nabla v-\nabla u) d x \\
& \geq m_{0} \int_{\Omega} \frac{1}{p(x)}\left(|\nabla u-\nabla u|^{p(x)}\right) d x \geq \frac{m_{0}}{p^{+}} \int_{\Omega}|\nabla u-\nabla u|^{p(x)} d x \\
& \geq \frac{m_{0}}{p^{+}}\|u-v\|_{X}^{\hat{p}} .
\end{aligned}
$$

iii)For $u \in X$ with $\|u\|_{X}>1$ we have

$$
\begin{aligned}
\frac{\langle A u, u\rangle}{\|u\|_{X}} & =\frac{M(L(u)) \int_{\Omega}\left[\left(1+\frac{|\nabla u|^{p(x)}}{\sqrt{1+|\nabla u|^{2 p(x)}}}\right)|\nabla u|^{p(x)}\right] d x}{\|u\|} \\
& \geq m_{0}\|u\|_{X}^{p^{--1}} \rightarrow+\infty \text { as }\|u\|_{X} \rightarrow+\infty .
\end{aligned}
$$

Proposition 2.9. The form $b: X \times Y \rightarrow \mathbb{R}$ defined in (2.5) is bilinear and, it verifies i), ii) and iii) in assumption (B_{4}). Moreover

$$
\begin{align*}
b(u, \mu) & \leq \int_{\Gamma_{3}} g(x)|u(x)| d \Gamma \text { for all } \mu \in \Lambda ; \tag{2.13}\\
b(u, \lambda) & =\int_{\Gamma_{3}} g(x)|u(x)| d \Gamma \tag{2.14}\\
b(u, \mu-\lambda) & \leq 0 \quad \text { for all } \mu \in \Lambda . \tag{2.15}
\end{align*}
$$

Moreover, Λ is bounded.
Proof. The assertions i), ii), iii) and Λ bounded are word for word as [6], Theorem 3, pags 138-139.

It is obvious to check (2.13). To justify (2.14), we have to show that, a.e. $x \in \Omega$

$$
-M\left((L(u))\left(|\nabla u|^{p(x)-2}+\frac{|\nabla u|^{2 p(x)-2}}{\sqrt{1+|\nabla u|^{2 p(x)}}}\right) \frac{\partial u(x)}{\partial \nu} u(x)=g(x)|u(x)|\right.
$$

In fact, let $x \in \Omega$. If $|u(x)|=0$, then

$$
-M\left((L(u))\left(|\nabla u|^{p(x)-2}+\frac{|\nabla u|^{2 p(x)-2}}{\sqrt{1+|\nabla u|^{2 p(x)}}}\right) \frac{\partial u(x)}{\partial \nu} u(x)=0=g(x)|u(x)| \text { on } \Gamma_{3} .\right.
$$

Otherwise, if $|u(x)| \neq 0$, then

$$
\begin{aligned}
-M\left((L(u))\left(|\nabla u|^{p(x)-2}+\frac{|\nabla u|^{2 p(x)-2}}{\sqrt{1+|\nabla u|^{2 p(x)}}}\right) \frac{\partial u(x)}{\partial \nu} u(x)\right. & =g(x) \frac{(u(x))^{2}}{|u(x)|} \\
& =g(x)|u(x)| \text { on } \Gamma_{3}
\end{aligned}
$$

Furthermore, for all $\mu \in \Lambda$:

$$
\begin{equation*}
b(u, \mu-\lambda)=b(u, \mu)-b(u, \lambda)=\langle\mu, \gamma u\rangle_{Y \times S}-\langle\lambda, \gamma u\rangle_{Y \times S} . \tag{2.16}
\end{equation*}
$$

Hence, thanks to (2.13), (2.14) and (2.16), we obtain (2.15).

3. Existence and uniqueness of solutions

We are ready to solve problem 1. For this, we consider the Banach spaces X and Y given in (2.1) and (2.4) respectively, and the set Λ in (2.6)

Theorem 3.1. Suppose $\left(B_{1}\right)-\left(B_{6}\right)$ hold. Then problem 1 admits a solution $(u, \lambda) \in X \times \Lambda$.

Proof. We apply the Schauder fixed point theorem.
As has been said before, we "freeze" the state variable u on the function F, that is, we fix $w \in X$ and consider the problem:

Find $u \in X$ and $\lambda \in \Lambda$ such that

$$
\begin{align*}
\langle A u, v\rangle+b(v, \lambda) & =\langle f, v\rangle \quad, \quad \forall v \in X \tag{3.1}\\
b(u, \mu-\lambda) & \leq 0 \quad \forall \mu \in \Lambda \subseteq Y . \tag{3.2}
\end{align*}
$$

with $f=F(w) \in X^{\prime}$. Note that by the hypotheses on α and f_{1}, given in $\left(A_{2}\right)$, we have $f_{1}(w) \in L^{\alpha^{\prime}(x)}(\Omega) \hookrightarrow X^{\prime}$.

By Theorem 2.7, problem (3.1)-(3.2) has a unique solution $\left(u_{w}, \lambda_{w}\right) \in$ $X \times \Lambda$.

Here we drop the subscript w for simplicity. Setting $v=u$ in (3.1) and $\mu=0_{Y}$ in (3.2), using proposition 2.8 ii), we get

$$
\begin{equation*}
k_{p}\|u\|_{X}^{\hat{p}} \leq\left(2 C_{1} C_{\alpha}\|w\|_{X}^{\sigma}+2 C_{2} C_{\alpha}|\Omega|+c_{p}\left|f_{2}\right|_{p^{\prime}(x), \Gamma_{2}}\right)\|u\|_{X} \tag{3.3}
\end{equation*}
$$

where

$$
\sigma= \begin{cases}\alpha^{-} & \text {if }\|w\|_{X}>1 \\ \alpha^{+} & \text {if }\|w\|_{X} \leq 1,\end{cases}
$$

and C_{χ} is the embedding constant of $X \hookrightarrow L^{\chi(x)}(\Omega)$.
Then

$$
\|u\|_{X} \leq\left[C\left(1+\|w\|_{X}\right)\right]^{\frac{1}{p-1}} .
$$

Therefore, either $\|u\|_{X} \leq 1$ or

$$
\begin{equation*}
\|u\|_{X} \leq\left[C\left(1+\|w\|_{X}\right)\right]^{\frac{1}{p^{--1}}} . \tag{3.4}
\end{equation*}
$$

Since $p^{-}>\alpha^{+}+1$, we have

$$
t^{p^{-}-1}-C t^{\sigma}-C \rightarrow+\infty \quad \text { as } t \rightarrow+\infty
$$

Hence, there is some $\bar{R}_{1}>0$ such that

$$
\begin{equation*}
\bar{R}_{1}{ }^{p^{-}-1}-C \bar{R}_{1}{ }^{\sigma}-C \geq 0 \tag{3.5}
\end{equation*}
$$

From (3.4) and (3.5) we infer that if $\|w\|_{X} \leq \overline{R_{1}}$ then $\|u\|_{X} \leq \overline{R_{1}}$.
Thus there exists $R_{1}=\min \left\{1, \bar{R}_{1}\right\}$ such that

$$
\begin{equation*}
\|u\|_{X} \leq R_{1} \quad \text { for all } u \in X . \tag{3.6}
\end{equation*}
$$

For this constant, define K as

$$
K=\left\{v: v \in L^{\alpha(x)}(\Omega),\|v\|_{X} \leq R_{1}\right\}
$$

which is a nonempty, closed, convex subset of $L^{\alpha(x)}(\Omega)$. We can define the operator

$$
T: K \rightarrow L^{\alpha(x)}(\Omega), \quad T w=u_{w}
$$

where u_{w} is the first component of the unique pair solution of the problem (3.1)-(3.2), $\left(u_{w}, \lambda_{w}\right) \in X \times \Lambda$

From (3.6) $\|T w\|_{X} \leq R_{1}$, for every $w \in K$, so that $T(K) \subseteq K$.

Moreover, if $\left(u_{\nu}\right)_{\nu \geq 1}\left(u_{w_{\nu}} \equiv u_{\nu}\right)$ is a bounded sequence in K, then from (3.6) is also bounded in X. Consequently, from the compact embedding $X \hookrightarrow L^{\alpha(x)}(\Omega),\left(T w_{\nu}\right)_{\nu \geq 1}$ is relatively compact in $L^{\alpha(x)}(\Omega)$ and hence, in K.

To prove the continuity of T, let $\left(w_{\nu}\right)_{\nu \geq 1}$ be a sequence in K such that

$$
\begin{equation*}
w_{\nu} \rightarrow w \text { strongly in } L^{\alpha(x)}(\Omega) \tag{3.7}
\end{equation*}
$$

and suppose $u_{\nu}=T w_{\nu}$. The sequence $\left\{\left(u_{\nu}, \lambda_{\nu}\right)\right\}_{\nu \geq 1}$ satisfies

$$
\begin{aligned}
\left\langle A u_{\nu}, v\right\rangle+b\left(v, \lambda_{\nu}\right) & =\left\langle F\left(w_{\nu}\right), v\right\rangle \quad, \quad \forall v \in X \\
b\left(u_{\nu}, \mu-\lambda_{\nu}\right) & \leq 0 \quad \forall \mu \in \Lambda .
\end{aligned}
$$

Using (3.6)-(3.7) we can extract a subsequence $\left(u_{\nu_{k}}\right)$ of $\left(u_{\nu}\right)$ and a subsequence $\left(w_{\nu_{k}}\right)$ of (w_{ν}) such that

$$
\begin{gather*}
u_{\nu_{k}} \rightarrow u^{*} \text { weakly in } X, \\
u_{\nu_{k}} \rightarrow u^{*} \text { strongly in } L^{\alpha(x)}(\Omega) \text { and a.e. in } \Omega, \tag{3.8}\\
w_{\nu_{k}} \rightarrow w \text { a.e. in } \Omega, \\
L\left(u_{\nu_{k}}\right) \rightarrow t_{0}, \text { for some } t_{0} \geq 0,
\end{gather*}
$$

and in view of continuity of M

$$
\begin{equation*}
M\left(L\left(u_{\nu_{k}}\right)\right) \rightarrow M\left(t_{0}\right) . \tag{3.9}
\end{equation*}
$$

We shall show that $u^{*}=T w$. To this end, by choosing $u_{\nu_{k}}-u^{*}$ as a test function, we have

$$
\begin{align*}
\left\langle A u_{\nu_{k}}, u_{\nu_{k}}-u^{*}\right\rangle+b\left(u_{\nu_{k}}-u^{*}, \lambda_{\nu}\right) & =\left\langle F\left(w_{\nu_{k}}\right), u_{\nu_{k}}-u^{*}\right\rangle \tag{3.10}\\
\left\langle A u^{*}, u_{\nu_{k}}-u^{*}\right\rangle+b\left(u_{\nu_{k}}-u^{*}, \lambda^{*}\right) & =\left\langle F(w), u_{\nu_{k}}-u^{*}\right\rangle .
\end{align*}
$$

Then

$$
\begin{align*}
& {\left[M \left(L\left(u^{*}\right)-M\left(L\left(u_{\nu_{k}}\right)\right] \int_{\Omega}\left(1+\frac{\left|\nabla u^{*}\right|^{p(x)}}{\sqrt{1+\left|\nabla u^{*}\right|^{2 p(x)}}}\right)\left|\nabla u^{*}\right|^{p(x)-2} \nabla u^{*} \cdot\left(\nabla u_{\nu_{k}}-\nabla u^{*}\right) d x+\right.\right.} \\
& M\left(L\left(u_{\nu_{k}}\right)\right) \int_{\Omega}\left[\left(1+\frac{\left|\nabla u^{*}\right|^{p(x)}}{\sqrt{1+\left|\nabla u^{*}\right|^{2 p(x)}}}\right)\left|\nabla u^{*}\right|^{p(x)-2} \nabla u^{*}-\left(1+\frac{\left|\nabla u_{\nu_{k}}\right|^{p(x)}}{\sqrt{1+\left|\nabla u_{\nu_{k}}\right|^{2 p(x)}}}\right)\right. \\
& \left.\left|\nabla u_{\nu_{k}}\right|^{p(x)-2} \nabla u_{\nu_{k}}\right] \cdot\left(\nabla u_{\nu_{k}}-\nabla u^{*}\right) d x+b\left(u_{\nu_{k}}-u^{*}, \lambda^{*}-\lambda_{\nu_{k}}\right)=\left\langle F(w)-F\left(w_{\nu_{k}}\right), u_{\nu_{k}}-u^{*}\right\rangle . \tag{3.11}
\end{align*}
$$

Since $b\left(u_{\nu_{k}}-u^{*}, \lambda^{*}-\lambda_{\nu_{k}}\right) \geq 0$, again by the inequality of Lemma 3 in [5], $p \geq 2$, we obtain

$$
\begin{align*}
& m_{0} C_{p} \int_{\Omega}\left|\nabla u_{\nu_{k}}-\nabla u^{*}\right|^{p(x)} d x+\left[M \left(L\left(u^{*}\right)-M\left(L\left(u_{\nu_{k}}\right)\right] \int_{\Omega}\left(1+\frac{\left|\nabla u^{*}\right|^{p(x)}}{\sqrt{1+\left|\nabla u^{*}\right|^{2 p(x)}}}\right)\right.\right. \\
& \left|\nabla u^{*}\right|^{p(x)-2} \nabla u^{*} \cdot\left(\nabla u_{\nu_{k}}-\nabla u^{*}\right) d x \leq\left|\left\langle F\left(w_{\nu_{k}}\right)-F(w), u_{\nu_{k}}-u^{*}\right\rangle\right| \tag{3.12}
\end{align*}
$$

But, using (3.8) we get

$$
\begin{align*}
& \left\lvert\,\left[M \left(\left.L\left(u^{*}\right)-M\left(L\left(u_{\nu_{k}}\right)\right] \int_{\Omega}\left(1+\frac{\left|\nabla u^{*}\right|^{p(x)}}{\sqrt{1+\left|\nabla u^{*}\right|^{2 p(x)}}}\right)\left|\nabla u^{*}\right|^{p(x)-2} \nabla u^{*} \cdot\left(\nabla u_{\nu_{k}}-\nabla u^{*}\right) d x \right\rvert\,\right.\right.\right. \\
& \left.\leq\left.\frac{\vartheta_{\nu_{k}}}{p^{-}}\left|\int_{\Omega}\left(1+\frac{\left|\nabla u^{*}\right|^{p(x)}}{\sqrt{1+\left|\nabla u^{*}\right|^{2 p(x)}}}\right)\right| \nabla u^{*}\right|^{p(x)-2} \nabla u^{*} \cdot\left(\nabla u_{\nu_{k}}-\nabla u^{*}\right) d x \right\rvert\, \rightarrow 0 \text { as } k \rightarrow \infty, \tag{3.13}
\end{align*}
$$

where $\vartheta_{\nu_{k}}=\max \left\{\left\|u_{\nu_{k}}\right\|_{X}^{p^{-}},\left\|u_{\nu_{k}}\right\|_{X}^{p^{+}}\right\}+\max \left\{\left\|u^{*}\right\|_{X}^{p^{-}},\left\|u^{*}\right\|_{X}^{p^{+}}\right\}$is bounded.
Also, by $\left(A_{2}\right)$, (3.8) and the compact embedding of $X \hookrightarrow L^{\alpha(x)}(\Omega)$ we deduce, thanks to the Krasnoselki theorem, the continuity of the Nemytskii operator

$$
\begin{align*}
N_{f_{1}}: L^{\alpha(x)}(\Omega) & \rightarrow L^{\alpha^{\prime}(x)}(\Omega) \tag{3.14}\\
w & \longmapsto N_{f_{1}}(w),
\end{align*}
$$

given by $\left(N_{f_{1}}(w)\right)(x)=f_{1}(x, w(x)), \quad x \in \Omega$.
Hence

$$
\left\|f_{1}\left(w_{\nu_{k}}\right)-f_{1}(w)\right\|_{\alpha^{\prime}(x)} \rightarrow 0
$$

It follows from the definition of F and the above convergence that

$$
\begin{equation*}
\left|\left\langle F\left(w_{\nu_{k}}\right)-F(w), u_{\nu_{k}}-u^{*}\right\rangle\right| \rightarrow 0 \tag{3.15}
\end{equation*}
$$

Thus, from (3.12)-(3.15) we conclude that

$$
u_{\nu_{k}} \rightarrow u^{*} \quad \text { strongly in } X
$$

Since the possible limit of the sequence $\left(u_{\nu}\right)_{\nu \geq 1}$ is uniquely determined, the whole sequence converges toward $u^{*} \in X$

Therefore, from (3.7) and the continuous embedding $X \hookrightarrow L^{\alpha(x)}(\Omega)$, we get $u^{*}=T w \equiv u_{w}$.

On the other hand

$$
\begin{align*}
\frac{b(v, \lambda)}{\|v\|_{X}} & =\frac{\langle F(w), v\rangle-\langle A u, v\rangle}{\|v\|_{X}} \leq \frac{\langle F(w), v\rangle}{\|v\|_{X}}+\|A u\|_{X^{\prime}} \\
& \leq \frac{1}{\|v\|_{X}}\left[\int_{\Omega} f_{1}(x, w) v d x+\int_{\Gamma_{2}} f_{2}(x) \gamma v d \Gamma\right]+L_{A}\|u\|_{X}+\|A 0\|_{X^{\prime}} \\
& \leq C\left(\left\|f_{1}(w)\right\|_{\alpha^{\prime}(x)}+\left\|f_{2}\right\|_{p^{\prime}(x), \Gamma_{2}}+\|A 0\|_{X^{\prime}}+1\right) \tag{3.16}
\end{align*}
$$

Next, using the boundedness of the operator $N_{f_{1}}$ and the sequence $\left(u_{\nu}\right)_{\nu \geq 1}$, and the inf-sup property of the form b, we get $\left\|\lambda_{\nu}\right\|_{Y} \leq C$. It follows that up to a subsequence

$$
\lambda_{\nu} \rightarrow \lambda_{0} \quad \text { weakly in } Y
$$

for some $\lambda_{0} \in Y$.
So $\left(u^{*}, \lambda^{*}\right)$ and $\left(u^{*}, \lambda_{0}\right)$ are solutions of problem (3.1)-(3.2).Then, by the uniqueness $\lambda_{0}=\lambda^{*} \equiv \lambda_{w}$. This shows the continuity of T.

To prove that T is compact, let $\left(w_{\nu}\right)_{\nu \geq 1} \subseteq K$ be bounded in $L^{\alpha(x)}(\Omega)$ and $u_{\nu}=T\left(w_{\nu}\right)$. Since $\left(w_{\nu}\right)_{\nu \geq 1} \subseteq K,\left\|w_{\nu}\right\|_{X} \leq C$ and then, up to a subsequence again denoted by $\left(w_{\nu}\right)_{\nu \geq 1}$ we have

$$
w_{\nu} \rightarrow w \quad \text { weakly in } X
$$

By the compact embedding X into $L^{\alpha(x)}(\Omega)$, it follows that

$$
w_{\nu} \rightarrow w \text { strongly in } L^{\alpha(x)}(\Omega) .
$$

Now, following the same arguments as in the proof of the continuity of T we obtain

$$
u_{\nu}=T\left(w_{\nu}\right) \rightarrow T(w)=u \quad \text { strongly in } X
$$

Thus

$$
T\left(w_{\nu}\right) \rightarrow T(w) \text { strongly in } L^{\alpha(x)}(\Omega) .
$$

Hence, we can apply the Schauder fixed point theorem to obtain that T possesses a fixed point. This gives us a solution of $\left(u, \lambda_{0}\right) \in X \times \Lambda$ of Problem 1, which concludes the proof.

Next, we consider the uniqueness of solutions of (2.9). To this end, we also need the following hypothesis on the nonlinear term f_{1}.
(A4) There exists $b_{0} \geq 0$ such that

$$
(f(x, t)-f(x, s))(t-s) \leq b_{0}|t-s|^{p(x)} \quad \text { a.e. } \quad x \in \Omega, \forall t, s \in \mathbb{R} .
$$

Our uniqueness result reads as follows.
Theorem 3.2. Assume that (A1) - (A4) hold. If, in addition $2 \leq$ p for all $x \in \bar{\Omega}$, then (2.9) has a unique weak solution provided that

$$
\frac{k_{p}}{b_{0} \lambda_{*}^{-1}}<1,
$$

where

$$
\lambda_{*}=\inf _{u \in X \backslash\{0\}} \frac{\int_{\Omega}|\nabla u|^{p(x)} d x}{\int_{\Omega}|u|^{p(x)} d x}>0 .
$$

Proof. Theorem 3.1 gives a weak solution $(u, \lambda) \in X \times \Lambda$. Let $\left(u_{1}, \lambda_{1}\right),\left(u_{2}, \lambda_{2}\right)$ be two solutions of (2.9). Considering the weak formulation of u_{1} and u_{2} we have

$$
\begin{align*}
\left\langle A u_{i}, v\right\rangle+b\left(v, \lambda_{i}\right) & =\left\langle F\left(u_{i}\right), v\right\rangle \quad, \quad \forall v \in X \tag{3.17}\\
b\left(u_{i}, \mu-\lambda_{i}\right) & \leq 0 \quad \forall \mu \in \Lambda \subseteq Y \quad i=1,2 .
\end{align*}
$$

By choosing $v=u_{1}-u_{2}, \mu=\lambda_{2}$ if $i=1$ and $\mu=\lambda_{1}$ if $i=2$, we have

$$
\begin{align*}
\left\langle A u_{1}-A u_{2}, u_{1}-u_{2}\right\rangle+b\left(u_{1}-u_{2}, \lambda_{1}-\lambda_{2}\right) & =\left\langle F\left(u_{1}\right)-F\left(u_{2}\right), u_{1}-u_{2}\right\rangle, \forall v \in X \\
b\left(u_{1}-u_{2}, \lambda_{2}-\lambda_{1}\right) & \leq 0 \quad \forall \mu \in \Lambda \subseteq Y . \tag{3.18}
\end{align*}
$$

It gives

$$
\left\langle A u_{1}-A u_{2}, u_{1}-u_{2}\right\rangle \leq\left\langle F\left(u_{1}\right)-F\left(u_{2}\right), u_{1}-u_{2}\right\rangle .
$$

Then, from (3.18) and repeating the argument used in the proof of Proposition 2.8, ii), we get

$$
\begin{aligned}
k_{p} \int_{\Omega}\left|\nabla u_{1}-\nabla u_{2}\right|^{p(x)} d x & \leq\left|\left\langle f_{1}\left(u_{1}\right)-f_{1}\left(u_{2}\right), u_{1}-u_{2}\right\rangle\right| \\
& \leq\left|\int_{\Omega}\left(f_{1}\left(x, u_{1}\right)-f_{1}\left(x, u_{2}\right)\right)\left(u_{1}-u_{2}\right) d x\right| \\
& \leq\left|\int_{\Omega}\right| u_{1}-\left.u_{2}\right|^{p(x)} d x \leq b_{0} \lambda_{*}^{-1} \int_{\Omega}\left|\nabla u_{1}-\nabla u_{2}\right|^{p(x)} d x
\end{aligned}
$$

Consequently when $\frac{k_{p}}{b_{0} \lambda_{*}^{-1}}<1$, it follows that $u_{1}=u_{2}$. This completes the proof.

Acknowledgements. This research was partially supported by the Vicerectorado de Investigación-UNMSM-Perú.

References

[1] G.A. Afrouzi, M. Mirzapour, Eigenvalue problems for $p(x)$-Kirchhoff type equations, Electron. J. Differential Equations 2013 (2013) 1-10, J. Math. 1 (2000), 1-11.
[2] G.A. Afrouzi , N. T. Chung, Z. Naghizadeh, Multiple solutions for $p(x)$ Kirchhoff type problems with Robin boundary conditions, Electron. J. Differential Equations, Vol. 2022 (2022), No. 24, pp. 1-16.
[3] S. Antontsev, S. Shmarev, Handbook of Differential Equations, Stationary Partial Differential Equations, vol. 3, (2006) (Chapter 1).
[4] M. Boureanu, A. Matei, Nonlinear problems with $p()$-growth conditions and applications to antiplane contact models, Adv. Nonlinear Stud 14 (2014), 295-313.
[5] E. Cabanillas L., Z. Huaringa, A nonlocal $p(x) \& q(x)$ elliptic transmission problem with dependence on the gradient Int. J. Appl. Math, 34 (1)(2021) 93-108.
[6] M. Cojocaru, A. Matei, Well - posedness for a class of frictional contact models via mixed variational formulations, Nonlinear Anal RWA,47(2019) 127-141.
[7] S.S. Chow, Finite element error estimates for non-linear elliptic equations of monotone type, Numer. Math. 54 (|1989), 373-393.
[8] N. T. Chung, Multiple solutions for a class of $p(x)$-Kirchhoff type problems with Neumann boundary conditions, Adv. Pure Appl. Math., 4 (2) (2013), 165-177.
[9] Y. Chen , S. Levine , R. Rao, Variable Exponent, Linear Growth Functionals in Image Restoration, SIAM Journal of Applied Mathematics 66 (2006), 1383-1406.
[10] G. Dai , R. Ma , Solutions for a $p(x)$-Kirchhoff-type equation with Neumann boundary data, Nonlinear Anal.TMA 12 (2011), 2666-2680.
[11] L. Diening, P. Harjulehto, P. Hasto, M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes, vol. 2017, Springer-Verlag, Berlin, 2011.
[12] X. L. Fan, J. S. Shen, D. Zhao, Sobolev embedding theorems for spaces $W^{k, p(x)}(\Omega)$, J. Math. Anal. Appl. 262 (2001), 749-760.
[13] X. L. Fan, Q. H. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problems, Nonlinear Anal. 52 (2003), 1843-1852.
[14] X.L. Fan, D. Zhao,On the Spaces $L^{p(x)}$ and $W^{m, p(x)}$, J. Math. Anal. Appl. 263 (2001), 424-446.
[15] W. Han , M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies in Advanced Mathematics 30, American Mathematical Society, Providence, RI-International Press, Somerville, MA, 2002.
[16] M.K. Hamdani , N.T. Chung, D.D. Repovš, New class of sixth-order nonhomogeneous $p(x)$-Kirchhoff problems with sign-changing weight functions, Adv. Nonlinear Anal. 10 (2021), 1117-1131.
[17] S. Hüeber, A. Matei, B. Wohlmuth, Efficient algorithms for problems with friction. SIAM J. Sci. Comput. 29(1), 70-92 (2007). https://doi.org/10.1137/050634141.
[18] E. Hurtado, O. Miyagaki, R. Rodrigues, Multiplicity of solutions to class of nonlocal elliptic problems with critical exponents, 45 (7)(2022) 39493973.
[19] M. Rodrigues, Multiplicity of solutions on a nonlinear eigenvalue problem for p(x)-Laplacian-like operators , Mediterr. J. Math. 9(1)(2012), 211-223
[20] M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2002.
[21] M. Sofonea, A. Matei, Variational inequalities with applications. A study of antiplane frictional contact problems. In: Advances in mechanics and mathematics, vol. 18. New York: Springer, 2009
[22] N. Tsouli, M. Haddaoui M., E.M. Hssini , Multiple Solutions for a Critical p(x)-Kirchhoff Type Equations, Bol. Soc. Paran. Mat.38(4)(2020), 197211.
[23] A. Zerouali, B. Karim, O. Chakrone, A. Anane, Existence and multiplicity of elliptic problems with nonlinear boundary conditions and variable exponents. Bol. Soc. Parana. Mat. (3)33(2)(2015), 121-131.
[24] C. Vetro, Variable exponent $p(x)$-Kirchhoff type problem with convection, J. Math. Anal. Appl. 506 (2022) 125721.
[25] V.V.Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., 50 (1986), 675-710.

[^0]: ${ }^{1}$ Corresponding author: cleugenio@yahoo.com
 Received: 30 October 2022
 Revised: 30 October 2022
 Accepted: 07 January 2023

