Caspian Journal of Mathematical Sciences (CJMS)
University of Mazandaran, Iran
http://cjms.journals.umz.ac.ir
ISSN: 2676-7260
CJMS. 11(1)(2022), 181-190
(RESEARCH PAPER)

# Hamiltonian cycle in the power graph of direct product two $p$-groups of prime exponents 

Alireza Doostabadi ${ }^{1}$ and Maysam Yaghoobian ${ }^{2}$<br>${ }^{1}$ Faculty of Sciences, University of Zabol, Zabol, Iran.<br>${ }^{2}$ University of Gonabad, Gonabad, Iran.


#### Abstract

The power graph $\mathcal{P}(G)$ of a finite group $G$ is a graph whose vertex set is the group $G$ and distinct elements $x, y \in G$ are adjacent if one is a power of the other, that is, $x$ and $y$ are adjacent if $x \in\langle y\rangle$ or $y \in\langle x\rangle$. Suppose that $G=P \times Q$, where $P$ (resp. $Q$ ) is a finite $p$-group (resp. $q$-group) of exponent $p$ (resp. $q$ ) for distinct prime numbers $p<q$. In this paper, we determine necessary and sufficient conditions for existence of Hamiltonian cycles in $\mathcal{P}(G)$.


Keywords: Power graph, Direct product, p-Group, Hamiltonian cycle

2020 Mathematics subject classification: 05C25, 05C45; Secondary 05C76.

## 1. Introduction

The power graph $\mathcal{P}(G)$ of a group $G$ is a graph with elements of $G$ as its vertices such that two distinct elements $x$ and $y$ are adjacent if $y=x^{m}$ or $x=y^{m}$ for some positive integer $m$. Clearly, two distinct elements $x$ and $y$ are adjacent if and only if $x \in\langle y\rangle$ or $y \in\langle x\rangle$ when $G$ is a finite group.

Power graphs of groups are introduced by Kelarev and Quinn [8, 9]. In [3], Cameron shows that two finite groups with isomorphic power

[^0]graphs must have the same number of elements of equal orders. Furthermore, Cameron and Gosh [4] show that two finite abelian groups with isomorphic power graphs are isomorphic.

For a finite group $G$, all nonidentity elements are adjacent to the identity element, hence $\mathcal{P}(G)$ is always connected. In [6], we introduced proper power graph $\mathcal{P}^{*}(G)$ to be the induced subgraph of $\mathcal{P}(G)$ whose elements are nontrivial elements of $G$ and investigated whether the proper power graph of a finite group is connected? Also, we computated the number of connected components of the graph $\mathcal{P}^{*}(G)$ for some classes of finite groups, say nilpotent groups and symmetric groups. The number of connected components of a graph $\Gamma$ is denoted by $c(\Gamma)$. In this paper, we fix prime numbers $p<q$, and a $p$-group $P$ and a $q$-group $Q$ of orders $p^{m}$ and $q^{n}$ with exponents $p, q$, respectively. Let $c_{p}$ and $c_{q}$ denote the number of connected components of $\mathcal{P}^{*}(P)$ and $\mathcal{P}^{*}(Q)$, respectively. If $x, y \in \mathcal{P}(G)$ are adjacent, then we write $x \sim y$. For a subset $X$ of the group $G, \mathcal{P}(X)$ indicates the induced subgraph of $\mathcal{P}(G)$ with vertex set $X$. Chakrabarty, Ghosh, and Sen [5] studied power graphs that are complete or Eulerian or Hamiltonian. In this paper, we will give necessary and sufficient conditions for existence of Hamiltonian cycles in the power graph $\mathcal{P}(P \times Q)$ of directe product the groups $P$ and $Q$.

## 2. Main result

The following simple condition is necessary for deciding whether a given graph is Hamiltonian (see[2]).

Theorem 2.1. Let $S$ be a set of vertices of a Hamiltonian graph $\Gamma$. Then $c(\Gamma-S) \leq|S|$, where $c(\Gamma-S)$ is the number of connected components of $\Gamma-S$.

Lemma 2.2. Suppose that $G=H \times K$, and $c\left(\mathcal{P}^{*}(H)\right)=m$ and $c\left(\mathcal{P}^{*}(K)\right)=n$. If the graph $\mathcal{P}(G)$ is Hamiltonian, then
(1) $m n \leq|H|+|K|-1$;
(2) $n \leq|H|$ and $m \leq|K|$.

Proof. Let $H_{1}, \ldots, H_{m}$ and $K_{1}, \ldots, K_{n}$ of the connected components of the graphs $\mathcal{P}^{*}(H)$ and $\mathcal{P}^{*}(K)$. For every $1 \leq i \leq m$ and $1 \leq j \leq n$, let

$$
G_{i, j}=H_{i} \times K_{j}, \quad G_{i, K}=H_{i} \times K, \quad G_{H, j}=H \times K_{j} .
$$

Now, for every $g^{\prime} \in G$, one can show that
(1) if $g \in G_{i, j}$ and $g \sim g^{\prime}$, then $g^{\prime} \in G_{i, j} \cup(H \times\{e\} \cup(\{e\} \times K))$;
(2) if $g \in G_{i, K}$ and $g \sim g^{\prime}$, then $g^{\prime} \in G_{i, K} \cup(\{e\} \times K)$;
(3) if $g \in G_{H, j}$ and $g \sim g^{\prime}$, then $g^{\prime} \in G_{H, j} \cup(H \times\{e\})$.

By (1), (2), and (3), we can show that the connected components of the graphs $\mathcal{P}(G) \backslash(H \times\{e\} \cup(\{e\} \times K)), \mathcal{P}(G) \backslash(\{e\} \times K)$, and $\mathcal{P}(G) \backslash$ $(H \times\{e\})$ are $G_{i, j}, G_{i, K}$, and $G_{H, j}$, respectively. By theorem 2.1, the results follows.

In the following theorem [6], the number of connected components of a finite $p$-group is computed.

Theorem 2.3. Let $G$ be a finite p-group. Then there exists a one-toone correspondence between the connected components of $\mathcal{P}^{*}(G)$ and the minimal cyclic subgroups of $G$.

Example 2.4. If $P$ is a finite $p$-group of exponent $p$, then $\mathcal{P}^{*}(P)$ is a union of complete graphs of order $p-1$. Moreover, the number of connected components of $\mathcal{P}^{*}(P)$ is equal to $\left(p^{m}-1\right) /(p-1)$, where $p^{m}$ is the order of $P$.

Theorem 2.5. Let $G=P \times Q$ and $m, n \geq 2$. If $c_{q} \leq p^{m}$ and $c_{p} \leq q$, then $\mathcal{P}(G)$ is Hamiltonian.

Proof. Let $H_{1}, \ldots, H_{m}$ and $K_{1}, \ldots, K_{n}$ be connected components of the graphs $\mathcal{P}^{*}(H)$ and $\mathcal{P}^{*}(K)$, respectively. For every $1 \leq r \leq c_{p}$ and $1 \leq s \leq c_{q}$, we know that

$$
H_{r}=\left\langle x_{r}\right\rangle \backslash\{e\}, \quad\left|x_{r}\right|=p, \quad K_{s}=\left\langle y_{s}\right\rangle \backslash\{e\}, \quad\left|y_{s}\right|=q .
$$

Put

$$
X_{r s}=\left\{x_{r}^{i} y_{s}^{j} \mid 1 \leq i \leq p-1,1 \leq j \leq q-1\right\}
$$

and

$$
Y_{s}=\bigcup_{r=1}^{p+1} X_{r s} \cup\left\{y_{s}^{j} \mid 1 \leq j \leq q-1\right\} .
$$

Note that the subgraph $\mathcal{P}\left(X_{r s}\right)$ is complete and has a Hamiltonian path

$$
L_{r s}: x_{r} y_{s} \sim x_{r}^{2} y_{s} \sim x_{r}^{i} y_{s}^{j} \sim \cdots \sim x_{r}^{p-1} y_{s}^{q-1} .
$$

We claim that for every $1 \leq s \leq c_{q}$, the graph $\mathcal{P}\left(Y_{s}\right)$ has a Hamiltonian path, denoted by $L_{s}$, which begins from a vertex of $X_{r s}$ and ends at a vertex of $X_{r^{\prime} s}$, where $r \neq r^{\prime}$.

For simplicity, let $r=1$ and $r^{\prime}=c_{p}$. Since $c_{p} \leq q$, we can write the following Hamiltonian path:
$L^{*}{ }_{s}: L_{1 s} \sim y_{s} \sim L_{2 s} \sim y_{s}^{2} \sim \cdots \sim L_{c_{p}-1 s} \sim y_{s}^{c_{p}-1} \sim y_{s}^{c_{p}} \sim \cdots \sim y_{s}^{q-1} \sim L_{c_{p} s}$
To prove the claim, it is enough to substitute $L_{1 s}$ and $L_{c_{p} s}$ with $L_{r s}$ and $L_{r^{\prime} s}$ in the path $L^{*} s$, respectively.

Now, since $c_{q} \leq p^{m}$ we can extend the paths $L_{s}$ to a cycle in the graph $\mathcal{P}(G)$ as

$$
\begin{aligned}
\mathcal{C}: e & \sim L_{1} \sim x_{1} \sim L_{2} \sim x_{2} \sim \cdots \sim x_{c_{p}} \sim L_{c_{p}+1} \\
& \sim x_{1}^{2} \sim L_{c_{p}+2} \sim \cdots \sim x_{r}^{i} \sim L_{s} \sim x_{r^{\prime}}^{j} \sim \cdots \sim x_{c_{p}}^{p-1} \sim L_{c_{q}} \sim e
\end{aligned}
$$

where $L_{1}$ is a Hamiltonian path of $Y_{1}$ that ends at a vertex of $X_{11}$ and $L_{2}$ is a Hamiltonian path of $Y_{2}$ that begins from a vertex of $X_{12}$ and ends at a vertex of $X_{22}$. Actually, for $s \geq 2$, if $L_{s}$ is the above cycle between $x_{r}{ }^{i}$ and $x_{r^{\prime}}^{j}$ for $r \neq r^{\prime}$, then we $L_{s}$ is a Hamiltonian path of $Y_{s}$ with beginning from a vertex of $X_{r s}$ and ending at a vertex of $X_{r^{\prime} s}$.

Suppose that $x \in G$ is an element of order $p$. We know that $x \in\left\langle x_{r}\right\rangle$ for some $1 \leq r \leq c_{p}$. If $x$ is not in the cycle $\mathcal{C}$, then since $c_{p} \leq q \leq c_{q}$, we can join $x$ to $x_{r}$ in $\mathcal{C}$, hence the cycle $\mathcal{C}$ will be made into a Hamiltonian cycle of $\mathcal{P}(G)$ by continuing this process.

Corollary 2.6. Let $G=\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p}\right) \times\left(\mathbb{Z}_{q} \times \mathbb{Z}_{q}\right)$. Then the graph $\mathcal{P}(G)$ is Hamltonian if and only if $q \leq p^{2}-1$.

Proof. Put $m=n=2$ in Theorm 2.5.
Example 2.7. The graph $\mathcal{P}\left(\mathbb{Z}_{6} \times \mathbb{Z}_{6}\right)$ is Hamiltonian.
The following paths in the $\mathcal{P}\left(\mathbb{Z}_{6} \times \mathbb{Z}_{6}\right)$ contain all elements of order 6 and 3 :
(1) $L_{1}:(\overline{0}, \overline{1}) \sim(\overline{0}, \overline{5}) \sim(\overline{0}, \overline{2}) \sim(\overline{3}, \overline{2}) \sim(\overline{3}, \overline{4}) \sim(\overline{0}, \overline{4}) \sim(\overline{3}, \overline{1}) \sim$ $(\overline{3}, \overline{5})$;
(2) $L_{2}:(\overline{1}, \overline{3}) \sim(\overline{5}, \overline{3}) \sim(\overline{2}, \overline{0}) \sim(\overline{4}, \overline{3}) \sim(\overline{2}, \overline{3}) \sim(\overline{4}, \overline{0}) \sim(\overline{1}, \overline{0}) \sim$ $(\overline{5}, \overline{0})$;
(3) $L_{3}:(\overline{5}, \overline{4}) \sim(\overline{1}, \overline{2}) \sim(\overline{2}, \overline{4}) \sim(\overline{1}, \overline{5}) \sim(\overline{5}, \overline{1}) \sim(\overline{4}, \overline{2}) \sim(\overline{2}, \overline{1}) \sim$ ( $\overline{4}, \overline{5}$ );
(4) $L_{4}:(\overline{2}, \overline{5}) \sim(\overline{4}, \overline{1}) \sim(\overline{2}, \overline{2}) \sim(\overline{1}, \overline{4}) \sim(\overline{5}, \overline{2}) \sim(\overline{4}, \overline{4}) \sim(\overline{5}, \overline{5}) \sim$ $(\overline{1}, \overline{1})$.
Hence, we obtain the Hamiltonian cycle

$$
(\overline{0}, \overline{0}) \sim L_{1} \sim(\overline{3}, \overline{3}) \sim L_{2} \sim(\overline{3}, \overline{0}) \sim L_{3} \sim(\overline{0}, \overline{3}) \sim L_{4} \sim(\overline{0}, \overline{0}) .
$$

of $\mathcal{P}\left(\mathbb{Z}_{6} \times \mathbb{Z}_{6}\right)$.
Lemma 2.8. Let $G=P \times Q$. Suppose that $m \geq 3$ and $n \geq 2$. If
(i) $c_{p} \leq q^{n}$,
(ii) $c_{q} \leq p^{m}$, and
(iii) $c_{p} c_{q} \leq p^{m}+q^{n}-1$,
then
(a) $p^{m}<q^{n}$.

Also, if $n=2$, then
( $\left.b_{1}\right) c_{p} \leq 2 q-2$,
( $b_{2}$ ) $p^{m-1}<q$,
( $b_{3}$ ) $c_{p}-p<q-2$, and
$\left(b_{4}\right)$ the graph $\mathcal{P}(G)$ is Hamiltonian.
Proof. (a) First suppose that $n=2$. Assume on the contrary that $q^{2} \leq p^{m}$, but it is clear that $q^{2} \neq p^{m}$, then $q^{2}<p^{m}$. From (iii), we conclude that

$$
\left(1+p+\cdots+p^{m-1}\right)(q-p+2) \leq q^{2}
$$

and this results $(q-p+2) \leq p-1$, since otherwise

$$
\left(1+p+\cdots+p^{m-1}\right)(q-p+2)>p^{m}-1 \quad \text { or } \quad p^{m}-1<q^{2}<p^{m}
$$

which is a contradiction. Hence $q \leq 2 p-3$.
Put $q=p+t$ with $0<t \leq p-3$. Using (iii), we get ether

$$
\left(1+p+\cdots+p^{m-1}\right)(p+t+1) \leq p^{m}+p^{2}+2 p t+t^{2}-1
$$

or
$0<\left(1+p+\cdots+p^{m-1}\right)+\left(p+p^{2}+\cdots+p^{m-1}\right)-p^{2} \leq(p-3)\left[(p-3)+2 p-\left(1+p+\cdots+p^{m-1}\right)\right]$.
Hence

$$
\left[(p-3)+2 p-\left(1+p+\cdots+p^{m-1}\right)\right]>0
$$

when $m \geq 3$. Then $2 p-p^{2}-4>0$ or $p<2$, which is a contradiction.
Now, suppose that $n \geq 3$. Again, we assume on the contrary that $q^{n}<p^{m}$. By (iii) and the fact that $q^{n} \leq p^{m}-1$, we obtain

$$
q^{n}-1 \leq 2(q-1)(p-1)
$$

or equivalently

$$
1+q+\cdots+q^{n-1} \leq 2(p-1)
$$

Since $n \geq 3$,

$$
p^{2}<q^{2}<1+q+\cdots+q^{n-1}<2(p-1)<2 p
$$

which implies that $p<2$, a contradiction. Therefore $p^{m}<q^{n}$.
In what follows, we assume that $n=2$.
$\left(b_{1}\right)$ According to (iii) and $p^{m}<q^{2}$, we have

$$
c_{p}(q+1) \leq p^{m}+q^{2}-1<2 q^{2}-1 \quad \text { or } \quad c_{p} \leq 2 q-2 .
$$

( $b_{2}$ ) From (a) and $p^{m}<q^{2}$, we get
(*) If $m \geq 4$, then $q>p^{2}$ and by (iii),

$$
c_{p} \leq(q-1)+\frac{p^{m}}{q+1}<(q-1)+\frac{p^{m}}{q} .
$$

Thus, $c_{p}-p^{m-2}<q-1<q$ or

$$
p^{m-1}<\left(1+p+p^{2}+\cdots+p^{m-2}+p^{m-1}\right)-p^{m-2}<q .
$$

Hence $p^{m-1}<q$.
${ }^{(* *)}$ Suppose that $m=3$. By (iii), we conclude that

$$
q^{2}-\left(p^{2}+p+1\right) q-\left(-p^{3}+p^{2}+p+2\right) \geq 0
$$

Hence either $q \leq q_{1}$ or $q \geq q_{2}$, where $q_{1}, q_{2}=\frac{1}{2}\left(p^{2}+p+1 \mp \sqrt{\Delta}\right)$ with $\Delta=p^{4}-2 p^{3}+7 p^{2}+6 p+9>0$.

If $q \leq q_{1}$, then $c_{p}=p^{2}+p+1>2 q$, which is a contradiction by (a). Therefore, $q \geq q_{2}$. On the other hand, the function $g(p)=q_{2}-p^{2}$ has minimum 2 in $[0, \infty)$. Hence, for $q \geq q_{2}$, we have $q>p^{2}$
$\left(b_{3}\right)$ By (iii), we have

$$
(1+q) c_{p} \leq p^{m}+q^{2}-1 \leq p q+q^{2}-1=(q+1)(p+q-1)-p
$$

or equivalently

$$
c_{p} \leq(p+q-1)-\frac{p}{q+1} .
$$

Therefore $c_{p}-p<q-2$.
$\left(b_{4}\right)$ If $c_{p}<c_{q}$, then by Theorem 2.5. $\mathcal{P}(G)$ is Hamiltonian. Hence assume that $c_{q} \leq c_{p}$. Let $H_{1}, H_{2}, \ldots, H_{c_{p}}$ and $K_{1}, K_{2}, \ldots, K_{c_{q}}$ be connected components of $\mathcal{P}^{*}(P)$ and $\mathcal{P}^{*}(Q)$, respectively. Actually, for every $1 \leq r \leq c_{p}$ and $1 \leq s \leq c_{q}$,

$$
H_{r}=\left\langle x_{r}\right\rangle \backslash\{e\}, \quad\left|x_{r}\right|=p \quad \text { and } \quad K_{s}=\left\langle y_{s}\right\rangle \backslash\{e\}, \quad\left|y_{s}\right|=q .
$$

Put

$$
X_{r s}=\left\{x_{r}^{i} y_{s}^{j}: 1 \leq i \leq p-1,1 \leq j \leq q-1\right\}
$$

and

$$
B=\left\{1,2, \ldots, c_{q}\right\} .
$$

If $1 \leq r \leq c_{q}$, we define the subset $B_{r}=\{\overline{r-1}, \bar{r}, \ldots, \overline{r+p-2}\}$ of $B$ where $\bar{u}$ denotes the remainder of $u$ indivision by $c_{q}$, i.e. $u \equiv \bar{u}\left(\bmod c_{q}\right)$, and $B_{r}=\varnothing$ for every $c_{q}+1 \leq r \leq c_{p}$.

Note that the subgraph induced by $X_{r s}$ is complete and has a Hamiltonian path

$$
L_{r s}: x_{r} y_{s} \sim x_{r}^{2} y_{s} \sim x_{r}^{i} y_{s}^{j} \sim \cdots \sim x_{r}^{p-1} y_{s}^{q-1} .
$$

Now, for each $1 \leq r \leq c_{q}$, we define the path $\Lambda_{r}$ as follows

$$
\Lambda_{r}: L_{r \overline{r-1}} \sim x_{r} \sim L_{r r+1} \sim x_{r}^{2} \sim L_{r \overline{r+2}} \sim x_{r}^{3} \sim \cdots \sim x_{r}^{p-1} \sim L_{r \bar{r}} .
$$

The paths $\Lambda_{r}$ can be joined to obtain a longer path

$$
L: \Lambda_{1} \sim y_{1} \sim \Lambda_{2} \sim y_{2} \sim \Lambda_{3} \sim \cdots \sim \Lambda_{c_{q}} \sim y_{c_{q}} .
$$

Next, for every $1 \leq s \leq c_{q}$, we define the subsets $\Omega_{s}$ and $\Delta_{s}$ of the set $G \backslash L_{e}$, where $L_{e}$ is the set of elements used in the path $L$ as

$$
\Omega_{s}=\left\{y_{s}^{2}, y_{s}^{3}, \ldots, y_{s}^{q-1}\right\} \quad \text { and } \quad \Delta_{s}=\bigcup X_{r s}
$$

where union is on $1 \leq r \leq c_{p}$ such that $s \notin B_{r}$. It is clear that $G \backslash L_{e}$ is partitioned by the subsets $\Omega_{s}, \Delta_{s}$, and $\{e\}$.

On the other hand, for every $1 \leq s \leq c_{q}$, w ehave

$$
M_{s}=\left\{1 \leq r \leq c_{p}: s \in B_{r}\right\}=\{\overline{s-p+2}, \overline{s-p+1}, \ldots, \bar{s}, \overline{s+1}\} .
$$

Hence

$$
\left\{X_{r s}: s \notin B_{r}\right\} \mid=c_{p}-p .
$$

Since $c_{p}-p<q-2$, we have a path $\Gamma_{s}$ containing elements of $G \backslash L_{e}$ as
$\Gamma_{s}: L_{r_{1} s} \sim y_{s}^{2} \sim L_{r_{2} s} \sim y_{s}^{3} \sim \cdots \sim L_{r_{c_{p}-p} s} \sim y_{s}{ }^{c_{p}-p+1} \sim y_{s}{ }^{c_{p}-p+2} \sim \cdots \sim y_{s}^{q-1}$
where $r_{i} \in M_{s}$ for $1 \leq i \leq c_{p}-p$.
Again, by attaching the paths $\Lambda_{r}, \Gamma_{s}, L$, and identity element $e$ we obtain the Hamiltonian cycle

$$
\mathcal{C}: e \sim \Lambda_{1} \sim y_{1} \sim \Gamma_{1} \sim \Lambda_{2} \sim y_{2} \sim \Gamma_{2} \sim \cdots \sim \Lambda_{c_{q}} \sim y_{c_{q}} \sim \Gamma_{c_{q}} \sim e,
$$

as required.

Theorem 2.9. Let $G=P \times Q$, where $P$ and $Q$ are groups of order $p^{m}, q^{n}$ and with exponents $p, q$, respectively. The graph $\mathcal{P}(G)$ is Hamiltonian if and only if
(i) $c_{q} \leq p^{m}$;
(ii) $c_{p} \leq q^{n}$; and
(iii) $c_{p} c_{q} \leq p^{m}+q^{n}-1$.

Proof. Assume that the graph $\mathcal{P}(G)$ is Hamiltonian. Then, by Lemma 2.2, the results hold. For the converse, we discuss on the numbers $n, m$ and show that $\mathcal{P}(G)$ is Hamiltonian.
(1) If $n=1$ or $m=1$, then $G=\mathbb{Z}_{p} \times Q$ or $\mathbb{Z}_{q} \times P$ and $\mathcal{P}(G)$ is Hamiltonian by Corollary 2.15 [7].
(2) If $n=m=2$, then by Theorem 2.6, the graph $\mathcal{P}(G)$ is Hamiltonian.
(3) If $n=2$ and $m \geq 3$, then the graph $\mathcal{P}(G)$ is Hamiltonian by Lemma 2.8.
(4) If $n \geq 3$ and $m \in \mathbb{N}$, then the assumptions yields that $n=3$. First observe that by Lemma 2.8 and the fact that $p<q$, we get $\frac{p^{m}}{q^{n}-1} \leq 1$, hence $p^{m}-1 \leq 2(p-1)(q-1)$ by part (iii).

On the other hand, when $c_{q} \leq p^{m}$, we get $q\left(1+q+\cdots+q^{n-2}\right) \leq$ $2(p-1)(q-1)$. Since $p<q$, we have $1+q+\cdots+q^{n-2} \leq 2 q-2$ and we conclude that $n-2 \leq 1$ or $n \leq 3$. Thus, $n=3$ and the proof is complete.

Now, we show that $\mathcal{P}(G)$ is Hamiltonian. By part (iii), we have

$$
\frac{q^{3}}{1+p+p^{2}+\cdots+p^{m-1}}-q^{2}>0
$$

or equivalently $\left(1+p+p^{2}+\cdots+p^{m-1}\right)<q$. Therefore, by Theorem 2.5, the graph $\mathcal{P}(G)$ is Hamiltonian.

Example 2.10. Suppose that $G=P \times Q$, where $P$ and $Q$ are groups of orders $5^{3}$ and $29^{2}$, respectively. Then the graph $\mathcal{P}(G)$ is Hamiltonian. We have
(1) $c_{p}=31 \leq 29^{2}=841$
(2) $c_{q}=30, \leq 125=5^{3}$
(3) $31 \times 30=930 \leq 5^{3}+29^{2}-1=965$

Then by Lemma 2.8, $5^{3}=125 \leq 29^{2}=841$ and the graph $\mathcal{P}(G)$ is Hamiltonian.

Additional Details: Using the symbols introduced in the proof of Lemma 2.8, put $B=\{1,2,3, \ldots, 30\}$ and choose the subsets $B_{r}$ of $B$ for every $1 \leq r \leq 31$ as

$$
\begin{aligned}
B_{1} & =\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}=\{30,1,2,3,4\}, \quad B_{2}=\{1,2,3,4,5\}, \quad B_{3}=\{2,3,4,5,6\}, \ldots, \\
B_{28} & =\{27,28,29,30,1\}, \quad B_{29}=\{28,29,30,1,2\}, \quad B_{30}=\{29,30,1,2,3\}, \quad B_{31}=\emptyset .
\end{aligned}
$$

For every $1 \leq r \leq 31$ and $1 \leq s \leq 30$,

$$
H_{r}=\left\langle x_{r}\right\rangle \backslash\{e\}, \quad\left|x_{r}\right|=5 \quad \text { and } \quad K_{s}=\left\langle y_{s}\right\rangle \backslash\{e\}, \quad\left|y_{s}\right|=29 .
$$

Also,

$$
X_{r s}=\left\{x_{r}^{i} y_{s}^{j} \mid 1 \leq i \leq 4,1 \leq j \leq 28\right\} .
$$

Corresponding to the subsets $B_{r}$, we write the sets $X_{r s}$ in a table

|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $X_{1(30)}$ | $X_{12}$ | $X_{13}$ | $X_{14}$ | $X_{11}$ |
| 2 | $X_{21}$ | $X_{23}$ | $X_{24}$ | $X_{25}$ | $X_{22}$ |
| 3 | $X_{32}$ | $X_{34}$ | $X_{35}$ | $X_{36}$ | $X_{33}$ |
| $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ |
| 28 | $X_{(28)(27)}$ | $X_{(28)(29)}$ | $X_{(28)(30)}$ | $X_{(28) 1}$ | $X_{(28)(28)}$ |
| 29 | $X_{(29)(28)}$ | $X_{(29)(30)}$ | $X_{(29) 1}$ | $X_{(29) 2}$ | $X_{(29)(29)}$ |
| 30 | $X_{(30)(29)}$ | $X_{(30) 1}$ | $X_{(30) 2}$ | $X_{(30) 3}$ | $X_{(30)(30)}$ |

The table of paths

|  |  |
| :---: | :---: |
| $\Lambda_{1}$ | $L_{1(30)} \sim x_{1} \sim L_{12} \sim x_{1}^{2} \sim L_{13} \sim x_{1}^{3} \sim L_{14} \sim x_{1}^{4} \sim L_{11}$ |
| $\Lambda_{2}$ | $L_{21} \sim x_{2} \sim L_{23} \sim x_{2}^{2} \sim L_{24} \sim x_{2}^{3} \sim L_{25} \sim x_{2}^{4} \sim L_{22}$ |
| $\Lambda_{3}$ | $L_{32} \sim x_{3} \sim L_{34} \sim x_{3}^{2} \sim L_{35} \sim x_{3}^{3} \sim L_{36} \sim x_{3}^{4} \sim L_{33}$ |
| $\vdots$ | $\vdots$ |
| $\Lambda_{28}$ | $L_{(28)(27)} \sim x_{28} \sim L_{(28)(29)} \sim x_{28}^{2} \sim L_{(28)(30)} \sim x_{28}^{3} \sim L_{(28) 1} \sim x_{28}^{4} \sim L_{(28)(28)}$ |
| $\Lambda_{29}$ | $L_{(29)(28)} \sim x_{29} \sim L_{(29)(30)} \sim x_{29}^{2} \sim L_{(29) 1} \sim x_{29}^{3} \sim L_{(29) 2} \sim x_{29}^{4} \sim L_{(29)(29)}$ |
| $\Lambda_{30}$ | $L_{(30)(29)} \sim x_{30} \sim L_{(30) 1} \sim x_{30}^{2} \sim L_{(30) 2} \sim x_{30}^{3} \sim L_{(30) 3} \sim x_{30}^{4} \sim L_{(30)(30)}$ |

The paths $\Lambda_{r}$ can be joined to make a longer path

$$
L: \Lambda_{1} \sim y_{1} \sim \Lambda_{2} \sim y_{2} \sim \Lambda_{3} \sim \cdots \sim \Lambda_{30} \sim y_{30} .
$$

On the other hand, the $X_{r 1}$ 's and $X_{r 2}$ 's used above are $X_{11}, X_{21}, X_{(28) 1}, X_{(29) 1}, X_{(30) 1}$ and $X_{12}, X_{22}, X_{32}, X_{(29) 2}, X_{(30) 2}$, respectively.

|  |  |
| :---: | :---: |
| $\Gamma_{1}$ | $L_{31} \sim y_{1}^{2} \sim L_{41} \sim y_{1}^{3} \sim L_{51} \sim y_{1}^{4} \sim \cdots \sim L_{(27) 1} \sim y_{1}^{26} \sim L_{(30) 1} \sim y_{1}^{27} \sim y_{1}^{28}$ |
| $\Gamma_{2}$ | $L_{42} \sim y_{2}^{2} \sim L_{52} \sim y_{2}^{3} \sim L_{62} \sim y_{2}^{4} \sim \cdots \sim L_{(27) 2} \sim y_{2}^{25} \sim L_{(28) 2} \sim y_{2}^{26} \sim L_{(30) 2} \sim y_{2}^{27} \sim y_{2}^{28}$ |
| $\Gamma_{3}$ | $L_{53} \sim y_{3}^{2} \sim L_{63} \sim y_{3}^{3} \sim L_{73} \sim y_{3}^{4} \sim \cdots \sim L_{(28) 3} \sim y_{3}^{25} \sim L_{(29) 3} \sim y_{3}^{26} \sim L_{(31) 3} \sim y_{3}^{27} \sim y_{3}^{28}$ |
| $\vdots$ | $\vdots$ |
| $\Gamma_{28}$ | $L_{1(28)} \sim y_{28}{ }^{2} \sim \cdots \sim L_{(24)(28)} \sim y_{28}^{25} \sim L_{(30)(28)} \sim y_{28}{ }^{26} \sim L_{(31)(28)} \sim y_{28}{ }^{27} \sim y_{28}{ }^{28}$ |
| $\Gamma_{29}$ | $L_{1(29)} \sim y_{29} \sim L_{2(29)} \sim y_{29}{ }^{36} \sim \cdots \sim L_{(25)(29)} \sim y_{29}{ }^{26} \sim L_{(31)(29)} \sim y_{29}{ }^{27} \sim y_{29}{ }^{28}$ |
| $\Gamma_{30}$ | $L_{2(30)} \sim y_{30}{ }^{2} \sim L_{3(30)} \sim y_{30}{ }^{4} \sim \cdots \sim L_{(26)(30)} \sim y_{30}^{26} \sim L_{(31)(30)} \sim y_{30}{ }^{27} \sim y_{30}{ }^{28}$ |

Therefore, we have a Hamiltonian cycle as in the following
$\mathcal{C}: e \sim \Lambda_{1} \sim y_{1} \sim \Gamma_{1} \sim \Lambda_{2} \sim y_{2} \sim \Gamma_{2} \sim \cdots \sim \Lambda_{30} \sim y_{30} \sim \Gamma_{30} \sim e$.

## References

[1] W. Bannuscher and G. Tiedt, On a theorem of Deaconescu, Rostock. Math. Kolloq. 47(1994), 23-26.
[2] J. A. Bondy and U. S. R. Murty, Graph Theory, New York, Springer, 2008.
[3] P. J. Cameron, The power graph of a finite group II, J. Group Theory. 13(2010), 779-783.
[4] P. J. Cameron and S. Ghosh, The power graph of a finite group, Discrete Math. 311(2011), 1220-1222.
[5] I. Chakrabarty, S. Ghosh, and M. K. Sen, Undirected power graphs of semigroups, Semigroup Forum. 78(2009), 410-426.
[6] A. Doostabadi and M. Farrokhi D. G., On the connectivity of proper power graphs of finite groups, Comm. Algebra. 43(2015), 4305-4319.
[7] A. Doostabadi, M. A. Hashemi, and M. Yaghoobian, On the power graphs of finite groups and Hamilton cycle, Indag. Math.(2018), Submitted.
[8] A. V. Kelarev and S. J. Quinn, A combinatorial property and power graphs of groups, Contrib. General Algebra. 12(2000), 229-235.
[9] A. V. Kelarev and S. J. Quinn, Directed graph and combinatorial properties of semigroups, J. Algebra. 251 (2002), 16-26.


[^0]:    ${ }^{1}$ Corresponding author: aldoostabadi@uoz.ac.ir Received: 05 November 2020
    Revised: 13 January 2021
    Accepted:18 January 2021

