Caspian Journal of Mathematical Sciences (CJMS) University of Mazandaran, Iran http://cjms.journals.umz.ac.ir ISSN: 2676-7260 CJMS. **11**(1)(2022), 181-190

(RESEARCH PAPER)

Hamiltonian cycle in the power graph of direct product two *p*-groups of prime exponents

Alireza Doostabadi ¹ and Maysam Yaghoobian ² ¹ Faculty of Sciences, University of Zabol, Zabol, Iran. ² University of Gonabad, Gonabad, Iran.

ABSTRACT. The power graph $\mathcal{P}(G)$ of a finite group G is a graph whose vertex set is the group G and distinct elements $x, y \in G$ are adjacent if one is a power of the other, that is, x and y are adjacent if $x \in \langle y \rangle$ or $y \in \langle x \rangle$. Suppose that $G = P \times Q$, where P (resp. Q) is a finite p-group (resp. q-group) of exponent p (resp. q) for distinct prime numbers p < q. In this paper, we determine necessary and sufficient conditions for existence of Hamiltonian cycles in $\mathcal{P}(G)$.

Keywords: Power graph, Direct product, p-Group, Hamiltonian cycle

2020 Mathematics subject classification: 05C25, 05C45; Secondary 05C76.

1. INTRODUCTION

The power graph $\mathcal{P}(G)$ of a group G is a graph with elements of G as its vertices such that two distinct elements x and y are adjacent if $y = x^m$ or $x = y^m$ for some positive integer m. Clearly, two distinct elements x and y are adjacent if and only if $x \in \langle y \rangle$ or $y \in \langle x \rangle$ when G is a finite group.

Power graphs of groups are introduced by Kelarev and Quinn [8, 9]. In [3], Cameron shows that two finite groups with isomorphic power

¹Corresponding author: aldoostabadi@uoz.ac.ir Received: 05 November 2020 Revised: 13 January 2021 Accepted:18 January 2021

¹⁸¹

graphs must have the same number of elements of equal orders. Furthermore, Cameron and Gosh [4] show that two finite abelian groups with isomorphic power graphs are isomorphic.

For a finite group G, all nonidentity elements are adjacent to the identity element, hence $\mathcal{P}(G)$ is always connected. In [6], we introduced proper power graph $\mathcal{P}^*(G)$ to be the induced subgraph of $\mathcal{P}(G)$ whose elements are nontrivial elements of G and investigated whether the proper power graph of a finite group is connected? Also, we computated the number of connected components of the graph $\mathcal{P}^*(G)$ for some classes of finite groups, say nilpotent groups and symmetric groups. The number of connected components of a graph Γ is denoted by $c(\Gamma)$. In this paper, we fix prime numbers p < q, and a p-group P and a q-group Q of orders p^m and q^n with exponents p, q, respectively. Let c_p and c_q denote the number of connected components of $\mathcal{P}^*(P)$ and $\mathcal{P}^*(Q)$, respectively. If $x, y \in \mathcal{P}(G)$ are adjacent, then we write $x \sim y$. For a subset X of the group G, $\mathcal{P}(X)$ indicates the induced subgraph of $\mathcal{P}(G)$ with vertex set X. Chakrabarty, Ghosh, and Sen [5] studied power graphs that are complete or Eulerian or Hamiltonian. In this paper, we will give necessary and sufficient conditions for existence of Hamiltonian cycles in the power graph $\mathcal{P}(P \times Q)$ of direct product the groups P and Q.

2. Main result

The following simple condition is necessary for deciding whether a given graph is Hamiltonian (see[2]).

Theorem 2.1. Let S be a set of vertices of a Hamiltonian graph Γ . Then $c(\Gamma - S) \leq |S|$, where $c(\Gamma - S)$ is the number of connected components of $\Gamma - S$.

Lemma 2.2. Suppose that $G = H \times K$, and $c(\mathcal{P}^*(H)) = m$ and $c(\mathcal{P}^*(K)) = n$. If the graph $\mathcal{P}(G)$ is Hamiltonian, then

- (1) $mn \leq |H| + |K| 1;$
- (2) $n \leq |H|$ and $m \leq |K|$.

Proof. Let H_1, \ldots, H_m and K_1, \ldots, K_n of the connected components of the graphs $\mathcal{P}^*(H)$ and $\mathcal{P}^*(K)$. For every $1 \leq i \leq m$ and $1 \leq j \leq n$, let

$$G_{i,j} = H_i \times K_j, \quad G_{i,K} = H_i \times K, \quad G_{H,j} = H \times K_j.$$

Now, for every $g' \in G$, one can show that

- (1) if $g \in G_{i,j}$ and $g \sim g'$, then $g' \in G_{i,j} \cup (H \times \{e\} \cup (\{e\} \times K));$
- (2) if $g \in G_{i,K}$ and $g \sim g'$, then $g' \in G_{i,K} \cup (\{e\} \times K);$
- (3) if $g \in G_{H,j}$ and $g \sim g'$, then $g' \in G_{H,j} \cup (H \times \{e\})$.

By (1), (2), and (3), we can show that the connected components of the graphs $\mathcal{P}(G) \setminus (H \times \{e\} \cup (\{e\} \times K)), \mathcal{P}(G) \setminus (\{e\} \times K), \text{ and } \mathcal{P}(G) \setminus (H \times \{e\}) \text{ are } G_{i,j}, G_{i,K}, \text{ and } G_{H,j}, \text{ respectively. By theorem 2.1, the results follows.}$

In the following theorem [6], the number of connected components of a finite p-group is computed.

Theorem 2.3. Let G be a finite p-group. Then there exists a one-toone correspondence between the connected components of $\mathcal{P}^*(G)$ and the minimal cyclic subgroups of G.

Example 2.4. If P is a finite p-group of exponent p, then $\mathcal{P}^*(P)$ is a union of complete graphs of order p-1. Moreover, the number of connected components of $\mathcal{P}^*(P)$ is equal to $(p^m-1)/(p-1)$, where p^m is the order of P.

Theorem 2.5. Let $G = P \times Q$ and $m, n \geq 2$. If $c_q \leq p^m$ and $c_p \leq q$, then $\mathcal{P}(G)$ is Hamiltonian.

Proof. Let H_1, \ldots, H_m and K_1, \ldots, K_n be connected components of the graphs $\mathcal{P}^*(H)$ and $\mathcal{P}^*(K)$, respectively. For every $1 \leq r \leq c_p$ and $1 \leq s \leq c_q$, we know that

$$H_r = \langle x_r \rangle \setminus \{e\}, \quad |x_r| = p, \quad K_s = \langle y_s \rangle \setminus \{e\}, \quad |y_s| = q.$$

Put

$$X_{rs} = \{x_r^i y_s^j \mid 1 \le i \le p - 1, 1 \le j \le q - 1\}$$

and

$$Y_s = \bigcup_{r=1}^{p+1} X_{rs} \cup \{y_s^j \mid 1 \le j \le q-1\}.$$

Note that the subgraph $\mathcal{P}(X_{rs})$ is complete and has a Hamiltonian path

$$L_{rs}: x_r y_s \sim x_r^2 y_s \sim x_r^i y_s^j \sim \dots \sim x_r^{p-1} y_s^{q-1}.$$

We claim that for every $1 \leq s \leq c_q$, the graph $\mathcal{P}(Y_s)$ has a Hamiltonian path, denoted by L_s , which begins from a vertex of X_{rs} and ends at a vertex of $X_{r's}$, where $r \neq r'$.

For simplicity, let r = 1 and $r' = c_p$. Since $c_p \leq q$, we can write the following Hamiltonian path:

$$L_s^*: L_{1s} \sim y_s \sim L_{2s} \sim y_s^2 \sim \dots \sim L_{c_p-1s} \sim y_s^{c_p-1} \sim y_s^{c_p} \sim \dots \sim y_s^{q-1} \sim L_{c_ps}$$

To prove the claim, it is enough to substitute L_{1s} and $L_{c_{ps}}$ with L_{rs} and $L_{r's}$ in the path L^*_s , respectively.

Now, since $c_q \leq p^m$ we can extend the paths L_s to a cycle in the graph $\mathcal{P}(G)$ as

$$\mathcal{C}: e \sim L_1 \sim x_1 \sim L_2 \sim x_2 \sim \cdots \sim x_{c_p} \sim L_{c_p+1}$$
$$\sim x_1^2 \sim L_{c_p+2} \sim \cdots \sim x_r^i \sim L_s \sim x_{r'}^j \sim \cdots \sim x_{c_p}^{p-1} \sim L_{c_q} \sim e,$$

where L_1 is a Hamiltonian path of Y_1 that ends at a vertex of X_{11} and L_2 is a Hamiltonian path of Y_2 that begins from a vertex of X_{12} and ends at a vertex of X_{22} . Actually, for $s \ge 2$, if L_s is the above cycle between x_r^i and $x_{r'}^j$ for $r \ne r'$, then we L_s is a Hamiltonian path of Y_s with beginning from a vertex of X_{rs} and ending at a vertex of $X_{r's}$.

Suppose that $x \in G$ is an element of order p. We know that $x \in \langle x_r \rangle$ for some $1 \leq r \leq c_p$. If x is not in the cycle C, then since $c_p \leq q \leq c_q$, we can join x to x_r in C, hence the cycle C will be made into a Hamiltonian cycle of $\mathcal{P}(G)$ by continuing this process.

Corollary 2.6. Let $G = (\mathbb{Z}_p \times \mathbb{Z}_p) \times (\mathbb{Z}_q \times \mathbb{Z}_q)$. Then the graph $\mathcal{P}(G)$ is Hamltonian if and only if $q \leq p^2 - 1$.

Proof. Put m = n = 2 in Theorm 2.5.

Example 2.7. The graph $\mathcal{P}(\mathbb{Z}_6 \times \mathbb{Z}_6)$ is Hamiltonian.

The following paths in the $\mathcal{P}(\mathbb{Z}_6 \times \mathbb{Z}_6)$ contain all elements of order 6 and 3:

- (1) $L_1: (\overline{0}, \overline{1}) \sim (\overline{0}, \overline{5}) \sim (\overline{0}, \overline{2}) \sim (\overline{3}, \overline{2}) \sim (\overline{3}, \overline{4}) \sim (\overline{0}, \overline{4}) \sim (\overline{3}, \overline{1}) \sim (\overline{3}, \overline{5});$
- (2) $L_2^{(\overline{3},\overline{3})}$, $(\overline{5},\overline{3}) \sim (\overline{2},\overline{0}) \sim (\overline{4},\overline{3}) \sim (\overline{2},\overline{3}) \sim (\overline{4},\overline{0}) \sim (\overline{1},\overline{0}) \sim (\overline{5},\overline{0});$

(3)
$$L_3: (\overline{5}, \overline{4}) \sim (\overline{1}, \overline{2}) \sim (\overline{2}, \overline{4}) \sim (\overline{1}, \overline{5}) \sim (\overline{5}, \overline{1}) \sim (\overline{4}, \overline{2}) \sim (\overline{2}, \overline{1}) \sim (\overline{4}, \overline{5});$$

(4)
$$L_4: (\overline{2}, \overline{5}) \sim (\overline{4}, \overline{1}) \sim (\overline{2}, \overline{2}) \sim (\overline{1}, \overline{4}) \sim (\overline{5}, \overline{2}) \sim (\overline{4}, \overline{4}) \sim (\overline{5}, \overline{5}) \sim (\overline{1}, \overline{1}).$$

Hence, we obtain the Hamiltonian cycle

$$(\overline{0},\overline{0}) \sim L_1 \sim (\overline{3},\overline{3}) \sim L_2 \sim (\overline{3},\overline{0}) \sim L_3 \sim (\overline{0},\overline{3}) \sim L_4 \sim (\overline{0},\overline{0}).$$

of
$$\mathcal{P}(\mathbb{Z}_6 \times \mathbb{Z}_6)$$
.

Lemma 2.8. Let $G = P \times Q$. Suppose that $m \ge 3$ and $n \ge 2$. If

(i) $c_p \leq q^n$, (ii) $c_q \leq p^m$, and (iii) $c_p c_q \leq p^m + q^n - 1$, then (a) $p^m < q^n$.

Also, if n = 2, then

 $\begin{array}{ll} (b_1) & c_p \leq 2q-2, \\ (b_2) & p^{m-1} < q, \end{array}$ $(b_3) c_p - p < q - 2, and$ (b_4) the graph $\mathcal{P}(G)$ is Hamiltonian.

Proof. (a) First suppose that n = 2. Assume on the contrary that $q^2 \leq p^m$, but it is clear that $q^2 \neq p^m$, then $q^2 < p^m$. From (iii), we conclude that

$$(1 + p + \dots + p^{m-1})(q - p + 2) \le q^2$$

and this results $(q - p + 2) \le p - 1$, since otherwise

$$(1 + p + \dots + p^{m-1})(q - p + 2) > p^m - 1$$
 or $p^m - 1 < q^2 < p^m$

which is a contradiction. Hence $q \leq 2p - 3$.

Put q = p + t with $0 < t \le p - 3$. Using (iii), we get ether

$$(1 + p + \dots + p^{m-1})(p + t + 1) \le p^m + p^2 + 2pt + t^2 - 1$$

or

$$0 < (1+p+\dots+p^{m-1}) + (p+p^2+\dots+p^{m-1}) - p^2 \le (p-3)[(p-3)+2p-(1+p+\dots+p^{m-1})] + p^2 \ge (p-3)[(p-3)+2p-(1+p+\dots+p^{m-1})] + p^$$

Hence

$$[(p-3) + 2p - (1 + p + \dots + p^{m-1})] > 0$$

when $m \ge 3$. Then $2p - p^2 - 4 > 0$ or p < 2, which is a contradiction.

Now, suppose that $n \geq 3$. Again, we assume on the contrary that $q^n < p^m$. By (iii) and the fact that $q^n \leq p^m - 1$, we obtain

$$q^{n} - 1 \le 2(q - 1)(p - 1)$$

or equivalently

$$1 + q + \dots + q^{n-1} \le 2(p-1).$$

Since $n \geq 3$,

$$p^2 < q^2 < 1 + q + \dots + q^{n-1} < 2(p-1) < 2p$$

which implies that p < 2, a contradiction. Therefore $p^m < q^n$.

In what follows, we assume that n = 2.

 (b_1) According to (iii) and $p^m < q^2$, we have

$$c_p(q+1) \le p^m + q^2 - 1 < 2q^2 - 1$$
 or $c_p \le 2q - 2$.

- (b_2) From (a) and $p^m < q^2$, we get
- (*) If $m \ge 4$, then $q > p^2$ and by (iii),

$$c_p \le (q-1) + \frac{p^m}{q+1} < (q-1) + \frac{p^m}{q}.$$

Thus,
$$c_p - p^{m-2} < q - 1 < q$$
 or
 $p^{m-1} < (1 + p + p^2 + \dots + p^{m-2} + p^{m-1}) - p^{m-2} < q$

Hence $p^{m-1} < q$.

(**) Suppose that m = 3. By (iii), we conclude that

$$q^{2} - (p^{2} + p + 1)q - (-p^{3} + p^{2} + p + 2) \ge 0$$

Hence either $q \le q_1$ or $q \ge q_2$, where $q_1, q_2 = \frac{1}{2}(p^2 + p + 1 \mp \sqrt{\Delta})$ with $\Delta = p^4 - 2p^3 + 7p^2 + 6p + 9 > 0$.

If $q \leq q_1$, then $c_p = p^2 + p + 1 > 2q$, which is a contradiction by (a). Therefore, $q \geq q_2$. On the other hand, the function $g(p) = q_2 - p^2$ has minimum 2 in $[0, \infty)$. Hence, for $q \geq q_2$, we have $q > p^2$

 (b_3) By (iii), we have

$$(1+q)c_p \le p^m + q^2 - 1 \le pq + q^2 - 1 = (q+1)(p+q-1) - p$$

or equivalently

$$c_p \le (p+q-1) - \frac{p}{q+1}.$$

Therefore $c_p - p < q - 2$.

 (b_4) If $c_p < c_q$, then by Theorem 2.5, $\mathcal{P}(G)$ is Hamiltonian. Hence assume that $c_q \leq c_p$. Let $H_1, H_2, \ldots, H_{c_p}$ and $K_1, K_2, \ldots, K_{c_q}$ be connected components of $\mathcal{P}^*(P)$ and $\mathcal{P}^*(Q)$, respectively. Actually, for every $1 \leq r \leq c_p$ and $1 \leq s \leq c_q$,

$$H_r = \langle x_r \rangle \setminus \{e\}, \quad |x_r| = p \text{ and } K_s = \langle y_s \rangle \setminus \{e\}, \quad |y_s| = q.$$

Put

$$X_{rs} = \{x_r^i y_s^j : 1 \le i \le p - 1, 1 \le j \le q - 1\}$$

and

$$B = \{1, 2, \ldots, c_q\}.$$

If $1 \leq r \leq c_q$, we define the subset $B_r = \{\overline{r-1}, \overline{r}, \dots, \overline{r+p-2}\}$ of Bwhere \overline{u} denotes the remainder of u indivision by c_q , i.e. $u \equiv \overline{u} \pmod{c_q}$, and $B_r = \emptyset$ for every $c_q + 1 \leq r \leq c_p$.

Note that the subgraph induced by X_{rs} is complete and has a Hamiltonian path

$$L_{rs}: x_r y_s \sim x_r^2 y_s \sim x_r^i y_s^j \sim \dots \sim x_r^{p-1} y_s^{q-1}.$$

Now, for each $1 \leq r \leq c_q$, we define the path Λ_r as follows

$$\Lambda_r: L_{r\overline{r-1}} \sim x_r \sim L_{r\overline{r+1}} \sim x_r^2 \sim L_{r\overline{r+2}} \sim x_r^3 \sim \dots \sim x_r^{p-1} \sim L_{r\overline{r}}$$

The paths Λ_r can be joined to obtain a longer path

$$L: \Lambda_1 \sim y_1 \sim \Lambda_2 \sim y_2 \sim \Lambda_3 \sim \cdots \sim \Lambda_{c_q} \sim y_{c_q}.$$

Next, for every $1 \leq s \leq c_q$, we define the subsets Ω_s and Δ_s of the set $G \setminus L_e$, where L_e is the set of elements used in the path L as

$$\Omega_s = \{y_s^2, y_s^3, \dots, y_s^{q-1}\} \text{ and } \Delta_s = \bigcup X_{rs}$$

where union is on $1 \leq r \leq c_p$ such that $s \notin B_r$. It is clear that $G \setminus L_e$ is partitioned by the subsets Ω_s , Δ_s , and $\{e\}$.

On the other hand, for every $1 \leq s \leq c_q$, we have

$$M_s = \{1 \le r \le c_p : s \in B_r\} = \{\overline{s-p+2}, \overline{s-p+1}, \dots, \overline{s}, \overline{s+1}\}$$

Hence

$$\{X_{rs}: s \notin B_r\}| = c_p - p.$$

Since $c_p - p < q - 2$, we have a path Γ_s containing elements of $G \setminus L_e$ as

 $\Gamma_s: L_{r_{1s}} \sim y_s^2 \sim L_{r_{2s}} \sim y_s^3 \sim \cdots \sim L_{r_{c_p-ps}} \sim y_s^{c_p-p+1} \sim y_s^{c_p-p+2} \sim \cdots \sim y_s^{q-1}$ where $r_i \in M_s$ for $1 \le i \le c_p - p$.

Again, by attaching the paths Λ_r , Γ_s , L, and identity element e we obtain the Hamiltonian cycle

$$\mathcal{C}: e \sim \Lambda_1 \sim y_1 \sim \Gamma_1 \sim \Lambda_2 \sim y_2 \sim \Gamma_2 \sim \cdots \sim \Lambda_{c_q} \sim y_{c_q} \sim \Gamma_{c_q} \sim e,$$

as required.

Theorem 2.9. Let $G = P \times Q$, where P and Q are groups of order p^m , q^n and with exponents p, q, respectively. The graph $\mathcal{P}(G)$ is Hamiltonian if and only if

(i)
$$c_q \leq p^m$$
;
(ii) $c_p \leq q^n$; and
(iii) $c_p c_q \leq p^m + q^n - 1$.

Proof. Assume that the graph $\mathcal{P}(G)$ is Hamiltonian. Then, by Lemma 2.2, the results hold. For the converse, we discuss on the numbers n, m and show that $\mathcal{P}(G)$ is Hamiltonian.

(1) If n = 1 or m = 1, then $G = \mathbb{Z}_p \times Q$ or $\mathbb{Z}_q \times P$ and $\mathcal{P}(G)$ is Hamiltonian by Corollary 2.15 [7].

(2) If n = m = 2, then by Theorem 2.6, the graph $\mathcal{P}(G)$ is Hamiltonian.

(3) If n = 2 and $m \ge 3$, then the graph $\mathcal{P}(G)$ is Hamiltonian by Lemma 2.8.

(4) If $n \ge 3$ and $m \in \mathbb{N}$, then the assumptions yields that n = 3. First observe that by Lemma 2.8 and the fact that p < q, we get $\frac{p^m}{q^n - 1} \le 1$, hence $p^m - 1 \le 2(p - 1)(q - 1)$ by part (iii).

On the other hand, when $c_q \leq p^m$, we get $q(1 + q + \dots + q^{n-2}) \leq 2(p-1)(q-1)$. Since p < q, we have $1 + q + \dots + q^{n-2} \leq 2q - 2$ and we conclude that $n-2 \leq 1$ or $n \leq 3$. Thus, n = 3 and the proof is complete.

Now, we show that $\mathcal{P}(G)$ is Hamiltonian. By part (iii), we have

$$\frac{q^3}{1+p+p^2+\dots+p^{m-1}} - q^2 > 0$$

or equivalently $(1 + p + p^2 + \dots + p^{m-1}) < q$. Therefore, by Theorem 2.5, the graph $\mathcal{P}(G)$ is Hamiltonian.

Example 2.10. Suppose that $G = P \times Q$, where P and Q are groups of orders 5^3 and 29^2 , respectively. Then the graph $\mathcal{P}(G)$ is Hamiltonian. We have

(1) $c_p = 31 \le 29^2 = 841$ (2) $c_q = 30, \le 125 = 5^3$ (3) $31 \times 30 = 930 \le 5^3 + 29^2 - 1 = 965$

Then by Lemma 2.8, $5^3 = 125 \le 29^2 = 841$ and the graph $\mathcal{P}(G)$ is Hamiltonian.

Additional Details: Using the symbols introduced in the proof of Lemma 2.8, put $B = \{1, 2, 3, ..., 30\}$ and choose the subsets B_r of B for every $1 \le r \le 31$ as

$$B_1 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\} = \{30, 1, 2, 3, 4\}, \quad B_2 = \{1, 2, 3, 4, 5\}, \quad B_3 = \{2, 3, 4, 5, 6\}, \dots, \\B_{28} = \{27, 28, 29, 30, 1\}, \quad B_{29} = \{28, 29, 30, 1, 2\}, \quad B_{30} = \{29, 30, 1, 2, 3\}, \quad B_{31} = \emptyset.$$

For every $1 \le r \le 31$ and $1 \le s \le 30$,

T.

$$H_r = \langle x_r \rangle \setminus \{e\}, \quad |x_r| = 5 \text{ and } K_s = \langle y_s \rangle \setminus \{e\}, \quad |y_s| = 29$$

Also,

$$X_{rs} = \{x_r^i y_s^j \mid 1 \le i \le 4, 1 \le j \le 28\}.$$

Corresponding to the subsets B_r , we write the sets X_{rs} in a table

1	$X_{1(30)}$	X_{12}	X_{13}	X_{14}	X_{11}
2	X_{21}	X_{23}	X_{24}	X_{25}	X_{22}
3	X_{32}	X_{34}	X_{35}	X_{36}	X_{33}
÷	:	:	:	:	÷
28	$X_{(28)(27)}$	$X_{(28)(29)}$	$X_{(28)(30)}$	$X_{(28)1}$	$X_{(28)(28)}$
29	$X_{(29)(28)}$	$X_{(29)(30)}$	$X_{(29)1}$	$X_{(29)2}$	$X_{(29)(29)}$
30	$X_{(30)(29)}$	$X_{(30)1}$	$X_{(30)2}$	$X_{(30)3}$	$X_{(30)(30)}$

188

189

Λ_1	$L_{1(30)} \sim x_1 \sim L_{12} \sim x_1^2 \sim L_{13} \sim x_1^3 \sim L_{14} \sim x_1^4 \sim L_{11}$
Λ_2	$L_{21} \sim x_2 \sim L_{23} \sim x_2^2 \sim L_{24} \sim x_2^3 \sim L_{25} \sim x_2^4 \sim L_{22}$
Λ_3	$L_{32} \sim x_3 \sim L_{34} \sim x_3^2 \sim L_{35} \sim x_3^3 \sim L_{36} \sim x_3^4 \sim L_{33}$
:	
•	•
Λ_{28}	$L_{(28)(27)} \sim x_{28} \sim L_{(28)(29)} \sim x_{28}^2 \sim L_{(28)(30)} \sim x_{28}^3 \sim L_{(28)1} \sim x_{28}^4 \sim L_{(28)(28)}$
Λ_{29}	$L_{(29)(28)} \sim x_{29} \sim L_{(29)(30)} \sim x_{29}^2 \sim L_{(29)1} \sim x_{29}^3 \sim L_{(29)2} \sim x_{29}^4 \sim L_{(29)(29)}$
Λ_{30}	$ L_{(30)(29)} \sim x_{30} \sim L_{(30)1} \sim x_{30}^2 \sim L_{(30)2} \sim x_{30}^3 \sim L_{(30)3} \sim x_{30}^4 \sim L_{(30)(30)} $

The table of paths

The paths Λ_r can be joined to make a longer path

 $L: \Lambda_1 \sim y_1 \sim \Lambda_2 \sim y_2 \sim \Lambda_3 \sim \cdots \sim \Lambda_{30} \sim y_{30}.$

On the other hand, the X_{r1} 's and X_{r2} 's used above are $X_{11}, X_{21}, X_{(28)1}, X_{(29)1}, X_{(30)1}$ and $X_{12}, X_{22}, X_{32}, X_{(29)2}, X_{(30)2}$, respectively.

Γ_1	$L_{31} \sim y_1^2 \sim L_{41} \sim y_1^3 \sim L_{51} \sim y_1^4 \sim \dots \sim L_{(27)1} \sim y_1^{26} \sim L_{(30)1} \sim y_1^{27} \sim y_1^{28}$
Γ_2	$L_{42} \sim y_2^2 \sim L_{52} \sim y_2^3 \sim L_{62} \sim y_2^4 \sim \dots \sim L_{(27)2} \sim y_2^{25} \sim L_{(28)2} \sim y_2^{26} \sim L_{(30)2} \sim y_2^{27} \sim y_2^{28}$
Γ_3	$L_{53} \sim y_3^2 \sim L_{63} \sim y_3^3 \sim L_{73} \sim y_3^4 \sim \dots \sim L_{(28)3} \sim y_3^{25} \sim L_{(29)3} \sim y_3^{26} \sim L_{(31)3} \sim y_3^{27} \sim y_3^{28}$
÷	
Γ_{28}	$L_{1(28)} \sim y_{28}^2 \sim \dots \sim L_{(24)(28)} \sim y_{28}^{25} \sim L_{(30)(28)} \sim y_{28}^{26} \sim L_{(31)(28)} \sim y_{28}^{27} \sim y_{28}^{28}$
Γ_{29}	$L_{1(29)} \sim y_{29}^2 \sim L_{2(29)} \sim y_{29}^3 \sim \dots \sim L_{(25)(29)} \sim y_{29}^{26} \sim L_{(31)(29)} \sim y_{29}^{27} \sim y_{29}^{28}$
Γ_{30}	$L_{2(30)} \sim y_{30}^2 \sim L_{3(30)} \sim y_{30}^4 \sim \dots \sim L_{(26)(30)} \sim y_{30}^{26} \sim L_{(31)(30)} \sim y_{30}^{27} \sim y_{30}^{28}$

Therefore, we have a Hamiltonian cycle as in the following

 $\mathcal{C}: e \sim \Lambda_1 \sim y_1 \sim \Gamma_1 \sim \Lambda_2 \sim y_2 \sim \Gamma_2 \sim \cdots \sim \Lambda_{30} \sim y_{30} \sim \Gamma_{30} \sim e.$

References

- W. Bannuscher and G. Tiedt, On a theorem of Deaconescu, Rostock. Math. Kollog. 47 (1994), 23-26.
- [2] J. A. Bondy and U. S. R. Murty, Graph Theory, New York, Springer, 2008.
- [3] P. J. Cameron, The power graph of a finite group II, J. Group Theory. 13(2010), 779-783.
- [4] P. J. Cameron and S. Ghosh, The power graph of a finite group, Discrete Math. 311 (2011), 1220-1222.
- [5] I. Chakrabarty, S. Ghosh, and M. K. Sen, Undirected power graphs of semigroups, Semigroup Forum. 78 (2009), 410-426.
- [6] A. Doostabadi and M. Farrokhi D. G., On the connectivity of proper power graphs of finite groups, Comm. Algebra. 43 (2015), 4305-4319.
- [7] A. Doostabadi, M. A. Hashemi, and M. Yaghoobian, On the power graphs of finite groups and Hamilton cycle, *Indag. Math.* (2018), Submitted.
- [8] A. V. Kelarev and S. J. Quinn, A combinatorial property and power graphs of groups, *Contrib. General Algebra.* 12(2000), 229-235.

[9] A. V. Kelarev and S. J. Quinn, Directed graph and combinatorial properties of semigroups, J. Algebra. 251 (2002), 16-26.