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Abstract. The power graph P(G) of a finite group G is a graph
whose vertex set is the group G and distinct elements x, y ∈ G are
adjacent if one is a power of the other, that is, x and y are adjacent
if x ∈ ⟨y⟩ or y ∈ ⟨x⟩. Suppose that G = P×Q, where P (resp. Q) is
a finite p-group (resp. q-group) of exponent p (resp. q) for distinct
prime numbers p < q. In this paper, we determine necessary and
sufficient conditions for existence of Hamiltonian cycles in P(G).
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1. Introduction

The power graph P(G) of a group G is a graph with elements of G
as its vertices such that two distinct elements x and y are adjacent if
y = xm or x = ym for some positive integer m. Clearly, two distinct
elements x and y are adjacent if and only if x ∈ ⟨y⟩ or y ∈ ⟨x⟩ when G
is a finite group.

Power graphs of groups are introduced by Kelarev and Quinn [8, 9].
In [3], Cameron shows that two finite groups with isomorphic power
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graphs must have the same number of elements of equal orders. Fur-
thermore, Cameron and Gosh [4] show that two finite abelian groups
with isomorphic power graphs are isomorphic.

For a finite group G, all nonidentity elements are adjacent to the
identity element, hence P(G) is always connected. In [6], we introduced
proper power graph P∗(G) to be the induced subgraph of P(G) whose el-
ements are nontrivial elements of G and investigated whether the proper
power graph of a finite group is connected? Also, we computated the
number of connected components of the graph P∗(G) for some classes
of finite groups, say nilpotent groups and symmetric groups. The num-
ber of connected components of a graph Γ is denoted by c(Γ). In this
paper, we fix prime numbers p < q, and a p-group P and a q-group Q of
orders pm and qn with exponents p, q, respectively. Let cp and cq denote
the number of connected components of P∗(P ) and P∗(Q), respectively.
If x, y ∈ P(G) are adjacent, then we write x ∼ y. For a subset X of
the group G, P(X) indicates the induced subgraph of P(G) with vertex
set X. Chakrabarty, Ghosh, and Sen [5] studied power graphs that are
complete or Eulerian or Hamiltonian. In this paper, we will give neces-
sary and sufficient conditions for existence of Hamiltonian cycles in the
power graph P(P ×Q) of directe product the groups P and Q.

2. Main result

The following simple condition is necessary for deciding whether a
given graph is Hamiltonian (see[2]).

Theorem 2.1. Let S be a set of vertices of a Hamiltonian graph Γ. Then
c(Γ − S) ≤ |S|, where c(Γ − S) is the number of connected components
of Γ− S.

Lemma 2.2. Suppose that G = H × K, and c(P∗(H)) = m and
c(P∗(K)) = n. If the graph P(G) is Hamiltonian, then

(1) mn ≤ |H|+ |K| − 1;
(2) n ≤ |H| and m ≤ |K|.

Proof. Let H1, . . . ,Hm and K1, . . . ,Kn of the connected components of
the graphs P∗(H) and P∗(K). For every 1 ≤ i ≤ m and 1 ≤ j ≤ n, let

Gi,j = Hi ×Kj , Gi,K = Hi ×K, GH,j = H ×Kj .

Now, for every g′ ∈ G, one can show that

(1) if g ∈ Gi,j and g ∼ g′, then g′ ∈ Gi,j ∪
(
H × {e} ∪ ({e} ×K)

)
;

(2) if g ∈ Gi,K and g ∼ g′, then g′ ∈ Gi,K ∪
(
{e} ×K

)
;

(3) if g ∈ GH,j and g ∼ g′, then g′ ∈ GH,j ∪
(
H × {e}

)
.
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By (1), (2), and (3), we can show that the connected components of the
graphs P(G) \

(
H × {e} ∪ ({e} × K)

)
, P(G) \ ({e} × K), and P(G) \

(H × {e}) are Gi,j , Gi,K , and GH,j , respectively. By theorem 2.1, the
results follows. □

In the following theorem [6], the number of connected components of
a finite p-group is computed.

Theorem 2.3. Let G be a finite p-group. Then there exists a one-to-
one correspondence between the connected components of P∗(G) and the
minimal cyclic subgroups of G.

Example 2.4. If P is a finite p-group of exponent p, then P∗(P ) is
a union of complete graphs of order p − 1. Moreover, the number of
connected components of P∗(P ) is equal to (pm − 1)/(p− 1), where pm

is the order of P .

Theorem 2.5. Let G = P × Q and m,n ≥ 2. If cq ≤ pm and cp ≤ q,
then P(G) is Hamiltonian.

Proof. Let H1, . . . ,Hm and K1, . . . ,Kn be connected components of the
graphs P∗(H) and P∗(K), respectively. For every 1 ≤ r ≤ cp and
1 ≤ s ≤ cq, we know that

Hr = ⟨xr⟩ \ {e}, |xr| = p, Ks = ⟨ys⟩ \ {e}, |ys| = q.

Put

Xrs = {xiryjs | 1 ≤ i ≤ p− 1, 1 ≤ j ≤ q − 1}
and

Ys =

p+1⋃
r=1

Xrs ∪ {yjs | 1 ≤ j ≤ q − 1}.

Note that the subgraph P(Xrs) is complete and has a Hamiltonian path

Lrs : xrys ∼ x2rys ∼ xiry
j
s ∼ · · · ∼ xp−1

r yq−1
s .

We claim that for every 1 ≤ s ≤ cq, the graph P(Ys) has a Hamiltonian
path, denoted by Ls, which begins from a vertex of Xrs and ends at a
vertex of Xr′s, where r ̸= r′.

For simplicity, let r = 1 and r′ = cp. Since cp ≤ q, we can write the
following Hamiltonian path:

L∗
s : L1s ∼ ys ∼ L2s ∼ y2s ∼ · · · ∼ Lcp−1s ∼ y

cp−1
s ∼ y

cp
s ∼ · · · ∼ yq−1

s ∼ Lcps

To prove the claim, it is enough to substitute L1s and Lcps with Lrs and
Lr′s in the path L∗

s, respectively.
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Now, since cq ≤ pm we can extend the paths Ls to a cycle in the
graph P(G) as

C : e ∼ L1 ∼ x1 ∼ L2 ∼ x2 ∼ · · · ∼ xcp ∼ Lcp+1

∼ x21 ∼ Lcp+2 ∼ · · · ∼ xir ∼ Ls ∼ xjr′ ∼ · · · ∼ xp−1
cp ∼ Lcq ∼ e,

where L1 is a Hamiltonian path of Y1 that ends at a vertex of X11 and
L2 is a Hamiltonian path of Y2 that begins from a vertex of X12 and
ends at a vertex of X22. Actually, for s ≥ 2, if Ls is the above cycle

between xr
i and xjr′ for r ̸= r′, then we Ls is a Hamiltonian path of Ys

with beginning from a vertex of Xrs and ending at a vertex of Xr′s.
Suppose that x ∈ G is an element of order p. We know that x ∈ ⟨xr⟩

for some 1 ≤ r ≤ cp. If x is not in the cycle C, then since cp ≤ q ≤ cq, we
can join x to xr in C, hence the cycle C will be made into a Hamiltonian
cycle of P(G) by continuing this process. □

Corollary 2.6. Let G = (Zp × Zp) × (Zq × Zq). Then the graph P(G)
is Hamltonian if and only if q ≤ p2 − 1.

Proof. Put m = n = 2 in Theorm 2.5. □

Example 2.7. The graph P(Z6 × Z6) is Hamiltonian.

The following paths in the P(Z6 ×Z6) contain all elements of order 6
and 3:

(1) L1: (0, 1) ∼ (0, 5) ∼ (0, 2) ∼ (3, 2) ∼ (3, 4) ∼ (0, 4) ∼ (3, 1) ∼
(3, 5);

(2) L2: (1, 3) ∼ (5, 3) ∼ (2, 0) ∼ (4, 3) ∼ (2, 3) ∼ (4, 0) ∼ (1, 0) ∼
(5, 0);

(3) L3: (5, 4) ∼ (1, 2) ∼ (2, 4) ∼ (1, 5) ∼ (5, 1) ∼ (4, 2) ∼ (2, 1) ∼
(4, 5);

(4) L4: (2, 5) ∼ (4, 1) ∼ (2, 2) ∼ (1, 4) ∼ (5, 2) ∼ (4, 4) ∼ (5, 5) ∼
(1, 1).

Hence, we obtain the Hamiltonian cycle

(0, 0) ∼ L1 ∼ (3, 3) ∼ L2 ∼ (3, 0) ∼ L3 ∼ (0, 3) ∼ L4 ∼ (0, 0).

of P(Z6 × Z6).

Lemma 2.8. Let G = P ×Q. Suppose that m ≥ 3 and n ≥ 2. If

(i) cp ≤ qn,
(ii) cq ≤ pm, and
(iii) cpcq ≤ pm + qn − 1,

then

(a) pm < qn.

Also, if n = 2, then
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(b1) cp ≤ 2q − 2,
(b2) pm−1 < q,
(b3) cp − p < q − 2, and
(b4) the graph P(G) is Hamiltonian.

Proof. (a) First suppose that n = 2. Assume on the contrary that
q2 ≤ pm, but it is clear that q2 ̸= pm, then q2 < pm. From (iii), we
conclude that

(1 + p+ · · ·+ pm−1)(q − p+ 2) ≤ q2

and this results (q − p+ 2) ≤ p− 1, since otherwise

(1 + p+ · · ·+ pm−1)(q − p+ 2) > pm − 1 or pm − 1 < q2 < pm

which is a contradiction. Hence q ≤ 2p− 3.
Put q = p+ t with 0 < t ≤ p− 3. Using (iii), we get ether

(1 + p+ · · ·+ pm−1)(p+ t+ 1) ≤ pm + p2 + 2pt+ t2 − 1

or

0 < (1+p+· · ·+pm−1)+(p+p2+· · ·+pm−1)−p2 ≤ (p−3)[(p−3)+2p−(1+p+· · ·+pm−1)].

Hence
[(p− 3) + 2p− (1 + p+ · · ·+ pm−1)] > 0

when m ≥ 3. Then 2p− p2 − 4 > 0 or p < 2, which is a contradiction.
Now, suppose that n ≥ 3. Again, we assume on the contrary that

qn < pm. By (iii) and the fact that qn ≤ pm − 1, we obtain

qn − 1 ≤ 2(q − 1)(p− 1)

or equivalently
1 + q + · · ·+ qn−1 ≤ 2(p− 1).

Since n ≥ 3,

p2 < q2 < 1 + q + · · ·+ qn−1 < 2(p− 1) < 2p

which implies that p < 2, a contradiction. Therefore pm < qn.
In what follows, we assume that n = 2.
(b1) According to (iii) and pm < q2, we have

cp(q + 1) ≤ pm + q2 − 1 < 2q2 − 1 or cp ≤ 2q − 2.

(b2) From (a) and pm < q2, we get

(*) If m ≥ 4, then q > p2 and by (iii),

cp ≤ (q − 1) +
pm

q + 1
< (q − 1) +

pm

q
.

Thus, cp − pm−2 < q − 1 < q or

pm−1 < (1 + p+ p2 + · · ·+ pm−2 + pm−1)− pm−2 < q.
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Hence pm−1 < q.
(**) Suppose that m = 3. By (iii), we conclude that

q2 − (p2 + p+ 1)q − (−p3 + p2 + p+ 2) ≥ 0.

Hence either q ≤ q1 or q ≥ q2, where q1, q2 =
1
2(p

2+ p+1∓
√
∆)

with ∆ = p4 − 2p3 + 7p2 + 6p+ 9 > 0.
If q ≤ q1, then cp = p2 + p+ 1 > 2q, which is a contradiction

by (a). Therefore, q ≥ q2. On the other hand, the function
g(p) = q2 − p2 has minimum 2 in [0,∞). Hence, for q ≥ q2, we
have q > p2

(b3) By (iii), we have

(1 + q)cp ≤ pm + q2 − 1 ≤ pq + q2 − 1 = (q + 1)(p+ q − 1)− p

or equivalently

cp ≤ (p+ q − 1)− p

q + 1
.

Therefore cp − p < q − 2.
(b4) If cp < cq, then by Theorem 2.5, P(G) is Hamiltonian. Hence

assume that cq ≤ cp. Let H1, H2, . . . ,Hcp and K1,K2, . . . ,Kcq be con-
nected components of P∗(P ) and P∗(Q), respectively. Actually, for
every 1 ≤ r ≤ cp and 1 ≤ s ≤ cq,

Hr = ⟨xr⟩ \ {e}, |xr| = p and Ks = ⟨ys⟩ \ {e}, |ys| = q.

Put
Xrs = {xiryjs : 1 ≤ i ≤ p− 1, 1 ≤ j ≤ q − 1}

and
B = {1, 2, . . . , cq}.

If 1 ≤ r ≤ cq, we define the subset Br = {r − 1, r, . . . , r + p− 2} of B
where u denotes the remainder of u indivision by cq, i.e. u ≡ u (mod cq),
and Br = ∅ for every cq + 1 ≤ r ≤ cp.

Note that the subgraph induced by Xrs is complete and has a Hamil-
tonian path

Lrs : xrys ∼ x2rys ∼ xiry
j
s ∼ · · · ∼ xp−1

r yq−1
s .

Now, for each 1 ≤ r ≤ cq, we define the path Λr as follows

Λr : Lrr−1 ∼ xr ∼ Lrr+1 ∼ x2r ∼ Lrr+2 ∼ x3r ∼ · · · ∼ xp−1
r ∼ Lrr.

The paths Λr can be joined to obtain a longer path

L : Λ1 ∼ y1 ∼ Λ2 ∼ y2 ∼ Λ3 ∼ · · · ∼ Λcq ∼ ycq .

Next, for every 1 ≤ s ≤ cq, we define the subsets Ωs and ∆s of the set
G \ Le, where Le is the set of elements used in the path L as

Ωs = {y2s , y3s , . . . , yq−1
s } and ∆s =

⋃
Xrs,
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where union is on 1 ≤ r ≤ cp such that s ̸∈ Br. It is clear that G \Le is
partitioned by the subsets Ωs, ∆s, and {e}.

On the other hand, for every 1 ≤ s ≤ cq, w ehave

Ms = {1 ≤ r ≤ cp : s ∈ Br} = {s− p+ 2, s− p+ 1, . . . , s, s+ 1}.

Hence

{Xrs : s ̸∈ Br}| = cp − p.

Since cp− p < q− 2, we have a path Γs containing elements of G \Le as

Γs : Lr1s ∼ y2s ∼ Lr2s ∼ y3s ∼ · · · ∼ Lrcp−ps ∼ ys
cp−p+1 ∼ ys

cp−p+2 ∼ · · · ∼ yq−1
s

where ri ∈ Ms for 1 ≤ i ≤ cp − p.
Again, by attaching the paths Λr, Γs, L, and identity element e we

obtain the Hamiltonian cycle

C : e ∼ Λ1 ∼ y1 ∼ Γ1 ∼ Λ2 ∼ y2 ∼ Γ2 ∼ · · · ∼ Λcq ∼ ycq ∼ Γcq ∼ e,

as required.
□

Theorem 2.9. Let G = P×Q, where P and Q are groups of order pm, qn

and with exponents p, q, respectively. The graph P(G) is Hamiltonian if
and only if

(i) cq ≤ pm;
(ii) cp ≤ qn; and
(iii) cpcq ≤ pm + qn − 1.

Proof. Assume that the graph P(G) is Hamiltonian. Then, by Lemma
2.2, the results hold. For the converse, we discuss on the numbers n,m
and show that P(G) is Hamiltonian.

(1) If n = 1 or m = 1, then G = Zp × Q or Zq × P and P(G) is
Hamiltonian by Corollary 2.15 [7].

(2) If n = m = 2, then by Theorem 2.6, the graph P(G) is Hamilton-
ian.

(3) If n = 2 and m ≥ 3, then the graph P(G) is Hamiltonian by
Lemma 2.8.

(4) If n ≥ 3 and m ∈ N, then the assumptions yields that n = 3. First

observe that by Lemma 2.8 and the fact that p < q, we get
pm

qn − 1
≤ 1,

hence pm − 1 ≤ 2(p− 1)(q − 1) by part (iii).
On the other hand, when cq ≤ pm, we get q(1 + q + · · · + qn−2) ≤

2(p − 1)(q − 1). Since p < q, we have 1 + q + · · · + qn−2 ≤ 2q − 2 and
we conclude that n − 2 ≤ 1 or n ≤ 3. Thus, n = 3 and the proof is
complete.
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Now, we show that P(G) is Hamiltonian. By part (iii), we have

q3

1 + p+ p2 + · · ·+ pm−1
− q2 > 0

or equivalently (1 + p + p2 + · · · + pm−1) < q. Therefore, by Theorem
2.5, the graph P(G) is Hamiltonian. □

Example 2.10. Suppose that G = P × Q, where P and Q are groups
of orders 53 and 292, respectively. Then the graph P(G) is Hamiltonian.
We have

(1) cp = 31 ≤ 292 = 841
(2) cq = 30,≤ 125 = 53

(3) 31× 30 = 930 ≤ 53 + 292 − 1 = 965

Then by Lemma 2.8, 53 = 125 ≤ 292 = 841 and the graph P(G) is
Hamiltonian.

Additional Details: Using the symbols introduced in the proof of
Lemma 2.8, put B = {1, 2, 3, . . . , 30} and choose the subsets Br of B for
every 1 ≤ r ≤ 31 as

B1 = {0, 1, 2, 3, 4} = {30, 1, 2, 3, 4}, B2 = {1, 2, 3, 4, 5}, B3 = {2, 3, 4, 5, 6}, . . . ,
B28 = {27, 28, 29, 30, 1}, B29 = {28, 29, 30, 1, 2}, B30 = {29, 30, 1, 2, 3}, B31 = ∅.

For every 1 ≤ r ≤ 31 and 1 ≤ s ≤ 30,

Hr = ⟨xr⟩ \ {e}, |xr| = 5 and Ks = ⟨ys⟩ \ {e}, |ys| = 29.

Also,

Xrs = {xiryjs | 1 ≤ i ≤ 4, 1 ≤ j ≤ 28}.

Corresponding to the subsets Br, we write the sets Xrs in a table

1 X1(30) X12 X13 X14 X11

2 X21 X23 X24 X25 X22

3 X32 X34 X35 X36 X33
...

...
...

...
...

...
28 X(28)(27) X(28)(29) X(28)(30) X(28)1 X(28)(28)

29 X(29)(28) X(29)(30) X(29)1 X(29)2 X(29)(29)

30 X(30)(29) X(30)1 X(30)2 X(30)3 X(30)(30)
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The table of paths

Λ1 L1(30) ∼ x1 ∼ L12 ∼ x21 ∼ L13 ∼ x31 ∼ L14 ∼ x41 ∼ L11

Λ2 L21 ∼ x2 ∼ L23 ∼ x22 ∼ L24 ∼ x32 ∼ L25 ∼ x42 ∼ L22

Λ3 L32 ∼ x3 ∼ L34 ∼ x23 ∼ L35 ∼ x33 ∼ L36 ∼ x43 ∼ L33
...

...
Λ28 L(28)(27) ∼ x28 ∼ L(28)(29) ∼ x228 ∼ L(28)(30) ∼ x328 ∼ L(28)1 ∼ x428 ∼ L(28)(28)

Λ29 L(29)(28) ∼ x29 ∼ L(29)(30) ∼ x229 ∼ L(29)1 ∼ x329 ∼ L(29)2 ∼ x429 ∼ L(29)(29)

Λ30 L(30)(29) ∼ x30 ∼ L(30)1 ∼ x230 ∼ L(30)2 ∼ x330 ∼ L(30)3 ∼ x430 ∼ L(30)(30)

The paths Λr can be joined to make a longer path

L : Λ1 ∼ y1 ∼ Λ2 ∼ y2 ∼ Λ3 ∼ · · · ∼ Λ30 ∼ y30.

On the other hand, theXr1’s andXr2’s used above areX11, X21, X(28)1, X(29)1, X(30)1

and X12, X22, X32, X(29)2, X(30)2, respectively.

Γ1 L31 ∼ y21 ∼ L41 ∼ y31 ∼ L51 ∼ y41 ∼ · · · ∼ L(27)1 ∼ y261 ∼ L(30)1 ∼ y271 ∼ y281
Γ2 L42 ∼ y22 ∼ L52 ∼ y32 ∼ L62 ∼ y42 ∼ · · · ∼ L(27)2 ∼ y252 ∼ L(28)2 ∼ y262 ∼ L(30)2 ∼ y272 ∼ y282
Γ3 L53 ∼ y23 ∼ L63 ∼ y33 ∼ L73 ∼ y43 ∼ · · · ∼ L(28)3 ∼ y253 ∼ L(29)3 ∼ y263 ∼ L(31)3 ∼ y273 ∼ y283
...

...
Γ28 L1(28) ∼ y28

2 ∼ · · · ∼ L(24)(28) ∼ y2528 ∼ L(30)(28) ∼ y28
26 ∼ L(31)(28) ∼ y28

27 ∼ y28
28

Γ29 L1(29) ∼ y29
2 ∼ L2(29) ∼ y29

3 ∼ · · · ∼ L(25)(29) ∼ y29
26 ∼ L(31)(29) ∼ y29

27 ∼ y29
28

Γ30 L2(30) ∼ y30
2 ∼ L3(30) ∼ y30

4 ∼ · · · ∼ L(26)(30) ∼ y2630 ∼ L(31)(30) ∼ y30
27 ∼ y30

28

Therefore, we have a Hamiltonian cycle as in the following

C : e ∼ Λ1 ∼ y1 ∼ Γ1 ∼ Λ2 ∼ y2 ∼ Γ2 ∼ · · · ∼ Λ30 ∼ y30 ∼ Γ30 ∼ e.
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