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Abstract. A two-criteria user-optimized route choice problem is
proposed, in which each user of a network system seeks to determine
his/her optimal route of travel between an origin-destination (O-D)
pair considering two-criteria simultaneously. In this problem, the
two-criteria of travel, time and cost, between an O-D pair are fuzzy,
in the sense that, time and cost of which links are chosen for trav-
eling are uncertain. Applying the concept of α-cut level, a fuzzy
vector disutility function on a path is computed. Furthermore, the
fuzzy vector equilibrium principle as a generalization and extension
of the Wardrop equilibrium principle is defined. Finally, by reduc-
ing this fuzzy principle to a crisp one, the relationship between the
vector equilibrium flow and the solution of a vector variational in-
equality problem is discussed.

Keywords: Fuzzy equilibrium principle, Equilibrium flow, Vec-
tor variational inequality.
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1. Introduction

In a user-optimized route choice problem (UORCP) each traveler seeks
to optimize own individual preference. In the study of this problem,
fundamental is the concept of equilibrium introduced by Wardrop [8].
It states that, in a network of different routes, the travel times on all

1Corresponding author: peyvand@yu.ac.ir
Received: 19 May 2020
Revised: 07 March 2021
Accepted: 13 March 2021

334

http://cjms.journals.umz.ac.ir


On Relation Between Two-criteria User-optimized Route Choice Problem ... 335

routes actually used are equal and less than those which would be ex-
perienced by a single vehicle on any unused route. Traditionally, the
UORCP is formulated as numerous mathematical models such as varia-
tional inequality models; see for instance [1] and the references therein.
In these works, UORCP is formulated as a single criteria model in which
each user of a traffic network seeks to determine his cost-minimizing
routes of travel between an O-D pair. Later, a two-criteria network
equilibrium problem proposed in which travelers seek to select their op-
timal routes of travel considering two-criteria simultaneously, for exam-
ple, travel cost and travel time[4, 6]. Recently, some researchers based
on this assumption that travelers choose their travel route based on per-
ceived travel time rather than the actual travel time, proposed the fuzzy
user-optimized route choice problem(FUORCP)[2, 3] and the variational
inequality approach adopted to formulate this problem; see for instance
[7, 9]. This is where our interest in studying and modeling FUORCP
originates. Motivated by these works, we define the fuzzy vector equilib-
rium principle, which is the generalization of the Wardrop equilibrium
principle and the extension of this crisp equilibrium condition into a
fuzzy environment. A major difficulty we encounter in studying fuzzy
two-criteria equilibrium problems is that fuzzy arithmetical operations
are rather computational-intensive and the operational definitions of the
fuzzified version of the order relations are hard to come up with for prac-
tical UORCP.

In this paper, we shall be concerned with the most likely estimate
of each link travel time and travel cost that are associated with the
fuzzy link travel time and fuzzy link travel cost at an α − cut level to
avoid the intensive computations. We shall construct a vector variational
inequality problem (VVIP) and discuss the relation between the solution
of this problem and the equilibrium flow of the UORCP.

The paper is structured as follows. In section 2, we briefly intro-
duce some basic concepts of fuzzy set. In section 3, we propose a fuzzy
two-criteria user-optimized route choice model. Moreover, applying the
concept of α-cut, we define the fuzzy vector equilibrium principle. In
section 4, we show at a certain α-cut level that taking a plausible point
estimate of each route travel time and travel cost in the two-criteria
user-optimized route choice problem yields a crisp user-optimized route
choice problem which may have relations with vector variational inequal-
ity. Section 5 concludes this paper by making some remarks.

2. A Brief review of fuzzy set

A crisp set classifies all elements over the universe of discourse U
into two groups: elements that certainly belong to the set and elements
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that certainly do not. Let A be a crisp set in U . The classification of
members can be done using a indicator function µA : U → {0, 1} that
for an element x of U , µA(x) = 1 if x belongs to A and µA(x) = 0 if
x does not. However, for a fuzzy set, a membership function µÃ of a

which fuzzy set Ã is a generalization of the characteristic function as,
µÃ : U → [0, 1]. For an element x of U, the value µÃ(x) is called the

membership degree of x in the fuzzy set Ã, which quantifies the grade
of membership of x in Ã. Thus, the near the value of µÃ(x) is unity, the

higher the grade of membership of x in Ã.
A fuzzy set Ã can be characterized as a set of ordered pairs of element

x and grade µÃ(x) and is often written Ã = {(x, µÃ(x))|x ∈ U}.
A fuzzy number M̃ is a convex normalized fuzzy set of the real line R1

whose membership function is piecewise continuous. So, fuzzy number
is expressed as a fuzzy set defining a fuzzy interval in the real number.
Since the boundary of this interval is ambiguous, the interval is also a
fuzzy set. The α-level set M̃α of a fuzzy number M̃ can be represented
by the closed interval which depends on the value of α ∈ [0, 1]. Namely,

M̃α = {x ∈ R1|µM̃ (x) ≥ α} = [mL
α,m

R
α ]

where mL
α and mR

α are the lower bound and upper bound of the α-level

set M̃α, respectively. As an example, a fuzzy number M̃ is said to be
triangular if its membership function is given by

µM̃ (x) =


x− a

m− a
a < x ≤ m,

x− b

m− b
m ≤ x < b,

0 otherwise,

where a, m, b are given numbers [10]. Such a fuzzy number M̃ as an
interval-valued number is symbolically written

M̃ = (a,m, b).

Notice that a triangular fuzzy number is not necessarily symmetric,
since m−a may be different from b−m, however, µM̃ (m) = 1. Imposing
symmetry simplifies the definition of a triangular fuzzy number. Indeed,
let m be symmetric in relation to a and b, that is, m− a = b−m = δ.
In this case,

µM̃ (x) = max{0, 1− |x−m|
δ

}.

For α-level set M̃α, through a linear combination of their lower bound
mL

α, mean value m and upper bound mR
α , the most likely value M̄α is
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defined as

¯̃Mα =
mL

α + 4m+mR
α

6
.

The above information about this fuzzy number is shown in Figure 1.
Let M̃1 = (a,m, b) and M̃2 = (a′,m′, b′) be two triangular fuzzy

numbers. The addition ⊕ and scalar multiplication ⊗ of M̃1 and M̃2 are
given by the following formulas:
Addition: M̃1 ⊕ M̃2 = (a+ a′,m1 +m′, b+ b′)

scalar multiplication: λ⊗ M̃ = (λa, λm, λb), λ > 0.
In the model of a two-criteria user-optimized route choice problem,

the time and cost functions for transportation are usually described as
a mathematical relationship with vague information. To model the im-
precision in this problem, the fuzzy set theory is used, in which different
type of numbers and the corresponding fuzzy arithmetic on them are
necessary for the modeling process.

Figure 1. α-level set of fuzzy number M̃

3. Fuzzy two-criteria user-optimized route choice model

Let G(N,A,W ) be a transportation network, where N denotes the
set of nodes, A the set of arcs in the network, and W , the set of O-D
nodes. Let n = |A| and m = |W |. The sets and symbols used are defined
as: a, an arc of the network connecting a pair of nodes, p, a path of the
network from an origin to a destination, Pw, the set of paths on w ∈ W ,
P , the set of network paths i.e. P =

⋃
w∈W Pw.

Let fa denotes the nonnegative traffic flow on arc a ∈ A and xp denotes
the nonnegative traffic flow on path p ∈ P . A relation between arc flows
and path flows is given by

fa =
∑
p∈P

δa,pxp =
∑
w∈W

∑
p∈Pw

δa,pxp, (3.1)
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where

δa,p =

{
1 a ∈ p,
0 a /∈ p.

Let f be the column n-vector of arc flows fai , ai ∈ A, i = 1, 2, ..., n and

x = (xp1 , xp2 , ..., xpm)
T . We assume that the demand dw of the traffic

flow for each O-D pair w ∈ W is fixed and

dw =
∑
p∈Pw

xp. (3.2)

The feasible set Ω consists of all link flows f as

Ω = {f | f satisfying (3.1) and (3.2)}. (3.3)

In this paper, two-criteria assumed to be travel time and travel cost.
Conceptually, the fuzzy travel time t̃a and fuzzy travel cost c̃a associated
with each link a may be defined as two functions of flows on arc a i.e.,

t̃a = t̃a(f), c̃a = c̃a(f).

With a prespecified membership function and under a certain α-cut
level, the fuzzy link travel time function and fuzzy link travel cost func-
tion for each link a ∈ A can be denoted as

t̃a,α = t̃a,α(f), c̃a,α = c̃a,α(f).

So, we introduce ũ as follows:

ũ =

(
t̃a1,α · · · t̃an,α
c̃a1,α · · · c̃an,α

)
,

then the vector function Ũp,α as a vector disutility function on path p is
computed by

Ũp,α =
⊕
a∈A

(
t̃a,α
c̃a,α

)
⊗ δa,p. (3.4)

In the classical route choice problem, the Wardrop traffic equilibrium
conditions are widely accepted. In a user equilibrium condition associ-
ated with the first principle of Wardrop, all the paths that are not used
have higher travel costs. Now, we can define the fuzzy vector equilib-
rium principle, which is the generalization of the Wardrop equilibrium
principle and the extension of this crisp equilibrium condition into a
fuzzy environment, using the concept of α-cut.

Definition 3.1. (Fuzzy vector equilibrium principle) An arc flow f∗

is called a vector equilibrium flow if for all O-D pairs w and for all
p, q ∈ Pw,

Ũp,α(f
∗)⪰̃Ũq,α(f

∗) ⇒ xp = 0, (3.5)
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where ⪰̃ is a componentwise inequality and denotes the interval-
valued number of each component of its left side is larger than or equal to
the interval-valued number of the corresponding component of its right
side but not equal, simultaneously.

4. Main result

We know that operational definitions of equal and larger than or equal
to are hard in practice, so we further simplify the interval-valued travel
time t̃a,α for a triangular membership function by taking their most

likely value ¯̃ta,α as follows:

¯̃ta,α =
t̃La,α + 4t̃Ma + t̃Ra,α

6
∀a, α, (4.1)

where t̃La,α, t̃
M
a and t̃Ra,α are lower bound, main value and upper bound

of t̃p in α-cut level set, respectively. The ¯̃ca,α is defined analogously.

As such, equality (3.4) reduces to the following crisp situation:

¯̃Up,α =
∑
a∈A

( ¯̃ta,α
¯̃ca,α

)
δa,p. (4.2)

If we define order relations ≧ and ≥ for y, z ∈ Rl as

y ≧ z ⇔ yi ≧ zi, i = 1, 2, ..., l;

y ≥ z ⇔ yi ≧ zi, i = 1, 2, ..., l and y ̸= z,

then the equilibrium condition (3.5) reduces also to the following crisp
condition:

¯̃Up,α(f
∗) ≥ ¯̃Uq,α(f

∗) ⇒ xp = 0. (4.3)

We know that R2
+ is the positive quadrant of R2, so

¯̃Up,α ≥ ¯̃Uq,α ⇔ ¯̃Up,α − ¯̃Uq,α ∈ R2
+ \ {0},

and the equilibium condition (4.3) can be defined as follows:

¯̃Up,α(f
∗)− ¯̃Uq,α(f

∗) ∈ R2
+ \ {0} ⇒ xp = 0. (4.4)

In the following theorems, we establish an appropriate relation be-
tween a crisp user optimal route choice model and a variational inequal-
ity problem.

Theorem 4.1. At each α-cut level, the arc flow vector f∗ is a solution of
user optimal condition (4.4) if f∗ solves the following vector variational
inequality problem:

Find f∗ ∈ Ωα such that ⟨¯̃u(f∗), f − f∗⟩ /∈ −R2
+ \ {0}, ∀f ∈ Ωα, (4.5)
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where the feasible region Ωα is delineated by conditions (3.1), (3.2) and
(4.2).

Proof. Let f∗ satisfies (4.5) and ¯̃Uq,α(f
∗) − ¯̃Ur,α(f

∗) ∈ R2
+ \ {0}, where

q, r ∈ Pw. We show that x∗q = 0. Choose a path flow vector x as

xp =


x∗p p ̸= q, r,
0 p = q,
x∗q + x∗r p = r

Clearly, x satisfies (3.2) and so the arc flow vector f corresponding to x
is in Ωα. Now,

⟨¯̃u(f∗), f − f∗⟩ =
∑
a∈A

( ¯̃ta,α(f
∗)

¯̃ca,α(f
∗)

)
× (fa − f∗

a )

=
∑
w∈W

∑
p∈Pw

(
∑
a∈A

( ¯̃ta,α(f
∗)

¯̃ca,α(f
∗)

)
δa,p)× (xp − x∗p)

=
∑
w∈W

∑
p∈Pw

¯̃Up,α(f
∗)× (xp − x∗p)

= x∗q(
¯̃Ur,α(f

∗)− ¯̃Uq,α(f
∗)) /∈ −R2

+ \ {0}. (4.6)

Since
¯̃Uq,α(f

∗)− ¯̃Ur,α(f
∗) ∈ R2

+ \ {0}, (4.7)

then (4.6) and (4.7) together imply that x∗q = 0. □

Example 4.2. Consider the network depicted in Figure 2 with a single
O-D pair w = (n1, n2), in which n1 is origin and n2 is destination node.
The network consists of two links, A = {a, b} and two available paths,
Pw = {p1, p2} with the travel demand dw = 30.

The fuzzy link travel time and fuzzy link travel cost functions are
given as follows

t̃a = fa ⊕ 2̃⊗ fb, t̃b = 3̃⊗ fa ⊕ 6̃⊗ fb,

c̃a = 6̃⊗ fa ⊕ 2̃⊗ fb, c̃b = 9̃⊗ fa ⊕ 8̃⊗ fb,

where 2̃ = (1, 2, 3), 3̃ = (2, 3, 4), 6̃ = (4, 6, 8), 8̃ = (6, 8, 10) and 9̃ =
(7, 9, 11). It follows readily that

ũ =

(
t̃a t̃b
c̃a c̃b

)
, Ũp1 =

(
t̃a
c̃a

)
, Ũp2 =

(
t̃b
c̃b

)
.
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Figure 2. A network for the two-criteria example

A fuzzy equilibrium problem for this network is to find an arc flow
f∗ = (f∗

a f∗
b )

T that for p1, p2 ∈ Pw

Ũpi,α(f
∗)⪰̃Ũpj ,α(f

∗) ⇒ xpi = 0, i, j = 1, 2, i ̸= j. (4.8)

When the α− cut level is set to zero, the above fuzzy link travel time
and travel cost functions induce the following most likely link travel time
and most likely link travel cost functions:

¯̃ta = fa + 2fb,
¯̃tb = 3fa + 6fb

¯̃ca = 6fa + 2fb, ¯̃cb = 9fa + 8fb.

So,

¯̃u =

( ¯̃ta
¯̃tb

c̃a ¯̃cb

)
, Ũp1 =

( ¯̃ta
¯̃ca

)
, ¯̃Up2 =

( ¯̃tb
¯̃cb

)
.

The equilibrium problem (4.4) for (4.8) is

¯̃Upi(f
∗)− ¯̃Upj (f

∗) ∈ R2
+ \ {0} ⇒ xpi = 0, i, j = 1, 2, i ̸= j. (4.9)

The variational inequality (4.5) for this problem is

Find f∗ ∈ Ω such that ⟨¯̃u(f∗), f − f∗⟩ /∈ −R2
+ \ {0}, ∀f ∈ Ω, (4.10)

where

Ω = {f ∈ R2|xp1 + xp2 = 30, fa = xp1 ≥ 0, fb = xp2 ≥ 0}.

Since ¯̃u is monotone and Lipschitz continuous on Ω, solving the varia-
tional inequality (4.10) yields the solution f∗ = (30 0)T . It is easy to see
that f∗ = (30 0)T is an equilibrium flow for (4.9). Therefore, the result
of Theorem 4.1 holds.
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Let Λ>0 =
{
λ = (λ1, λ2) > 0 |

∑2
i=1 λi = 1

}
. We now show that

under some restrictive conditions, the converse result holds.

Theorem 4.3. At each α-cut level, let λ1 and λ2 denote the weights
associated with travel time and travel cost, respectively. Assume that
arc flow vector f∗ is a vector equilibrium flow. Also assume, there exists
λ ∈ Λ>0 so that for each w ∈ W , there is only positive flow on those paths

q that their weighted disutility function λ ¯̃Uq,α(f
∗) is minimal. Then f∗

solves the vector variational inequality problem (4.5).

Proof. By the assumptions of the theorem we have

for all w ∈ W and for all p, q ∈ Pw

λ ¯̃Up,α(f
∗) ≥ λ ¯̃Uq,α(f

∗) ⇒ x∗p = 0, (4.11)

therefore, the single objective version of the equilibrium condition (4.3)
is satisfied.

Now, we show that the feasible solution f∗ of (4.11) does also satisfy
the following equilibrium condition proposed by Nagurney [11]

λ ¯̃Uq,α(f
∗)

{
= πw if xq > 0,
≥ πw if xq = 0,

(4.12)

where πw is an indicator, whose value is not known a priori.
Suppose that f∗ is an equilibrium pattern flow satisfying (4.11). In

equilibrium condition (4.12), let xq > 0 for q ∈ Pw. If λ
¯̃Uq,α(f

∗)− πw ̸=
0, we get λ ¯̃Uq,α(f

∗) > πw. Because πw is the minimum cost function of

the set {λ ¯̃Uq,α|q ∈ Pw} and |Pw| is finite, the set {λ ¯̃Uq,α|q ∈ Pw} ⊂ R+

reaches its minimum at q′ ∈ Pw i.e. λ ¯̃Uq′,α(f
∗) = πw. Thus, λ

¯̃Uq,α(f
∗) ≥

λ ¯̃Uq′,α(f
∗) and by (4.11) we have xq = 0. This is a contradiction. There-

fore, λ ¯̃Uq,α(f
∗) = πw if xq > 0. Obviously, it holds that λ ¯̃Uq,α(f

∗) ≥ πw
whenever xq = 0. So, f∗ satisfies the equilibrium condition (4.12).

Additionally, similar to the proof of Theorem 1 in [11] we find that
(4.12) is equivalent to the following variational inequality

(V Iλ) Find f∗ ∈ Ωα such that ⟨λ¯̃u(f∗), f − f∗⟩ ≧ 0, ∀f ∈ Ωα, (4.13)

which is called scalarized variational inequality V Iλ. Since f∗ satisfies
V Iλ with λ ∈ Λ>0,

0 ≦ ⟨λ¯̃u(f∗), f − f∗⟩ = λ⟨¯̃u(f∗), f − f∗⟩, ∀f ∈ Ωα,

then there cannot exist f ∈ Ωα such that ⟨¯̃u(f∗), f − f∗⟩ ∈ −R2
+ \ {0}.

This means that f∗ is a solution of V V IP (4.5). □
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5. Conclusion

With respect to the uncertainty as a crucial issue in the user-optimized
route choice problem, a two-criteria user-optimized route choice model
with fuzzy travel time and fuzzy travel cost is induced in this paper. We
utilize interval-valued numbers to exhibit the imprecise values of travel
time and travel cost on each link of the network. Such numbers reflect
the traveler’s perception of travel time and travel cost. Then, we de-
fine the fuzzy vector equilibrium principle, which is the generalization
and extension of the Wardrop equilibrium principle in the static user-
optimized route choice problem. However, this definition involves inter-
val arithmetical operations at each α-cut level, which is prohibitive for
practical transportation problems. We further simplify the fuzzy equi-
librium condition taking the most likely estimation of each link travel
time and travel cost that is associated with fuzzy link travel time and
fuzzy link travel cost at an α-cut level. As such, a crisp vector equilib-
rium principle results. In view of this simplification, a vector variational
inequality problem is introduced and the relation between the solution
of this problem and the traffic equilibrium flow is established.
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