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Abstract. The aim of this paper is to introduce the notions
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length fuzzy UP-subalgebras (resp., mean fuzzy UP-subalgebras)
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1. Introduction

The branch of the logical algebra, UP-algebras were introduced by
Iampan [4] in 2017, and it is known that the class of KU-algebras [10]
is a proper subclass of the class of UP-algebras. It have been examined
by several researchers, for example, Somjanta et al. [16] introduced the
notion of fuzzy sets in UP-algebras, the notion of intuitionistic fuzzy
sets in UP-algebras was introduced by Kesorn et al. [9], Kaijae et al.
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[8] introduced the notions of anti-fuzzy UP-ideals and anti-fuzzy UP-
subalgebras of UP-algebras, the notion of Q-fuzzy sets in UP-algebras
was introduced by Tanamoon et al. [19], Sripaeng et al. [18] introduced
the notion anti Q-fuzzy UP-ideals and anti Q-fuzzy UP-subalgebras of
UP-algebras, the notion of N -fuzzy sets in UP-algebras was introduced
by Songsaeng and Iampan [17], Senapati et al. [14, 15] applied cubic set
and interval-valued intuitionistic fuzzy structure in UP-algebras, Ro-
mano [11] introduced the notion of proper UP-filters in UP-algebras,
etc.

A fuzzy subset f of a set S is a function from S to a closed interval
[0, 1]. The concept of a fuzzy subset of a set was first considered by
Zadeh [20] in 1965. The fuzzy set theories developed by Zadeh and
others have found many applications in the domain of mathematics and
elsewhere.

Hyperstructures have a lot of applications in several domains of math-
ematics and computer science. In a classical algebraic structure, the
composition of two elements is an element, while in an algebraic hy-
perstructure, the composition of two elements is a set. The study
of fuzzy hyper structures is an interesting research area of fuzzy sets.
As a generalization of fuzzy sets and interval-valued fuzzy sets, Ghosh
and Samanta [3] introduced the notion of hyperfuzzy sets, and ap-
plied it to group theory. Jun et al. [7] applied the hyperfuzzy sets
to BCK/BCI-algebras, and introduced the notion of k-fuzzy substruc-
tures for k ∈ {1, 2, 3, 4}. They introduced the concepts of hyperfuzzy
substructures of several types by using k-fuzzy substructures, and inves-
tigated their basic properties. They also defined hyperfuzzy subalgebras
of type (i, j) for i, j ∈ {1, 2, 3, 4}, and discussed relations between the
hyperfuzzy substructure/subalgebra and its length. They investigated
the properties of hyperfuzzy subalgebras related to upper-level subsets
and lower-level subsets.

In this paper, we introduce the notions of the length and the mean
of a hyper structure in UP-algebras. The notions of length fuzzy UP-
subalgebras and mean fuzzy UP-subalgebras of UP-algebras are intro-
duced, and related properties are investigated. Characterizations of
length fuzzy UP-subalgebras and mean fuzzy UP-subalgebras are dis-
cussed. Relations between length fuzzy UP-subalgebras (resp., mean
fuzzy UP-subalgebras) and hyperfuzzy UP-subalgebras are established.
Moreover, we discuss the relationships among length fuzzy UP-subalgebras
(resp., mean fuzzy UP-subalgebras) and upper level subsets, lower level
subsets, and equal level subsets of the length (resp., mean) of a fuzzy
structure in UP-algebras.
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2. Preliminaries

Before we begin our study, we will give the definition of a UP-algebra.

Definition 2.1. [4] An algebra A = (A, ·, 0) of type (2, 0) is called a
UP-algebra where A is a nonempty set, · is a binary operation on A,
and 0 is a fixed element of A (i.e., a nullary operation) if it satisfies the
following axioms:

(UP-1): (∀x, y, z ∈ A)((y · z) · ((x · y) · (x · z)) = 0),
(UP-2): (∀x ∈ A)(0 · x = x),
(UP-3): (∀x ∈ A)(x · 0 = 0), and
(UP-4): (∀x, y ∈ A)(x · y = 0, y · x = 0 ⇒ x = y).

From [4], we know that the notion of UP-algebras is a generalization
of KU-algebras (see [10]).

Example 2.2. [13] Let X be a universal set and let Ω ∈ P(X) where
P(X) means the power set of X. Let PΩ(X) = {A ∈ P(X) | Ω ⊆ A}.
Define a binary operation · on PΩ(X) by putting A ·B = B ∩ (AC ∪Ω)
for all A,B ∈ PΩ(X) where AC means the complement of a subset A.
Then (PΩ(X), ·,Ω) is a UP-algebra and we shall call it the generalized
power UP-algebra of type 1 with respect to Ω. Let PΩ(X) = {A ∈
P(X) | A ⊆ Ω}. Define a binary operation ∗ on PΩ(X) by putting
A ∗ B = B ∪ (AC ∩ Ω) for all A,B ∈ PΩ(X). Then (PΩ(X), ∗,Ω) is
a UP-algebra and we shall call it the generalized power UP-algebra of
type 2 with respect to Ω. In particular, (P(X), ·, ∅) is a UP-algebra and
we shall call it the power UP-algebra of type 1, and (P(X), ∗, X) is a
UP-algebra and we shall call it the power UP-algebra of type 2.

Example 2.3. [2] Let N be the set of all natural numbers with two
binary operations ◦ and • defined by

(∀x, y ∈ N)

(
x ◦ y =

{
y if x < y,
0 otherwise

)
and

(∀x, y ∈ N)

(
x • y =

{
y if x > y or x = 0,
0 otherwise

)
.

Then (N, ◦, 0) and (N, •, 0) are UP-algebras.
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Example 2.4. [17] Let A = {0, 1, 2, 3, 4, 5, 6} be a set with a binary
operation · defined by the following Cayley table:

· 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 0 0 2 3 2 3 6
2 0 1 0 3 1 5 3
3 0 1 2 0 4 1 2
4 0 0 0 3 0 3 3
5 0 0 2 0 2 0 2
6 0 1 0 0 1 1 0

Then (A, ·, 0) is a UP-algebra.

For more examples of UP-algebras, see [1, 5, 12, 13].

The following proposition is important for the study of UP-algebras.

Proposition 2.5. [4, 5] In a UP-algebra A = (A, ·, 0), the following
properties hold:

(1) (∀x ∈ A)(x · x = 0),
(2) (∀x, y, z ∈ A)(x · y = 0, y · z = 0 ⇒ x · z = 0),
(3) (∀x, y, z ∈ A)(x · y = 0 ⇒ (z · x) · (z · y) = 0),
(4) (∀x, y, z ∈ A)(x · y = 0 ⇒ (y · z) · (x · z) = 0),
(5) (∀x, y ∈ A)(x · (y · x) = 0),
(6) (∀x, y ∈ A)((y · x) · x = 0 ⇔ x = y · x),
(7) (∀x, y ∈ A)(x · (y · y) = 0),
(8) (∀a, x, y, z ∈ A)((x · (y · z)) · (x · ((a · y) · (a · z))) = 0),
(9) (∀a, x, y, z ∈ A)((((a · x) · (a · y)) · z) · ((x · y) · z) = 0),
(10) (∀x, y, z ∈ A)(((x · y) · z) · (y · z) = 0),
(11) (∀x, y, z ∈ A)(x · y = 0 ⇒ x · (z · y) = 0),
(12) (∀x, y, z ∈ A)(((x · y) · z) · (x · (y · z)) = 0), and
(13) (∀a, x, y, z ∈ A)(((x · y) · z) · (y · (a · z)) = 0).

From [4], the binary relation ≤ on a UP-algebra A = (A, ·, 0) is defined
as follows:

(∀x, y ∈ A)(x ≤ y ⇔ x · y = 0).

Definition 2.6. [4] A nonempty subset S of a UP-algebra A = (A, ·, 0)
is called a UP-subalgebra of A if

(∀x, y ∈ S)(x · y ∈ S).

Definition 2.7. [20] Let A be a nonempty set. A mapping f : A → [0, 1]
is called a fuzzy set in A (or a fuzzy subset of A) where [0, 1] is the unit
segment of the real line. An ordered pair (A, f) is called a fuzzy structure
in A. A fuzzy structure (A, f) in A is said to be constant if a fuzzy set
f is constant.
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Definition 2.8. [3] Let A be a nonempty set. A mapping f̃ : A →
P̃ ([0, 1]) is called a hyperfuzzy set over A where P̃ ([0, 1]) is the family of

all nonempty subsets of [0, 1]. An ordered pair (A, f̃) is called a hyper
structure over A.

Definition 2.9. [6] Given a hyper structure (A, f̃) over a nonempty set

A, we define two fuzzy structures (A, f̃inf) and (A, f̃sup) in A as follows:

f̃inf : A → [0, 1], x 7→ inf f̃(x),

f̃sup : A → [0, 1], x 7→ sup f̃(x).

In what follows, let A denote a UP-algebra (A, ·, 0) unless otherwise
specified.

The following is a definition of all 4 types of fuzzy UP-subalgebras
which will lead to other definitions.

Definition 2.10. A fuzzy structure (A, f) in A is called

(1) a fuzzy UP-subalgebra of A with type 1 (briefly, 1-fuzzy UP-
subalgebra of A) if

(∀x, y ∈ A)(f(x · y) ≥ min{f(x), f(y)}).

(2) a fuzzy UP-subalgebra of A with type 2 (briefly, 2-fuzzy UP-
subalgebra of A) if

(∀x, y ∈ A)(f(x · y) ≤ min{f(x), f(y)}).

(3) a fuzzy UP-subalgebra of A with type 3 (briefly, 3-fuzzy UP-
subalgebra of A) if

(∀x, y ∈ A)(f(x · y) ≥ max{f(x), f(y)}).

(4) a fuzzy UP-subalgebra of A with type 4 (briefly, 4-fuzzy UP-
subalgebra of A) if

(∀x, y ∈ A)(f(x · y) ≤ max{f(x), f(y)}).

Proposition 2.11. If (A, f) is a k-fuzzy UP-subalgebra of A for k =
1, 3, then

(∀x ∈ A)(f(0) ≥ f(x)). (2.1)

Proof. If (A, f) is a 1-fuzzy UP-subalgebra of A, then for all x ∈ A,

f(0) = f(x · x) ≥ min{f(x), f(x)} = f(x). (Proposition 2.5 (1))

If (A, f) is a 3-fuzzy UP-subalgebra of A, then for all x ∈ A,

f(0) = f(x · x) ≥ max{f(x), f(x)} = f(x). (Proposition 2.5 (1))

Therefore, f(0) ≥ f(x) for all x ∈ A. �
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Proposition 2.12. If (A, f) is a k-fuzzy UP-subalgebra of A for k =
2, 4, then

(∀x ∈ A)(f(0) ≤ f(x)). (2.2)

Proof. If (A, f) is a 2-fuzzy UP-subalgebra of A, then for all x ∈ A,

f(0) = f(x · x) ≤ min{f(x), f(x)} = f(x). (Proposition 2.5 (1))

If (A, f) is a 4-fuzzy UP-subalgebra of A, then for all x ∈ A,

f(0) = f(x · x) ≤ max{f(x), f(x)} = f(x). (Proposition 2.5 (1))

Therefore, f(0) ≤ f(x) for all x ∈ A. �

Theorem 2.13. Every 3-fuzzy UP-subalgebra of A is a 1-fuzzy UP-
subalgebra.

Proof. Assume that (A, f) is a 3-fuzzy UP-subalgebra of A. Let x, y ∈ A.
Then

f(x · y) ≥ max{f(x), f(y)} ≥ min{f(x), f(y)}.

Hence, (A, f) is a 1-fuzzy UP-subalgebra of A. �

The following example show that the converse of Theorem 2.13 is not
true.

Example 2.14. Consider a UP-algebra A = {0, 1, 2, 3, 4} with the bi-
nary operation · which is given as follows:

· 0 1 2 3 4
0 0 1 2 3 4
1 0 0 0 3 0
2 0 2 0 3 0
3 0 2 2 0 0
4 0 2 2 3 0

Let (A, f) be a fuzzy structure in A in which f is given as follows:

f =

(
0 1 2 3 4
0.8 0.8 0.8 0.5 0.5

)
.

Then (A, f) is 1-fuzzy UP-subalgebra of A. We see that

f(0 · 3) = 0.5 � 0.8 = max{0.8, 0.5} = max{f(0), f(3)}.

Thus f is not a 3-fuzzy UP-subalgebra of A

Theorem 2.15. Every 2-fuzzy UP-subalgebra of A is a 4-fuzzy UP-
subalgebra.
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Proof. Assume that (A, f) is a 2-fuzzy UP-subalgebra of A. Let x, y ∈ A.
Then

f(x · y) ≤ min{f(x), f(y)} ≤ max{f(x), f(y)}.

Hence, (A, f) is a 4-fuzzy UP-subalgebra of A. �

The following example show that the converse of Theorem 2.15 is not
true.

Example 2.16. Consider a UP-algebra A = {0, 1, 2, 3, 4} in Example
2.14. Let (A, f) be a fuzzy structure in A in which f is given as follows:

f =

(
0 1 2 3 4
0.2 0.2 0.2 0.2 0.7

)
.

Then (A, f) is a 4-fuzzy UP-subalgebra of A. We see that

f(0 · 4) = f(4) = 0.7 � 0.2 = min{f(0), f(4)}.

Thus (A, f) is not a 2-fuzzy UP-subalgebra of A.

Theorem 2.17. A fuzzy structure (A, f) in A is a 2-fuzzy UP-subalgebra
of A if and only if it is constant.

Proof. Assume that (A, f) is a 2-fuzzy UP-subalgebra of A. Then by
Proposition 2.12, we have f(0) ≤ f(x) for all x ∈ A. By (UP-2), we
have f(x) = f(0 · x) ≤ min{f(0), f(x)} = f(0) for all x ∈ A. Thus
f(x) = f(0) for all x ∈ A, so f is constant. Hence, (A, f) is constant.

Conversely, assume that (A, f) is constant. Then f(x) = f(0) for
all x ∈ A. Let x, y ∈ A. Then f(x · y) = f(0) = min{f(0), f(0)} =
(≤)min{f(x), f(y)}. Therefore, (A, f) is a 2-fuzzy UP-subalgebra of
A. �

Theorem 2.18. A fuzzy structure (A, f) in A is a 3-fuzzy UP-subalgebra
of A if and only if it is constant.

Proof. Assume that (A, f) is a 3-fuzzy UP-subalgebra of A. Then by
Proposition 2.11, we have f(0) ≥ f(x) for all x ∈ A. By (UP-2), we
have f(x) = f(0 · x) ≥ max{f(0), f(x)} = f(0). Thus f(x) = f(0) for
all x ∈ A, so f is constant. Hence, (A, f) is constant.

Conversely, assume that (A, f) is constant. Then f(0) = f(x) for
all x ∈ A. Let x, y ∈ A. Then f(x · y) = f(0) = max{f(0), f(0)} =
(≥)max{f(x), f(y)}. Therefore, (A, f) is a 3-fuzzy UP-subalgebra of
A. �

By Theorems 2.17 and 2.18, we obtain that 2-fuzzy UP-subalgebras,
3-fuzzy UP-subalgebras, and constant fuzzy structures coincide.
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Definition 2.19. For any i, j ∈ {1, 2, 3, 4}, a hyper structure (A, f̃) over
A is called an (i, j)-hyperfuzzy UP-subalgebra of A if a fuzzy structures

(A, f̃inf) is an i-fuzzy UP-subalgebra of A and a fuzzy structures (A, f̃sup)
is a j-fuzzy UP-subalgebra of A.

3. Length of a hyper structure in UP-algebras

In this section, we introduce the notion of the length of a hyper struc-
ture in UP-algebras. The notions of length fuzzy UP-subalgebras of
UP-algebras are introduced, and related properties are investigated.
Relations between length fuzzy UP-subalgebras and hyperfuzzy UP-
subalgebras are established. Moreover, we discuss the relationships
among length fuzzy UP-subalgebras and upper level subsets, lower level
subsets, and equal level subsets of the length of a hyper structure in
UP-algebras.

Definition 3.1. Given a hyper structure (A, f̃) over A, we define a

fuzzy structures (A, f̃l) in A as follows:

f̃l : A → [0, 1], x 7→ f̃sup(x)− f̃inf(x)

which is called the length of f̃ .

Definition 3.2. A hyper structure (A, f̃) over A is called a length 1-
fuzzy (resp., 2-fuzzy, 3-fuzzy, and 4-fuzzy) UP-subalgebra of A if a fuzzy

structures (A, f̃l) is a 1-fuzzy (resp., 2-fuzzy, 3-fuzzy, and 4-fuzzy) UP-
subalgebra of A.

Example 3.3. Consider a UP-algebra A = {0, 1, 2, 3, 4} with the binary
operation · which is given as follows:

· 0 1 2 3 4
0 0 1 2 3 4
1 0 0 2 3 4
2 0 0 0 3 4
3 0 0 2 0 4
4 0 0 0 0 0

Let (A, f̃) be a hyper structure over A in which f̃ is given as follows:

f̃ =

(
0 1 2 3 4

[0.2, 0.4) ∪ [0.5, 1) (0.5, 0.9] [0.2, 0.3] ∪ (0.4, 0.8] [0.7, 0.9] [0.2, 0.3]

)
.

Then the length of f̃ is given as follows:

f̃l =

(
0 1 2 3 4
0.8 0.4 0.6 0.2 0.1

)
.

Thus (A, f̃l) is a 1-fuzzy UP-subalgebra of A, that is, (A, f̃) is a length
1-fuzzy UP-subalgebra of A.
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Proposition 3.4. If (A, f̃) is a length k-fuzzy UP-subalgebra of A for
k = 1, 3, then

(∀x ∈ A)(f̃l(0) ≥ f̃l(x)). (3.1)

Proof. It is straightforward by Proposition 2.11. �
Proposition 3.5. If (A, f̃) is a length k-fuzzy UP-subalgebra of A for
k = 2, 4, then

(∀x ∈ A)(f̃l(0) ≤ f̃l(x)). (3.2)

Proof. It is straightforward by Proposition 2.12. �
Theorem 3.6. Every length 3-fuzzy UP-subalgebra of A is a length 1-
fuzzy UP-subalgebra.

Proof. It is straightforward by Theorem 2.13. �
Theorem 3.7. Every length 2-fuzzy UP-subalgebra of A is a length 4-
fuzzy UP-subalgebra.

Proof. It is straightforward by Theorem 2.15. �
Theorem 3.8. Length 2-fuzzy UP-subalgebra and length 3-fuzzy UP-
subalgebra of A coincide.

Proof. It is straightforward by Theorems 2.17 and 2.18. �
Theorem 3.9. Given a UP-subalgebra S of A and B1, B2 ∈ P̃ ([0, 1]),

let (A, f̃) be a hyper structure over A given by

f̃ : A → P̃ ([0, 1]), x 7→

{
B2 if x ∈ S,

B1 otherwise.

If B1 ⊂ B2, then (A, f̃) is a length 1-fuzzy UP-subalgebra of A. Also, if

B2 ⊂ B1, then (A, f̃) is a length 4-fuzzy UP-subalgebra of A.

Proof. If x ∈ S, then f̃(x) = B2 and so

f̃l(x) = f̃sup(x)− f̃inf(x) = sup f̃(x)− inf f̃(x) = supB2 − inf B2.

If x 6∈ S, then f̃(x) = B1 and so

f̃l(x) = f̃sup(x)− f̃inf(x) = sup f̃(x)− inf f̃(x) = supB1 − inf B1.

Assume that B1 ⊂ B2. Then supB2 − inf B2 ≥ supB1 − inf B1.

Case 1: Let x, y ∈ S. Then f̃l(x) = supB2 − inf B2 and f̃l(y) =

supB2 − inf B2. Thus min{f̃l(x), f̃l(y)} = supB2 − inf B2. Since S is a
UP-subalgebra of A, we have x · y ∈ S and so

f̃l(x · y) = supB2 − inf B2.
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Thus

f̃l(x · y) = supB2 − inf B2 = (≥)min{f̃l(x), f̃l(y)}.

Case 2: Let x, y 6∈ S. Then f̃l(x) = supB1 − inf B1 and f̃l(y) =

supB1 − inf B1, so min{f̃l(x), f̃l(y)} = supB1 − inf B1. Thus

f̃l(x · y) ≥ supB1 − inf B1 = min{f̃l(x), f̃l(y)}.

Case 3: Let x 6∈ S and y ∈ S. Then f̃l(x) = supB1 − inf B1 and

f̃l(y) = supB2 − inf B2, so min{f̃l(x), f̃l(y)} = supB1 − inf B1. Thus

f̃l(x · y) ≥ supB1 − inf B1 = min{f̃l(x), f̃l(y)}.

Case 4: Let x ∈ S and y 6∈ S. Then f̃l(x) = supB2 − inf B2 and

f̃l(y) = supB1 − inf B1, so min{f̃l(x), f̃l(y)} = supB1 − inf B1. Thus

f̃l(x · y) ≥ supB1 − inf B1 = min{f̃l(x), f̃l(y)}.

Hence, f̃l is a 1-fuzzy UP-subalgebra of A and so (A, f̃) is a length
1-fuzzy UP-subalgebra of A.

Assume that B2 ⊂ B1. Then supB2 − inf B2 ≤ supB1 − inf B1.

Case 1: Let x, y ∈ S. Then f̃l(x) = supB2 − inf B2 and f̃l(y) =

supB2 − inf B2. Thus max{f̃l(x), f̃l(y)} = supB2 − inf B2. Since S is a
UP-subalgebra of A, we have x · y ∈ S and so

f̃l(x · y) = supB2 − inf B2.

Thus

f̃l(x · y) = supB2 − inf B2 = (≤)max{f̃l(x), f̃l(y)}.

Case 2: Let x, y 6∈ S. Then f̃l(x) = supB1 − inf B1 and f̃l(y) =

supB1 − inf B1, so max{f̃l(x), f̃l(y)} = supB1 − inf B1. Thus

f̃l(x · y) ≤ supB1 − inf B1 = max{f̃l(x), f̃l(y)}.

Case 3: Let x 6∈ S and y ∈ S. Then f̃l(x) = supB1 − inf B1 and

f̃l(y) = supB2 − inf B2, so max{f̃l(x), f̃l(y)} = supB1 − inf B1. Thus

f̃l(x · y) ≤ supB1 − inf B1 = max{f̃l(x), f̃l(y)}.

Case 4: Let x ∈ S and y 6∈ S. Then f̃l(x) = supB2 − inf B2 and

f̃l(y) = supB1 − inf B1, so max{f̃l(x), f̃l(y)} = supB1 − inf B1. Thus

f̃l(x · y) ≤ supB1 − inf B1 = max{f̃l(x), f̃l(y)}.

Hence, f̃l is a 4-fuzzy UP-subalgebra of A and so (A, f̃) is a length
4-fuzzy UP-subalgebra of A. �
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Example 3.10. Consider a UP-algebra A = {0, 1, 2, 3, 4} in Example

2.14. Then S = {0, 1, 2} is a UP-subalgebra of A. Let (A, f̃) be a hyper

structure over A in which f̃ is given as follows:

f̃ =

(
0 1 2 3 4

[0.1, 0.9) [0.1, 0.9) [0.1, 0.9) (0.3, 0.8] (0.3, 0.8]

)
.

Then the length of f̃ is given as follows:

f̃l =

(
0 1 2 3 4
0.8 0.8 0.8 0.5 0.5

)
.

By Theorem 3.9, we have (A, f̃) is a length 1-fuzzy UP-subalgebra of A.
We see that

f̃l(0 · 3) = 0.5 � 0.8 = max{0.8, 0.5} = max{f̃l(0), f̃l(3)}.

Thus (A, f̃l) is not a 3-fuzzy UP-subalgebra of A, that is, (A, f̃) is
not a length 3-fuzzy UP-subalgebra of A. Give a UP-subalgebra S =
{0, 1, 2, 3} of A, let (A, f̃) be a hyper structure over A given by

f̃ =

(
0 1 2 3 4

(0.3, 0.5) (0.3, 0.5) (0.3, 0.5) (0.3, 0.5) [0.2, 0.9)

)
.

Then the length of f̃ is given as follows:

f̃l =

(
0 1 2 3 4
0.2 0.2 0.2 0.2 0.7

)
.

By Theorem 3.9, we have (A, f̃) is a length 4-fuzzy UP-subalgebra of A.
We see that

f̃l(0 · 4) = f̃l(4) = 0.7 � 0.2 = min{f̃l(0), f̃l(4)}.

Thus (A, f̃l) is not a 2-fuzzy UP-subalgebra of A, that is, (A, f̃) is not
a length 2-fuzzy UP-subalgebra of A.

Definition 3.11. [16] Let (A, f) be a fuzzy structure in A. For any
t ∈ [0, 1], the sets

U(f ; t) = {x ∈ A | f(x) ≥ t},
L(f ; t) = {x ∈ A | f(x) ≤ t},
E(f ; t) = {x ∈ A | f(x) = t}

are called upper t-level subset, lower t-level subset, and equal t-level sub-
set of f , respectively.

Theorem 3.12. A hyper structure (A, f̃) over A is a length 1-fuzzy

UP-subalgebra of A if and only if the set U(f̃l; t) is a UP-subalgebra of

A for all t ∈ [0, 1] with U(f̃l; t) 6= ∅.
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Proof. Assume that (A, f̃) is a length 1-fuzzy UP-subalgebra of A. Let

t ∈ [0, 1] be such that U(f̃l; t) 6= ∅ and let x, y ∈ U(f̃l; t). Then f̃l(x) ≥ t

and f̃l(y) ≥ t. Since (A, f̃) is a length 1-fuzzy UP-subalgebra of A, we
have

f̃l(x · y) ≥ min{f̃l(x), f̃l(y)} ≥ t.

Thus x · y ∈ U(f̃l; t). Hence, U(f̃l; t) is a UP-subalgebra of A.

Conversely, assume that for all t ∈ [0, 1], the set U(f̃l; t) is a UP-

subalgebra of A if U(f̃l; t) 6= ∅. Let x, y ∈ A. Then f̃l(x), f̃l(y) ∈ [0, 1].

Choose t = min{f̃l(x), f̃l(y)}. Thus f̃l(x) ≥ t and f̃l(y) ≥ t and so

x, y ∈ U(f̃l; t) 6= ∅. By assumption, we have U(f̃l; t) is a UP-subalgebra

of A and so x · y ∈ U(f̃l; t). Thus

f̃l(x · y) ≥ t = min{f̃l(x), f̃l(y)}.

Hence, (A, f̃l) is a 1-fuzzy UP-subalgebra of A, that is, (A, f̃) is a length
1-fuzzy UP-subalgebra of A. �

Corollary 3.13. If (A, f̃) is a length 3-fuzzy UP-subalgebra of A, then

the set U(f̃l; t) is a UP-subalgebra of A for all t ∈ [0, 1] with U(f̃l; t) 6= ∅.

Proof. It is straightforward by Theorems 4.6 and 3.12. �

The following example show that the converse of Corollary 3.13 is not
true.

Example 3.14. Consider a UP-algebra A = {0, 1, 2, 3, 4} with the bi-
nary operation · which is given as follows:

· 0 1 2 3 4
0 0 1 2 3 4
1 0 0 2 0 0
2 0 0 0 0 0
3 0 1 2 0 4
4 0 1 2 3 0

Let (A, f̃) be a hyper structure over A in which f̃ is given as follows:

f̃ =

(
0 1 2 3 4

[0.1, 0.3) ∪ [0.5, 0.8) (0.5, 0.8] [0.1, 0.3] ∪ (0.5, 0.7] [0.5, 0.7] (0.3, 0.5]

)
.

Then the length of f̃ is given as follows:

f̃l =

(
0 1 2 3 4
0.7 0.3 0.6 0.2 0.2

)
.
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We have

U(f̃l; t) =



∅ if t ∈ (0.7, 1],

{0} if t ∈ (0.6, 0.7],

{0, 2} if t ∈ (0.3, 0.6],

{0, 1, 2} if t ∈ (0.2, 0.3],

A if t ∈ [0, 0.2]

and so U(f̃l; t) is a UP-subalgebra of A for all t ∈ [0, 1] with U(f̃l; t) 6= ∅.
We see that

f̃l(0 · 4) = f̃l(4) = 0.2 � 0.7 = max{f̃l(0), f̃l(4)}.

Thus (A, f̃l) is not a 3-fuzzy UP-subalgebra of A, that is, (A, f̃) is not
a length 3-fuzzy UP-subalgebra of A.

Theorem 3.15. A hyper structure (A, f̃) over A is a length 4-fuzzy

UP-subalgebra of A if and only if the set L(f̃l; t) is a UP-subalgebra of

A for all t ∈ [0, 1] with L(f̃l; t) 6= ∅.

Proof. Assume that (A, f̃) is a length 4-fuzzy UP-subalgebra of A. Let

t ∈ [0, 1] be such that L(f̃l; t) 6= ∅ and let x, y ∈ L(f̃l; t). Then f̃l(x) ≤ t

and f̃l(y) ≤ t. Since (A, f̃) is a length 4-fuzzy UP-subalgebra of A, we
have

f̃l(x · y) ≤ max{f̃l(x), f̃l(y)} ≤ t.

Thus x · y ∈ L(f̃l; t). Hence, L(f̃l; t) is a UP-subalgebra of A.

Conversely, assume that for all t ∈ [0, 1], the set Ll(f̃ ; t) is a UP-

subalgebra of A if L(f̃l; t) 6= ∅. Let x, y ∈ A. Then f̃l(x), f̃l(y) ∈ [0, 1].

Choose t = max{f̃l(x), f̃l(y)}. Thus f̃l(x) ≤ t and f̃l(y) ≤ t and so

x, y ∈ L(f̃l; t) 6= ∅. By assumption, we have L(f̃l; t) is a UP-subalgebra

of A and so x · y ∈ L(f̃l; t). Thus

f̃l(x · y) ≤ t = max{f̃l(x), f̃l(y)}.

Hence, (A, f̃l) is a 4-fuzzy UP-subalgebra of A, that is, (A, f̃) is a length
4-fuzzy UP-subalgebra of A. �

Corollary 3.16. If (A, f̃) is a length 2-fuzzy UP-subalgebra of A, then

the set L(f̃l; t) is a UP-subalgebra of A for all t ∈ [0, 1] with L(f̃l; t) 6= ∅.

Proof. It is straightforward by Theorems 4.7 and 3.15. �

The following example show that the converse of Corollary 3.16 is not
true.
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Example 3.17. Consider a UP-algebra A = {0, 1, 2, 3, 4} in Example

3.14. Let (A, f̃) be a hyper structure over A in which f̃ is given as
follows:

f̃ =

(
0 1 2 3 4

[0.6, 0.9) (0.3, 0.8] [0.4, 0.6) ∪ (0.7, 0.8] [0.1, 0.8] (0.2, 0.9]

)
.

Then the length of f̃ is given as follows:

f̃l =

(
0 1 2 3 4
0.3 0.5 0.4 0.7 0.7

)
.

We have

L(f̃l; t) =



A if t ∈ [0.7, 1],

{0, 1, 2} if t ∈ [0.5, 0.7),

{0, 2} if t ∈ [0.4, 0.5),

{0} if t ∈ [0.3, 0.4),

∅ if t ∈ [0, 0.3)

and so L(f̃l; t) is a UP-subalgebra of A for all t ∈ [0, 1] with L(f̃l; t) 6= ∅.
We see that

f̃l(0 · 3) = 0.7 � 0.3 = min{f̃l(0), f̃l(3)}.

Thus (A, f̃l) is not a 2-fuzzy UP-subalgebra of A, that is, (A, f̃) is not
a length 2-fuzzy UP-subalgebra of A.

Theorem 3.18. A hyper structure (A, f̃) over A is a length 2(3)-fuzzy

UP-subalgebra of A if and only if the set E(f̃l; f̃l(0)) = A.

Proof. Assume that (A, f̃) is a length 2-fuzzy UP-subalgebra of A. Then

f̃l is a 2-fuzzy UP-subalgebra of A. By Theorem 2.17, we have f̃l is
constant and so f̃l(x) = f̃l(0) for all x ∈ A. Thus x ∈ E(f̃l; f̃l(0)) for all

x ∈ A. Therefore, E(f̃l; f̃l(0)) = A.

Conversely, assume that E(f̃l; f̃l(0)) = A. Then f̃l(x) = f̃l(0), for all

x ∈ A. Thus f̃l is constant. By Theorem 2.17, we have f̃l is a 2-fuzzy
UP-subalgebraA. Therefore, (A, f̃) is a length 2-fuzzy UP-subalgebra of
A. �

Theorem 3.19. If (A, f̃) is a hyper structure over A in which (A, f̃inf)

is constant and (A, f̃sup) is a 1-fuzzy UP-subalgebra of A, then (A, f̃) is
a length 1-fuzzy UP-subalgebra of A.

Proof. Assume that (A, f̃) is a hyper structure over A in which (A, f̃inf)

is constant and (A, f̃sup) is a 1-fuzzy UP-subalgebra of A. Let x, y ∈
A. Since (A, f̃inf) is constant, we have f̃inf(x) = f̃inf(0) for all x ∈ A.
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Since (A, f̃sup) is a 1-fuzzy UP-subalgebra of A, we have f̃sup(x · y) ≥
min{f̃sup(x), f̃sup(y)}. Thus

f̃l(x · y) = f̃sup(x · y)− f̃inf(x · y)

= f̃sup(x · y)− f̃inf(0)

≥ min{f̃sup(x), f̃sup(y)} − f̃inf(0)

= min{f̃sup(x)− f̃inf(0), f̃sup(y)− f̃inf(0)}

= min{f̃sup(x)− f̃inf(x), f̃sup(y)− f̃inf(y)}

= min{f̃l(x), f̃l(y)}.

Hence, (A, f̃l) is a 1-fuzzy UP-subalgebra of A, that is, (A, f̃) is a length
1-fuzzy UP-subalgebra of A. �

Corollary 3.20. If (A, f̃) is a hyper structure over A in which (A, f̃inf)

is constant and (A, f̃sup) is a 3-fuzzy UP-subalgebra of A, then (A, f̃) is
a length 1-fuzzy UP-subalgebra of A.

Proof. It is straightforward by Theorems 2.13 and 3.19. �

Corollary 3.21. For j ∈ {1, 3}, every (2(3), j)-hyperfuzzy UP-subalgebra
of A is a length 1-fuzzy UP-subalgebra.

Proof. It is straightforward by Theorem 3.19 and Corollary 3.20. �

The following example show that the converse of Corollary 3.21 is not
true.

Example 3.22. Consider a UP-algebra A = {0, 1, 2, 3, 4} with the bi-
nary operation · which is given in as follows:

· 0 1 2 3 4
0 0 1 2 3 4
1 0 0 2 3 0
2 0 1 0 0 4
3 0 1 2 0 4
4 0 4 2 3 0

Let (A, f̃) be a hyper structure over A in which f̃ is given as follows:

f̃ =

(
0 1 2 3 4

[0.1, 1) (0.3, 0.8] [0, 0.8] [0.1, 0.3) [0.1, 0.3)

)
.

Then the length of f̃ is given as follows:

f̃l =

(
0 1 2 3 4
0.9 0.2 0.8 0.2 0.2

)
.
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Thus (A, f̃) is a length 1-fuzzy UP-subalgebra of A. Since

f̃inf =

(
0 1 2 3 4
0.1 0.3 0 0.1 0.1

)
,

we have f̃inf is not constant. By Theorems 2.17 and 2.18, we have f̃inf
is not 2(3)-fuzzy UP-subalgebra of A. Hence, (A, f̃) is not a (2(3), j)-
hyperfuzzy UP-subalgebra of A for j ∈ {1, 3}.

Theorem 3.23. If (A, f̃) is a hyper structure over A in which (A, f̃inf)

is constant and (A, f̃sup) is a 4-fuzzy UP-subalgebra of A, then (A, f̃) is
a length 4-fuzzy UP-subalgebra of A.

Proof. Assume that (A, f̃) is a hyper structure over A in which (A, f̃inf)

is constant and (A, f̃sup) is a 4-fuzzy UP-subalgebra of A. Let x, y ∈
A. Since (A, f̃inf) is constant, we have f̃inf(x) = f̃inf(0) for all x ∈ A.

Since (A, f̃sup) is a 4-fuzzy UP-subalgebra of A, we have f̃sup(x · y) ≤
max{f̃sup(x), f̃sup(y)}. Thus

f̃l(x · y) = f̃sup(x · y)− f̃inf(x · y)

= f̃sup(x · y)− f̃inf(0)

≤ max{f̃sup(x), f̃sup(y)} − f̃inf(0)

= max{f̃sup(x)− f̃inf(0), f̃sup(y)− f̃inf(0)}

= max{f̃sup(x)− f̃inf(x), f̃sup(y)− f̃inf(y)}

= max{f̃l(x), f̃l(y)}.

Hence, (A, f̃l) is a 4-fuzzy UP-subalgebra of A, that is, (A, f̃) is a length
4-fuzzy UP-subalgebra of A. �

Corollary 3.24. If (A, f̃) is a hyper structure over A in which (A, f̃inf)

is constant and (A, f̃sup) is a 2-fuzzy UP-subalgebra of A, then (A, f̃) is
a length 4-fuzzy UP-subalgebra of A.

Proof. It is straightforward by Theorems 2.15 and 3.23. �

Corollary 3.25. For j ∈ {2, 4}, every (2(3), j)-hyperfuzzy UP-subalgebra
of A is a length 4-fuzzy UP-subalgebra.

Proof. It is straightforward by Theorem 3.23 and Corollary 3.24. �

The following example show that the converse of Corollary 3.25 is not
true.

Example 3.26. Consider a UP-algebra A = {0, 1, 2, 3, 4} in Example

3.22. Let (A, f̃) be a hyper structure over A in which f̃ is given as
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follows:

f̃ =

(
0 1 2 3 4

[0.1, 0.4) (0.2, 0.5] [0.2, 0.7] [0.3, 0.9) [0.1, 1)

)
.

Then the length of f̃ is given as follows:

f̃l =

(
0 1 2 3 4
0.3 0.3 0.5 0.6 0.9

)
.

Thus (A, f̃) is a length 4-fuzzy UP-subalgebra of A. Since

f̃inf =

(
0 1 2 3 4
0.1 0.2 0.2 0.3 0.1

)
,

we have f̃inf is not constant. By Theorems 2.17 and 2.18, we have f̃inf
is not 2(3)-fuzzy UP-subalgebra of A. Hence, (A, f̃) is not a (2(3), j)-
hyperfuzzy UP-subalgebra of A for j ∈ {2, 4}.

Theorem 3.27. If (A, f̃) is a hyper structure over A in which (A, f̃sup)

is constant and (A, f̃inf) is a 4-fuzzy UP-subalgebra of A, then (A, f̃) is
a length 1-fuzzy UP-subalgebra of A.

Proof. Assume that (A, f̃) is a hyper structure over A in which (A, f̃sup)

is constant and (A, f̃inf) is a 4-fuzzy UP-subalgebra of A. Let x, y ∈ A.

Since (A, f̃sup) is constant, we have f̃sup(x) = f̃sup(0) for all x ∈ A.

Since (A, f̃inf) is a 4-fuzzy UP-subalgebra of A, we have f̃inf(x · y) ≤
max{f̃inf(x), f̃inf(y)}. Thus

f̃l(x · y) = f̃sup(x · y)− f̃inf(x · y)

= f̃sup(0)− f̃inf(x · y)

≥ f̃sup(0)−max{f̃inf(x), f̃inf(y)}

= min{f̃sup(0)− f̃inf(x), f̃sup(0)− f̃inf(y)}

= min{f̃sup(x)− f̃inf(x), f̃sup(y)− f̃inf(y)}

= min{f̃l(x), f̃l(y)}.

Hence, (A, f̃l) is a 1-fuzzy UP-subalgebra of A, that is, (A, f̃) is a length
1-fuzzy UP-subalgebra of A. �
Corollary 3.28. If (A, f̃) is a hyper structure over A in which (A, f̃sup)

is constant and (A, f̃inf) is a 2-fuzzy UP-subalgebra of A, then (A, f̃) is
a length 1-fuzzy UP-subalgebra of A.

Proof. It is straightforward by Theorems 2.15 and 3.27. �
Corollary 3.29. For i ∈ {2, 4}, every (i, 2(3))-hyperfuzzy UP-subalgebra
of A is a length 1-fuzzy UP-subalgebra.
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Proof. It is straightforward by Theorem 3.27 and Corollary 3.28. �

The following example show that the converse of Corollary 3.29 is not
true.

Example 3.30. Consider a UP-algebra A = {0, 1, 2, 3, 4} in Example

3.22. Let (A, f̃) be a hyper structure over A in which f̃ is given as
follows:

f̃ =

(
0 1 2 3 4

[0.1, 1) (0.2, 0.8] [0.3, 0.8] [0.4, 0.7) [0.5, 0.7)

)
.

Then the length of f̃ is given as follows:

f̃l =

(
0 1 2 3 4
0.9 0.6 0.5 0.3 0.2

)
.

Thus (A, f̃) is a length 1-fuzzy UP-subalgebra of A. Since

f̃sup =

(
0 1 2 3 4
0.1 0.8 0.8 0.7 0.7

)
,

we have f̃sup is not constant. By Theorems 2.17 and 2.18, we have f̃sup
is not 2(3)-fuzzy UP-subalgebra of A. Hence, (A, f̃) is not a (j, 2(3))-
hyperfuzzy UP-subalgebra of A for j ∈ {2, 4}.

Theorem 3.31. If (A, f̃) is a hyper structure over A in which (A, f̃sup)

is constant and (A, f̃inf) is a 1-fuzzy UP-subalgebra of A, then (A, f̃) is
a length 4-fuzzy UP-subalgebra of A.

Proof. Assume that (A, f̃) is a hyper structure over A in which (A, f̃sup)

is constant and (A, f̃inf) is a 1-fuzzy UP-subalgebra of A. Let x, y ∈ A.

Since (A, f̃sup) is constant, we have f̃sup(x) = f̃sup(0) for all x ∈ A.

Since (A, f̃inf) is a 1-fuzzy UP-subalgebra of A, we have f̃inf(x · y) ≥
min{f̃inf(x), f̃inf(y)}. Thus

f̃l(x · y) = f̃sup(x · y)− f̃inf(x · y)

= f̃sup(0)− f̃inf(x · y)

≤ f̃sup(0)−min{f̃inf(x), f̃inf(y)}

= max{f̃sup(0)− f̃inf(x), f̃sup(0)− f̃inf(y)}

= max{f̃sup(x)− f̃inf(x), f̃sup(y)− f̃inf(y)}

= max{f̃l(x), f̃l(y)}.

Hence, (A, f̃l) is a 4-fuzzy UP-subalgebra of A, that is, (A, f̃) is a length
4-fuzzy UP-subalgebra of A. �
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Corollary 3.32. If (A, f̃) is a hyper structure over A in which (A, f̃sup)

is constant and (A, f̃inf) is a 3-fuzzy UP-subalgebra of A, then (A, f̃) is
a length 4-fuzzy UP-subalgebra of A.

Proof. It is straightforward by Theorems 2.13 and 3.31. �

Corollary 3.33. For i ∈ {1, 3}, every (i, 2(3))-hyperfuzzy UP-subalgebra
of A is a length 4-fuzzy UP-subalgebra.

Proof. It is straightforward by Theorem 3.31 and Corollary 3.32. �

The following example show that the converse of Corollary 3.33 is not
true.

Example 3.34. Consider a UP-algebra A = {0, 1, 2, 3, 4} in Example

3.22. Let (A, f̃) be a hyper structure over A in which f̃ is given as
follows:

f̃ =

(
0 1 2 3 4

[0.5, 0.6) (0.4, 0.75] [0.3, 0.8] [0.2, 0.8) [0.1, 1)

)
.

Then the length of f̃ is given as follows:

f̃l =

(
0 1 2 3 4
0.1 0.35 0.5 0.7 0.9

)
.

Thus (A, f̃) is a length 4-fuzzy UP-subalgebra of A. Since

f̃sup =

(
0 1 2 3 4
0.6 0.75 0.8 0.8 1

)
,

we have f̃sup is not constant. By Theorems 2.17 and 2.18, we have f̃sup
is not 2(3)-fuzzy UP-subalgebra of A. Hence, (A, f̃) is not a (j, 2(3))-
hyperfuzzy UP-subalgebra of A for j ∈ {1, 3}.

Theorem 3.35. If (A, f̃) is a length 1-fuzzy UP-subalgebra of A in

which f̃inf is constant, then (A, f̃) is a (k, 1)-hyperfuzzy UP-subalgebra
of A for k ∈ {1, 2, 3, 4}.

Proof. Assume that (A, f̃) is a length 1-fuzzy UP-subalgebra of A in

which f̃inf is constant. By Theorems 2.13, 2.15, 2.17, and 2.18, we have
f̃inf is a k-fuzzy UP-subalgebra of A for k ∈ {1, 2, 3, 4}. Since f̃inf is

constant, we have f̃inf(x) = f̃inf(0) for all x ∈ A. Let x, y ∈ A. Then
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f̃l(x · y) = f̃sup(x · y)− f̃inf(0). Thus

f̃sup(x · y) = f̃l(x · y) + f̃inf(0)

≥ min{f̃l(x), f̃l(y)}+ f̃inf(0)

= min{f̃l(x) + f̃inf(0), f̃l(y) + f̃inf(0)}

= min{f̃l(x) + f̃inf(x), f̃l(y) + f̃inf(y)}

= min{f̃sup(x), f̃sup(y)}.

Hence, (A, f̃sup) is a 1-fuzzy UP-subalgebra of A. Therefore, (A, f̃) is a
(k, 1)-hyperfuzzy UP-subalgebra of A. �
Corollary 3.36. If (A, f̃) is a length 3-fuzzy UP-subalgebra of A in

which f̃inf is constant, then (A, f̃) is a (k, 1)-hyperfuzzy UP-subalgebra
of A for k ∈ {1, 2, 3, 4}.
Proof. It is straightforward by Theorems 4.6 and 3.35. �
Theorem 3.37. If (A, f̃) is a length 4-fuzzy UP-subalgebra of A in

which f̃inf is constant, then (A, f̃) is a (k, 4)-hyperfuzzy UP-subalgebra
of A for k ∈ {1, 2, 3, 4}.
Proof. Assume that (A, f̃) is a length 4-fuzzy UP-subalgebra of A in

which f̃inf is constant. By Theorems 2.13, 2.15, 2.17, and 2.18, we have
f̃inf is a k-fuzzy UP-subalgebra of A for k ∈ {1, 2, 3, 4}. Since f̃inf is

constant, we have f̃inf(x) = f̃inf(0) for all x ∈ A. Let x, y ∈ A. Then

f̃l(x · y) = f̃sup(x · y)− f̃inf(0). Thus

f̃sup(x · y) = f̃l(x · y) + f̃inf(0)

≤ max{f̃l(x), f̃l(y)}+ f̃inf(0)

= max{f̃l(x) + f̃inf(0), f̃l(y) + f̃inf(0)}

= max{f̃l(x) + f̃inf(x), f̃l(y) + f̃inf(y)}

= max{f̃sup(x), f̃sup(y)}.

Hence, (A, f̃sup) is a 4-fuzzy UP-subalgebra of A. Therefore, (A, f̃) is a
(k, 4)-hyperfuzzy UP-subalgebra of A. �
Corollary 3.38. If (A, f̃) is a length 2-fuzzy UP-subalgebra of A in

which f̃inf is constant, then (A, f̃) is a (k, 4)-hyperfuzzy UP-subalgebra
of A for k ∈ {1, 2, 3, 4}.
Proof. It is straightforward by Theorems 4.7 and 3.37. �
Theorem 3.39. If (A, f̃) is a length 1-fuzzy UP-subalgebra of A in

which f̃sup is constant, then (A, f̃) is a (4, k)-hyperfuzzy UP-subalgebra
of A for k ∈ {1, 2, 3, 4}.
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Proof. Assume that (A, f̃) is a length 1-fuzzy UP-subalgebra of A in

which f̃sup is constant. By Theorems 2.13, 2.15, 2.17, and 2.18, we have

f̃sup is a k-fuzzy UP-subalgebra of A for k ∈ {1, 2, 3, 4}. Since f̃sup is

constant, we have f̃sup(x) = f̃sup(0) for all x ∈ A. Let x, y ∈ A. Then

f̃l(x · y) = f̃sup(0)− f̃inf(x · y). Thus

f̃inf(x · y) = f̃sup(0)− f̃l(x · y)

≤ f̃sup(0)−min{f̃l(x), f̃l(y)}

= max{f̃sup(0)− f̃l(x), f̃sup(0)− f̃l(y)}

= max{f̃sup(x)− f̃l(x), f̃sup(y)− f̃l(y)}

= max{f̃inf(x), f̃inf(y)}.

Hence, (A, f̃inf) is a 4-fuzzy UP-subalgebra of A. Therefore, (A, f̃) is a
(4, k)-hyperfuzzy UP-subalgebra of A. �
Corollary 3.40. If (A, f̃) is a length 3-fuzzy UP-subalgebra of A in

which f̃sup is constant, then (A, f̃) is a (4, k)-hyperfuzzy UP-subalgebra
of A for k ∈ {1, 2, 3, 4}.
Proof. It is straightforward by Theorems 4.6 and 3.39. �
Theorem 3.41. If (A, f̃) is a length 4-fuzzy UP-subalgebra of A in

which f̃sup is constant, then (A, f̃) is a (1, k)-hyperfuzzy UP-subalgebra
of A for k ∈ {1, 2, 3, 4}.

Proof. Assume that (A, f̃) is a length 4-fuzzy UP-subalgebra of A in

which f̃sup is constant. By Theorems 2.13, 2.15, 2.17, and 2.18, we have

f̃sup is a k-fuzzy UP-subalgebra of A for k ∈ {1, 2, 3, 4}. Since f̃sup is

constant, we have f̃sup(x) = f̃sup(0) for all x ∈ A. Let x, y ∈ A. Then

f̃l(x · y) = f̃sup(0)− f̃inf(x · y). Thus

f̃inf(x · y) = f̃sup(0)− f̃l(x · y)

≥ f̃sup(0)−max{f̃l(x), f̃l(y)}

= min{f̃sup(0)− f̃l(x), f̃sup(0)− f̃l(y)}

= min{f̃sup(x)− f̃l(x), f̃sup(y)− f̃l(y)}

= min{f̃inf(x), f̃inf(y)}.

Hence, (A, f̃inf) is a 1-fuzzy UP-subalgebra of A. Therefore, (A, f̃) is a
(1, k)-hyperfuzzy UP-subalgebra of A. �
Corollary 3.42. If (A, f̃) is a length 2-fuzzy UP-subalgebra of A in

which f̃sup is constant, then (A, f̃) is a (1, k)-hyperfuzzy UP-subalgebra
of A for k ∈ {1, 2, 3, 4}.
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Proof. It is straightforward by Theorems 4.7 and 3.41. �

4. Mean of a hyper structure in UP-algebras

In this section, we introduce the notion of the mean of a hyper struc-
ture in UP-algebras. The notions of mean fuzzy UP-subalgebras of UP-
algebras are introduced, and related properties are investigated. Rela-
tions between mean fuzzy UP-subalgebras and hyperfuzzy UP-subalgebras
are established. Moreover, we discuss the relationships among mean
fuzzy UP-subalgebras and upper level subsets, lower level subsets, and
equal level subsets of the length of a hyper structure in UP-algebras.

Definition 4.1. Given a hyper structure (A, f̃) over A, we define a

fuzzy structures (A, f̃m) in A as follows:

f̃m : A → [0, 1], x 7→ f̃sup(x) + f̃inf(x)

2

which is called the mean of f̃ .

Definition 4.2. A hyper structure (A, f̃) over A is called a mean 1-
fuzzy (resp., 2-fuzzy, 3-fuzzy and 4-fuzzy) UP-subalgebra of A if a fuzzy

structures (A, f̃m) is a 1-fuzzy (resp., 2-fuzzy, 3-fuzzy and 4-fuzzy) UP-
subalgebra of A.

Example 4.3. Consider a UP-algebra A = {0, 1, 2, 3, 4} with the binary
operation · which is given as follows:

· 0 1 2 3 4
0 0 1 2 3 4
1 0 0 2 3 4
2 0 0 0 3 0
3 0 0 2 0 4
4 0 0 1 3 0

Let (A, f̃) be a hyper structure over A in which f̃ is given as follows:

f̃ =

(
0 1 2 3 4

[0.6, 0.9) (0.5, 0.9] [0.2, 0.4) ∪ [0.5, 0.8) [0.3, 0.5] [0.1, 0.3] ∪ (0.4, 0.6]

)
.

Then the mean of f̃ is given as follows:

f̃m =

(
0 1 2 3 4

0.75 0.7 0.5 0.4 0.35

)
.

Thus (A, f̃m) is a 1-fuzzy UP-subalgebra of A, that is, (A, f̃) is a mean
1-fuzzy UP-subalgebra of A.

Proposition 4.4. If (A, f̃) is a mean k-fuzzy UP-subalgebra of A for
k = 1, 3, then

(∀x ∈ A)(f̃m(0) ≥ f̃m(x)). (4.1)
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Proof. It is straightforward by Proposition 2.11. �

Proposition 4.5. If (A, f̃) is a mean k-fuzzy UP-subalgebra of A for
k = 2, 4, then

(∀x ∈ A)(f̃m(0) ≤ f̃m(x)). (4.2)

Proof. It is straightforward by Proposition 2.12. �

Theorem 4.6. Every mean 3-fuzzy UP-subalgebra of A is a mean 1-
fuzzy UP-subalgebra.

Proof. It is straightforward by Theorem 2.13. �

Theorem 4.7. Every mean 2-fuzzy UP-subalgebra of A is a mean 4-
fuzzy UP-subalgebra.

Proof. It is straightforward by Theorem 2.15. �

Theorem 4.8. Mean 2-fuzzy UP-subalgebra and mean 3-fuzzy UP-subalgebra
of A coincide.

Proof. It is straightforward by Theorems 2.17 and 2.18. �

Theorem 4.9. Given a UP-subalgebra S of A and B1, B2 ∈ P̃ ([0, 1]),

let (A, f̃) be a hyper structure over A given by

f̃ : A → P̃ ([0, 1]), x 7→

{
B2 if x ∈ S,

B1 otherwise.

(i) If supB2 ≥ supB1 and inf B2 ≥ inf B1, then (A, f̃) is a mean
1-fuzzy UP-subalgebra of A.

(ii) If supB2 ≤ supB1 and inf B2 ≤ inf B1, then (A, f̃) is a mean
4-fuzzy UP-subalgebra of A.

Proof. If x ∈ S, then f̃(x) = B2 and so

f̃m(x) =
f̃sup(x) + f̃inf(x)

2
=

sup f̃(x) + inf f̃(x)

2
=

supB2 + inf B2

2
.

If x 6∈ S, then f̃(x) = B1 and so

f̃m(x) =
f̃sup(x) + f̃inf(x)

2
=

sup f̃(x) + inf f̃(x)

2
=

supB1 + inf B1

2
.

Assume that supB2 ≥ supB1 and inf B2 ≥ inf B1. Then
supB2 + inf B2

2
≥

supB1 + inf B1

2
.
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Case 1: Let x, y ∈ S. Then f̃m(x) =
supB2 + inf B2

2
and f̃m(y) =

supB2 + inf B2

2
. Thus min{f̃m(x), f̃m(y)} =

supB2 + inf B2

2
. Since S

is a UP-subalgebra of A, we have x · y ∈ S and so

f̃m(x · y) = supB2 + inf B2

2
.

Thus

f̃m(x · y) = supB2 + inf B2

2
= (≥)min{f̃m(x), f̃m(y)}.

Case 2: Let x, y 6∈ S. Then f̃m(x) =
supB1 + inf B1

2
and f̃m(y) =

supB1 + inf B1

2
, so min{f̃m(x), f̃m(y)} =

supB1 + inf B1

2
. Thus

f̃m(x · y) ≥ supB1 + inf B1

2
= min{f̃m(x), f̃m(y)}.

Case 3: Let x 6∈ S and y ∈ S. Then f̃m(x) =
supB1 + inf B1

2

and f̃m(y) =
supB2 + inf B2

2
, so min{f̃m(x), f̃m(y)} =

supB1 + inf B1

2
.

Thus

f̃m(x · y) ≥ supB1 + inf B1

2
= min{f̃m(x), f̃m(y)}.

Case 4: Let x ∈ S and y 6∈ S. Then f̃m(x) =
supB2 + inf B2

2

and f̃m(y) =
supB1 + inf B1

2
, so min{f̃m(x), f̃m(y)} =

supB1 + inf B1

2
.

Thus

f̃m(x · y) ≥ supB1 + inf B1

2
= min{f̃m(x), f̃m(y)}.

Hence, f̃m is a 1-fuzzy UP-subalgebra of A and so (A, f̃) is a mean
1-fuzzy UP-subalgebra of A.

Assume that supB2 ≤ supB1 and inf B2 ≤ inf B1. Then
supB2 + inf B2

2
≤

supB1 + inf B1

2
.

Case 1: Let x, y ∈ S. Then f̃m(x) =
supB2 + inf B2

2
and f̃m(y) =

supB2 + inf B2

2
, so max{f̃m(x), f̃m(y)} =

supB2 + inf B2

2
. Since S is a

UP-subalgebra of A, we have x · y ∈ S and so

f̃m(x · y) = supB2 + inf B2

2
.
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Thus

f̃m(x · y) = supB2 + inf B2

2
= (≤)max{f̃m(x), f̃m(y)}

Case 2: Let x, y 6∈ S. Then f̃m(x) =
supB1 + inf B1

2
and f̃m(y) =

supB1 + inf B1

2
, so max{f̃m(x), f̃m(y)} =

supB1 + inf B1

2
. Thus

f̃m(x · y) ≤ supB1 + inf B1

2
= max{f̃m(x), f̃m(y)}.

Case 3: Let x 6∈ S and y ∈ S. Then f̃m(x) =
supB1 + inf B1

2
and

f̃m(y) =
supB2 + inf B2

2
. so max{f̃m(x), f̃m(y)} =

supB1 + inf B1

2
.

Thus

f̃m(x · y) ≤ supB1 + inf B1

2
= max{f̃m(x), f̃m(y)}.

Case 4: Let x ∈ S and y 6∈ S. Then f̃m(x) =
supB2 + inf B2

2

and f̃m(y) =
supB1 + inf B1

2
, so max{f̃m(x), f̃m(y)} =

supB1 + inf B1

2
.

Thus

f̃m(x · y) ≤ supB1 + inf B1

2
= max{f̃m(x), f̃m(y)}.

Hence, f̃m is a 4-fuzzy UP-subalgebra of A and so (A, f̃) is a mean
4-fuzzy UP-subalgebra of A. �
Example 4.10. Consider a UP-algebra A = {0, 1, 2, 3, 4} with the bi-
nary operation · which is given as follows:

· 0 1 2 3 4
0 0 1 2 3 4
1 0 0 2 0 0
2 0 1 0 3 4
3 0 1 2 0 4
4 0 3 2 3 0

Then S = {0, 1, 2} is a UP-subalgebra of A. Let (A, f̃) be a hyper

structure over A in which f̃ is given as follows:

f̃ =

(
0 1 2 3 4

[0.04, 0.18) [0.04, 0.18) [0.04, 0.18) (0.03, 0.11] (0.03, 0.11]

)
.

Then the mean of f̃ is given as follows:

f̃m =

(
0 1 2 3 4

0.11 0.11 0.11 0.07 0.07

)
.
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By Theorem 4.9, we have (A, f̃) is a mean 1-fuzzy UP-subalgebra of A.
We see that

f̃m(2 · 3) = 0.07 � 0.11 = max{0.11, 0.07} = max{f̃m(2), f̃m(3)}.

Thus (A, f̃m) is not a 3-fuzzy UP-subalgebra of A, that is, (A, f̃) is not a
mean 3-fuzzy UP-subalgebra of A. Give a UP-subalgebra S = {0, 1, 2, 3}
of A, let (A, f̃) be a hyper structure over A given by

f̃ =

(
0 1 2 3 4

(0.4, 0.7) (0.4, 0.7) (0.4, 0.7) (0.4, 0.7) [0.5, 0.9)

)
.

Then the mean of f̃ is given as follows:

f̃m =

(
0 1 2 3 4

0.55 0.55 0.55 0.55 0.7

)
.

By Theorem 4.9, we have (A, f̃) is a mean 4-fuzzy UP-subalgebra of A.
We see that

f̃m(2 · 4) = f̃m(4) = 0.7 � 0.55 = max{0.11, 0.07} = min{f̃m(2), f̃m(4)}.

Thus (A, f̃m) is not a 2-fuzzy UP-subalgebra of A, that is, (A, f̃) is not
a mean 2-fuzzy UP-subalgebra of A.

Theorem 4.11. A hyper structure (A, f̃) over A is a mean 1-fuzzy UP-

subalgebra of A if and only if the set U(f̃m; t) is a UP-subalgebra of A

for all t ∈ [0, 1] with U(f̃m; t) 6= ∅.

Proof. Assume that (A, f̃) is a mean 1-fuzzy UP-subalgebra of A. Let

t ∈ [0, 1] be such that U(f̃m; t) 6= ∅ and let x, y ∈ U(f̃m; t). Then

f̃m(x) ≥ t and f̃m(y) ≥ t. Since (A, f̃) is a mean 1-fuzzy UP-subalgebra
of A, we have

f̃m(x · y) ≥ min{f̃m(x), f̃m(y)} ≥ t.

Thus x · y ∈ U(f̃m; t). Hence, U(f̃m; t) is a UP-subalgebra of A.

Conversely, assume that for all t ∈ [0, 1], the set U(f̃m; t) is a UP-

subalgebra of A if U(f̃m; t) 6= ∅. Let x, y ∈ A. Then f̃m(x), f̃m(y) ∈ [0, 1].

Choose t = min{f̃m(x), f̃m(y)}. Thus f̃m(x) ≥ t and f̃m(y) ≥ t and so

x, y ∈ U(f̃m; t) 6= ∅. By assumption, we have U(f̃m; t) is a UP-subalgebra

of A and so x · y ∈ U(f̃m; t). Thus

f̃m(x · y) ≥ t = min{f̃m(x), f̃m(y)}.

Hence, (A, f̃m) is a 1-fuzzy UP-subalgebra of A, that is, (A, f̃) is a mean
1-fuzzy UP-subalgebra of A. �
Corollary 4.12. If (A, f̃) is a mean 3-fuzzy UP-subalgebra of A, then

U(f̃m; t) is a UP-subalgebra of A for all t ∈ [0, 1] with U(f̃m; t) 6= ∅.
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Proof. It is straightforward by Theorems 4.6 and 4.11. �
The following example show that the converse of Corollary 4.12 is not

true.

Example 4.13. Consider a UP-algebra A = {0, 1, 2, 3, 4} with the bi-
nary operation · which is given as follows:

· 0 1 2 3 4
0 0 1 2 3 4
1 0 0 2 3 4
2 0 1 0 0 0
3 0 1 2 0 0
4 0 1 2 3 0

Let (A, f̃) be a hyper structure over A in which f̃ is given as follows:

f̃ =

(
0 1 2 3 4

[0.6, 0.9) (0.5, 0.7] [0.2, 0.4] ∪ (0.5, 0.9] (0.3, 0.5] [0.1, 0.7]

)
.

Then the mean of f̃ is given as follows:

f̃m =

(
0 1 2 3 4

0.75 0.6 0.55 0.4 0.4

)
.

We have

U(f̃m; t) =



∅ if t ∈ (0.75, 1],

{0} if t ∈ (0.6, 0.75],

{0, 1} if t ∈ (0.55, 0.6],

{0, 1, 2} if t ∈ (0.4, 0.55],

A if t ∈ [0, 0.4]

and so U(f̃m; t) is a UP-subalgebra of A for all t ∈ [0, 1] with U(f̃m; t) 6=
∅. We see that

f̃m(0 · 2) = f̃m(2) = 0.55 � 0.75 = max{f̃m(0), f̃m(4)}.

Thus (A, f̃m) is not a 3-fuzzy UP-subalgebra of A, that is, (A, f̃) is not
a mean 3-fuzzy UP-subalgebra of A.

Theorem 4.14. A hyper structure (A, f̃) over A is a mean 4-fuzzy UP-

subalgebra of A if and only if the set L(f̃m; t) is a UP-subalgebra of A

for all t ∈ [0, 1] with L(f̃m; t) 6= ∅.

Proof. Assume that (A, f̃) is a mean 4-fuzzy UP-subalgebra of A. Let

t ∈ [0, 1] be such that L(f̃m; t) 6= ∅ and let x, y ∈ L(f̃m; t). Then

f̃m(x) ≤ t and f̃m(y) ≤ t. Since (A, f̃) is a mean 4-fuzzy UP-subalgebra
of A, we have

f̃m(x · y) ≤ max{f̃m(x), f̃m(y)} ≤ t.
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Thus x · y ∈ L(f̃m; t). Hence, L(f̃m; t) is a UP-subalgebra of A.

Conversely, assume that for all t ∈ [0, 1], the set L(f̃m; t) is a UP-

subalgebra of A if L(f̃m; t) 6= ∅. Let x, y ∈ A. Then f̃m(x), f̃m(y) ∈ [0, 1].

Choose t = max{f̃m(x), f̃m(y)}. Thus f̃m(x) ≤ t and f̃m(y) ≤ t, and so

x, y ∈ L(f̃m; t) 6= ∅. By assumption, we have L(f̃m; t) is a UP-subalgebra

of A and so x · y ∈ L(f̃m; t). Thus

f̃m(x · y) ≤ t = max{f̃m(x), f̃m(y)}.

Hence, (A, f̃m) is a 4-fuzzy UP-subalgebra of A, that is, (A, f̃) is a mean
4-fuzzy UP-subalgebra of A. �

Corollary 4.15. If (A, f̃) is a mean 2-fuzzy UP-subalgebra of A, then

L(f̃m; t) is a UP-subalgebra of A for all t ∈ [0, 1] with L(f̃m; t) 6= ∅.

Proof. It is straightforward by Theorems 4.7 and 4.14. �

The following example show that the converse of Corollary 4.15 is not
true.

Example 4.16. Consider a UP-algebra A = {0, 1, 2, 3, 4} with the bi-
nary operation · which is given as follows:

· 0 1 2 3 4
0 0 1 2 3 4
1 0 0 2 3 4
2 0 0 0 3 4
3 0 1 1 0 4
4 0 1 2 3 0

Let (A, f̃) be a hyper structure over A in which f̃ is given as follows:

f̃ =

(
0 1 2 3 4

[0.3, 0.5) [0.3, 0.4] ∪ (0.5, 0.7] [0.1, 0.9] [0.5, 0.6] ∪ (0.8, 0.9] [0.7, 0.8]

)
.

Then the mean of f̃ is given as follows:

f̃m =

(
0 1 2 3 4
0.4 0.5 0.5 0.7 0.75

)
.

We have

L(f̃m; t) =



A if t ∈ [0.75, 1],

{0, 1, 2, 3} if t ∈ [0.7, 0.75),

{0, 1, 2} if t ∈ [0.5, 0.7),

{0} if t ∈ [0.4, 0.5),

∅ if t ∈ [0, 0.4)
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and so L(f̃m; t) is a UP-subalgebra of A for all t ∈ [0, 1] with L(f̃m; t) 6= ∅.
We see that

f̃m(0 · 2) = 0.5 � 0.4 = min{f̃m(0), f̃m(2)}.

Thus (A, f̃m) is not a 2-fuzzy UP-subalgebra of A, that is, (A, f̃) is not
a mean 2-fuzzy UP-subalgebra of A.

Theorem 4.17. A hyper structure (A, f̃) over A is a mean 2(3)-fuzzy

UP-subalgebra of A if and only if the set E(f̃m; f̃m(0)) = A.

Proof. Assume that (A, f̃) is a mean 2-fuzzy UP-subalgebra of A. Then

f̃m is a 2-fuzzy UP-subalgebra of A. By Theorem 2.17, we have is
constant and so f̃m(x) = f̃m(0) for all x ∈ A. Thus x ∈ E(f̃m; f̃m(0))

for all x ∈ A. Therefore, E(f̃m; f̃m(0)) = A.

Conversely, assume that E(f̃m; f̃m(0)) = A. Then f̃m(x) = f̃m(0) for

all x ∈ A. Thus f̃m is constant. By Theorem 2.17, we have f̃m is a 2-fuzzy
UP-subalgebraA. Therefore, (A, f̃) is a mean 2-fuzzy UP-subalgebra of
A. �

Theorem 4.18. If (A, f̃) is a hyper structure over A in which (A, f̃inf)

is constant and (A, f̃sup) is a 1-fuzzy UP-subalgebra of A, then (A, f̃) is
a mean 1-fuzzy UP-subalgebra of A.

Proof. Assume that (A, f̃) is a hyper structure over A in which (A, f̃inf)

is constant and (A, f̃sup) is a 1-fuzzy UP-subalgebra of A. Let x, y ∈
A. Since (A, f̃inf) is constant, we have f̃inf(x) = f̃inf(0) for all x ∈ A.

Since (A, f̃sup) is a 1-fuzzy UP-subalgebra of A, we have f̃sup(x · y) ≥
min{f̃sup(x), f̃sup(y)}. Thus

f̃m(x · y) = f̃sup(x · y) + f̃inf(x · y)
2

=
f̃sup(x · y)

2
+

f̃inf(0)

2

≥ min{ f̃sup(x)
2

,
f̃sup(y)

2
}+ f̃inf(0)

2

= min{ f̃sup(x)
2

+
f̃inf(0)

2
,
f̃sup(y)

2
+

f̃inf(0)

2
}

= min{ f̃sup(x) + f̃inf(x)

2
,
f̃sup(y) + f̃inf(y)

2
}

= min{f̃m(x), f̃m(y)}.

Hence (A, f̃m) is a 1-fuzzy UP-subalgebra of A, that is, (A, f̃) is a mean
1-fuzzy UP-subalgebra of A. �
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Corollary 4.19. If (A, f̃) be a hyper structure over A in which (A, f̃inf)

is constant and (A, f̃sup) is a 3-fuzzy UP-subalgebra of A, then (A, f̃) is
a mean 1-fuzzy UP-subalgebra of A.

Proof. It is straightforward by Theorems 2.13 and 4.18. �

Corollary 4.20. For j ∈ {1, 3}, every (2(3), j)-hyperfuzzy UP-subalgebra
is a mean 1-fuzzy UP-subalgebra.

Proof. It is straightforward by Theorems 4.18 and 4.19. �

The following example show that the converse of Corollary 4.20 is not
true.

Example 4.21. Consider a UP-algebra A = {0, 1, 2, 3, 4} with the bi-
nary operation · which is given as follows:

· 0 1 2 3 4
0 0 1 2 3 4
1 0 0 2 3 4
2 0 2 0 3 4
3 0 2 2 0 4
4 0 2 2 3 0

Let (A, f̃) be a hyper structure over A in which f̃ is given as follows:

f̃ =

(
0 1 2 3 4

[0.6, 0.9) (0.5, 0.8] [0.1, 0.9] [0.3, 0.6) [0.3, 0.6)

)
.

Then the mean of f̃ is given as follows:

f̃m =

(
0 1 2 3 4

0.75 0.65 0.5 0.45 0.45

)
.

Thus (A, f̃) is a mean 1-fuzzy UP-subalgebra of A. Since

f̃inf =

(
0 1 2 3 4
0.6 0.5 0.1 0.3 0.3

)
,

we have f̃inf is not constant. By Theorems 2.17 and 2.18, we have f̃inf
is not 2(3)-fuzzy UP-subalgebra of A. Hence, (A, f̃) is not a (2(3), j)-
hyperfuzzy UP-subalgebra of A for j ∈ {1, 3}.

Theorem 4.22. If (A, f̃) is a hyper structure over A in which (A, f̃inf)

is constant and (A, f̃sup) is a 4-fuzzy UP-subalgebra of A, then (A, f̃) is
a mean 4-fuzzy UP-subalgebra of A.

Proof. Assume that (A, f̃) is a hyper structure over A in which (A, f̃inf)

is constant and (A, f̃sup) is a 4-fuzzy UP-subalgebra of A. Let x, y ∈
A. Since (A, f̃inf) is constant, we have f̃inf(x) = f̃inf(0) for all x ∈ A.
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Since (A, f̃sup) is a 4-fuzzy UP-subalgebra of A, we have f̃sup(x · y) ≤
max{f̃sup(x), f̃sup(y)}. Thus

f̃m(x · y) = f̃sup(x · y) + f̃inf(x · y)
2

=
f̃sup(x · y) + f̃inf(0)

2

=
f̃sup(x · y)

2
+

f̃sup(0)

2

≤ max{ f̃sup(x)
2

,
f̃sup(y)

2
}+ f̃sup(0)

2

= max{ f̃sup(x)
2

+
f̃sup(0)

2
,
f̃sup(y)

2
+

f̃sup(0)

2
}

= max{ f̃sup(x) + f̃inf(x)

2
,
f̃sup(y) + f̃inf(y)

2
}

= max{f̃m(x), f̃m(y)}.

Hence, (A, f̃m) is a 4-fuzzy UP-subalgebra of A, that is, (A, f̃) is a mean
4-fuzzy UP-subalgebra of A. �

Corollary 4.23. If (A, f̃) be a hyper structure over A in which (A, f̃inf)

is constant and (A, f̃sup) is a 2-fuzzy UP-subalgebra of A, then (A, f̃) is
a mean 4-fuzzy UP-subalgebra of A.

Proof. It is straightforward by Theorems 2.15 and 4.22. �

Corollary 4.24. For j ∈ {2, 4}, every (2(3), j)-hyperfuzzy UP-subalgebra
is a mean 4-fuzzy UP-subalgebra of A.

Proof. It is straightforward by Theorems 4.22 and 4.23. �

The following example show that the converse of Corollary 4.32 is not
true.

Example 4.25. Consider a UP-algebra A = {0, 1, 2, 3, 4} in Example

4.21. Let (A, f̃) be a hyper structure over A in which f̃ is given as
follows:

f̃ =

(
0 1 2 3 4

[0.3, 0.6) (0.3, 0.6] [0.1, 0.9] [0.5, 0.8) [0.6, 0.9)

)
.

Then the mean of f̃ is given as follows:

f̃m =

(
0 1 2 3 4

0.45 0.45 0.5 0.65 0.75

)
.
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Thus (A, f̃) is a mean 4-fuzzy UP-subalgebra of A. Since

f̃inf =

(
0 1 2 3 4
0.3 0.3 0.1 0.5 0.6

)
,

we have f̃inf is not constant. By Theorems 2.17 and 2.18, we have f̃inf
is not 2(3)-fuzzy UP-subalgebra of A. Hence, (A, f̃) is not a (2(3), j)-
hyperfuzzy UP-subalgebra of A for j ∈ {2, 4}.

Theorem 4.26. If (A, f̃) is a hyper structure over A in which (A, f̃sup)

is constant and (A, f̃inf) is a 4-fuzzy UP-subalgebra of A, then (A, f̃) is
a mean 4-fuzzy UP-subalgebra of A.

Proof. Assume that (A, f̃) is a hyper structure over A in which (A, f̃sup)

is constant and (A, f̃inf) is a 4-fuzzy UP-subalgebra of A. Let x, y ∈ A.

Since (A, f̃sup) is constant, we have f̃sup(x) = f̃sup(0) for some x ∈ A.

Since (A, f̃inf) is a 4-fuzzy UP-subalgebra of A, we have f̃inf(x · y) ≤
max{f̃inf(x), f̃inf(y)}. Thus

f̃m(x · y) = f̃sup(x · y) + f̃inf(x · y)
2

=
f̃sup(0) + f̃inf(x · y)

2

=
f̃sup(0)

2
+

f̃inf(x · y)
2

≤ f̃sup(0)

2
+ max{ f̃inf(x)

2
,
f̃inf(y)

2
}

= max{ f̃sup(0)
2

+
f̃inf(x)

2
,
f̃sup(0)

2
+

f̃inf(y)

2
}

= max{ f̃sup(x) + f̃inf(x)

2
,
f̃sup(y) + f̃inf(y)

2
}

= max{f̃m(x), f̃m(y)}.

Hence, (A, f̃m) is a 4-fuzzy UP-subalgebra of A, that is, (A, f̃) is a mean
4-fuzzy UP-subalgebra of A. �
Corollary 4.27. If (A, f̃) be a hyper structure over A in which (A, f̃sup)

is constant and (A, f̃inf) is a 2-fuzzy UP-subalgebra of A, then (A, f̃) is
a mean 4-fuzzy UP-subalgebra of A.

Proof. It is straightforward by Theorems 2.15 and 4.26. �
Corollary 4.28. For i ∈ {2, 4}, every (i, 2(3))-hyperfuzzy UP-subalgebra
is a mean 4-fuzzy UP-subalgebra of A.

Proof. It is straightforward by Theorems 4.26 and Corollary 4.27. �
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The following example show that the converse of Corollary 4.28 is not
true.

Example 4.29. Consider a UP-algebra A = {0, 1, 2, 3, 4} in Example

4.21. Let (A, f̃) be a hyper structure over A in which f̃ is given as
follows:

f̃ =

(
0 1 2 3 4

[0.6, 0.9) (0.5, 0.8] [0.4, 0.9] [0.3, 0.6) [0.3, 0.6)

)
.

Then the mean of f̃ is given as follows:

f̃m =

(
0 1 2 3 4

0.75 0.65 0.65 0.45 0.45

)
.

Thus (A, f̃) is a mean 4-fuzzy UP-subalgebra of A. Since

f̃sup =

(
0 1 2 3 4
0.6 0.5 0.4 0.6 0.6

)
,

we have f̃sup is not constant. By Theorems 2.17 and 2.18, we have f̃sup
is not 2(3)-fuzzy UP-subalgebra of A. Hence, (A, f̃) is not a (j, 2(3))-
hyperfuzzy UP-subalgebra of A for j ∈ {2, 4}.

Theorem 4.30. If (A, f̃) is a hyper structure over A in which (A, f̃sup)

is constant and (A, f̃inf) is a 1-fuzzy UP-subalgebra of A, then (A, f̃) is
a mean 1-fuzzy UP-subalgebra of A.

Proof. Assume that (A, f̃) is a hyper structure over A in which (A, f̃sup)

is constant and (A, f̃inf) is a 1-fuzzy UP-subalgebra of A. Let x, y ∈ A.

Since (A, f̃sup) is constant, we have f̃sup(x) = f̃sup(0) for allx ∈ A.

Since (A, f̃inf) is a 1-fuzzy UP-subalgebra of A, we obtain f̃inf(x · y) ≥
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min{f̃inf(x), f̃inf(y)}. Thus

f̃m(x · y) = f̃sup(x · y) + f̃inf(x · y)
2

=
f̃sup(0) + f̃inf(x · y)

2

=
f̃sup(0)

2
+

f̃inf(x · y)
2

≥ f̃sup(0)

2
+ min{ f̃inf(x)

2
,
f̃inf(y)

2
}

= min{ f̃sup(0)
2

+
f̃inf(x)

2
,
f̃sup(0)

2
+

f̃inf(y)

2
}

= min{ f̃sup(x) + f̃inf(x)

2
,
f̃sup(y) + f̃inf(y)

2
}

= min{f̃m(x), f̃m(y)}.

Hence, (A, f̃m) is a 1-fuzzy UP-subalgebra of A, that is, (A, f̃) is a mean
1-fuzzy UP-subalgebra of A. �
Corollary 4.31. If (A, f̃) is a hyper structure over A in which (A, f̃sup)

is constant and (A, f̃inf) is a 3-fuzzy UP-subalgebra of A, then (A, f̃) is
a mean 1-fuzzy UP-subalgebra of A.

Proof. It is straightforward by Theorems 2.13 and 4.22. �
Corollary 4.32. For i ∈ {1, 3}, every (i, 2(3))-hyperfuzzy UP-subalgebra
is a mean 1-fuzzy UP-subalgebra of A.

Proof. It is straightforward by Theorems 4.30 and Corollary 4.31. �
The following example show that the converse of Corollary 4.32 is not

true.

Example 4.33. Consider a UP-algebra A = {0, 1, 2, 3, 4} in Example

4.21. Let (A, f̃) be a hyper structure over A in which f̃ is given as
follows:

f̃ =

(
0 1 2 3 4

[0.3, 0.6) (0.3, 0.] [0.4, 0.9] [0.5, 0.8) [0.6, 0.9)

)
.

Then the mean of f̃ is given as follows:

f̃m =

(
0 1 2 3 4

0.45 0.45 0.65 0.65 0.75

)
.

Thus (A, f̃) is a mean 1-fuzzy UP-subalgebra of A. Since

f̃sup =

(
0 1 2 3 4
0.6 0.6 0.9 0.8 0.9

)
,
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we have f̃sup is not constant. By Theorems 2.17 and 2.18, we have f̃sup
is not 2(3)-fuzzy UP-subalgebra of A. Hence, (A, f̃) is not a (j, 2(3))-
hyperfuzzy UP-subalgebra of A for j ∈ {1, 3}.
Theorem 4.34. If (A, f̃) is a mean 1-fuzzy UP-subalgebra of A in which

f̃inf is constant, then (A, f̃) is a (k, 1)-hyperfuzzy UP-subalgebra of A for
k ∈ {1, 2, 3, 4}.
Proof. Assume that (A, f̃) is a mean 1-fuzzy UP-subalgebra of A in

which f̃inf is constant. By Theorems 2.13, 2.15, 2.17, and 2.18, we have
f̃inf is a k-fuzzy UP-subalgebra of A for k ∈ {1, 2, 3, 4}. Since f̃inf is

constant, we have f̃inf(x) = f̃inf(0) for all x ∈ A. Let x, y ∈ A. Then

f̃m(x · y) = f̃sup(x · y) + f̃inf(x · y)
2

.

Thus

f̃sup(x · y) = 2f̃m(x · y)− f̃inf(x · y)

= 2f̃m(x · y)− f̃inf(0)

≥ 2min{f̃m(x), f̃m(y)} − f̃inf(0)

= min{2f̃m(x), 2f̃m(y)} − f̃inf(0)

= min{2f̃m(x)− f̃inf(0), 2f̃m(y)− f̃inf(0)}

= min{2f̃m(x)− f̃inf(x), 2f̃m(y)− f̃inf(y)}

= min{f̃sup(x), f̃sup(y)}.

Hence, (A, f̃sup) is a 1-fuzzy UP-subalgebra of A. Therefore, (A, f̃) is a
(k,1)-hyperfuzzy UP-subalgebra of A. �
Corollary 4.35. If (A, f̃) is a mean 3-fuzzy subalgebra of A in which

f̃inf is constant, then (A, f̃) is a (k, 1)-hyperfuzzy UP-subalgebra of A for
k ∈ {1, 2, 3, 4}.
Proof. It is straightforward by Theorems 2.13 and 4.34. �
Theorem 4.36. If (A, f̃) is a mean 4-fuzzy UP-subalgebra of A in which

f̃inf is constant, then (A, f̃) is a (k, 4)-hyperfuzzy UP-subalgebra of A for
k ∈ {1, 2, 3, 4}.
Proof. Assume that (A, f̃) is a mean 4-fuzzy UP-subalgebra of A in

which f̃inf is constant. By Theorems 2.13, 2.15, 2.17, and 2.18, we have
f̃inf is a k-fuzzy UP-subalgebra of A for k ∈ {1, 2, 3, 4}. Since f̃inf is

constant, we have f̃inf(x) = f̃inf(0) for all x ∈ A. Let x, y ∈ A. Then

f̃m(x · y) = f̃sup(x · y) + f̃inf(x · y)
2

.
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Thus

f̃sup(x · y) = 2f̃m(x · y)− f̃inf(x · y)

= 2f̃m(x · y)− f̃inf(0)

≤ 2max{f̃m(x), f̃m(y)} − f̃inf(0)

= max{2f̃m(x), 2f̃m(y)} − f̃inf(0)

= max{2f̃m(x)− f̃inf(0), 2f̃m(y)− f̃inf(0)}

= max{2f̃m(x)− f̃inf(x), 2f̃m(y)− f̃inf(y)}

= max{f̃sup(x), f̃sup(y)}.

Hence, (A, f̃sup) is a 4-fuzzy UP-subalgebra of A. Therefore, (A, f̃) is a
(k, 4)-hyperfuzzy UP-subalgebra of A. �
Corollary 4.37. If (A, f̃) is a mean 2-fuzzy UP-subalgebra of A in

which f̃inf is constant, then (A, f̃) is a (k, 4)-hyperfuzzy UP-subalgebra
of A for k ∈ {1, 2, 3, 4}.
Proof. It is straightforward by Theorems 2.15 and 4.36. �
Theorem 4.38. If (A, f̃) is a mean 4-fuzzy UP-subalgebra of A in which

f̃sup is constant, then (A, f̃) is a (4, k)-hyperfuzzy UP-subalgebra of A
for k ∈ {1, 2, 3, 4}.

Proof. Assume that (A, f̃) is a mean 4-fuzzy UP-subalgebra of A in

which f̃sup is constant. By Theorems 2.13, 2.15, 2.17, and 2.18, we have

f̃sup is a k-fuzzy UP-subalgebra of A for k ∈ {1, 2, 3, 4}. Since f̃sup is

constant, we have f̃sup(x) = f̃sup(0) for all x ∈ A. Let x, y ∈ A. Then

f̃m(x · y) = f̃sup(x · y) + f̃inf(x · y)
2

.

Thus

f̃inf(x · y) = 2f̃m(x · y)− f̃sup(x · y)

= 2f̃m(x · y)− f̃sup(0)

≥ 2max{f̃m(x), f̃m(y)} − f̃sup(0)

= max{2f̃m(x), 2f̃m(y)} − f̃sup(0)

= max{2f̃m(x)− f̃sup(0), 2f̃m(y)− f̃sup(0)}

= max{2f̃m(x)− f̃sup(x), 2f̃m(y)− f̃sup(y)}

= max{f̃inf(x), f̃inf(y)}.

Hence, (A, f̃inf) is a 4-fuzzy UP-subalgebra of A. Therefore, (A, f̃) is a
(4, k)-hyperfuzzy UP-subalgebra of A. �
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Corollary 4.39. If (A, f̃) is a mean 2-fuzzy UP-subalgebra of A in which

f̃sup is constant, then (A, f̃) is a (4, k)-hyperfuzzy UP-subalgebra of A
for k ∈ {1, 2, 3, 4}.

Proof. It is straightforward by Theorems 2.15 and 4.38. �
Theorem 4.40. If (A, f̃) is a mean 1-fuzzy UP-subalgebra of A in which

f̃sup is constant, then (A, f̃) is a (1, k)-hyperfuzzy UP-subalgebra of A
for k ∈ {1, 2, 3, 4}.

Proof. Assume that (A, f̃) is a mean 4-fuzzy UP-subalgebra of A in

which f̃sup is constant. By Theorems 2.13, 2.15, 2.17, and 2.18, we have

f̃sup is a k-fuzzy UP-subalgebra of A for k ∈ {1, 2, 3, 4}. Since f̃sup is

constant, we have f̃sup(x) = f̃sup(0) for all x ∈ A. Let x, y ∈ A. Then

f̃m(x · y) = f̃sup(x · y) + f̃inf(x · y)
2

.

Thus

f̃inf(x · y) = 2f̃m(x · y)− f̃sup(x · y)

= 2f̃m(x · y)− f̃sup(0)

≥ 2min{f̃m(x), f̃m(y)} − f̃sup(0)

= min{2f̃m(x), 2f̃m(y)} − f̃sup(0)

= min{2f̃m(x)− f̃sup(0), 2f̃m(y)− f̃sup(0)}

= min{2f̃m(x)− f̃sup(x), 2f̃m(y)− f̃sup(y)}

= min{f̃inf(x), f̃inf(y)}.

Hence, (A, f̃inf) is a 1-fuzzy UP-subalgebra of A Therefore, (A, f̃) is a
(1, k)-hyperfuzzy UP-subalgebra of A. �

Corollary 4.41. If (A, f̃) is a mean 3-fuzzy UP-subalgebra of A in which

f̃sup is constant, then (A, f̃) is a (1, k)-hyperfuzzy UP-subalgebra of A
for k ∈ {1, 2, 3, 4}.

Proof. It is straightforward by Theorems 2.13 and 4.40. �

5. Conclusions

In this paper, we have introduced notions of length fuzzy UP-subalgebras
and mean fuzzy UP-subalgebras of UP-algebras and investigated some of
their important properties. Relations between length fuzzy UP-subalgebras
(resp., mean fuzzy UP-subalgebras) and hyperfuzzy UP-subalgebras are
established. Then we have the table of some relations between length
fuzzy UP-subalgebras and hyperfuzzy UP-subalgebras (see Figure 1),
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and mean fuzzy UP-subalgebras and hyperfuzzy UP-subalgebras (see
Figure 2) below.

Figure 1. length fuzzy UP-subalgebras and hyperfuzzy
UP-subalgebras
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Figure 2. mean fuzzy UP-subalgebras and hyperfuzzy
UP-subalgebras
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